-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathdata_setup.py
67 lines (58 loc) · 2.14 KB
/
data_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
Contains functionality for creating PyTorch DataLoaders for
image classification data.
"""
import os
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
NUM_WORKERS = os.cpu_count()
def create_dataloaders(
train_dir: str,
test_dir: str,
train_transform: transforms.Compose,
test_transform: transforms.Compose,
batch_size: int,
num_workers: int=NUM_WORKERS
):
"""Creates training and testing DataLoaders.
Takes in a training directory and testing directory path and turns
them into PyTorch Datasets and then into PyTorch DataLoaders.
Args:
train_dir: Path to training directory.
test_dir: Path to testing directory.
train_transform: torchvision transforms to perform on training data.
test_transform: torchvision transforms to perform on test data.
batch_size: Number of samples per batch in each of the DataLoaders.
num_workers: An integer for number of workers per DataLoader.
Returns:
A tuple of (train_dataloader, test_dataloader, class_names).
Where class_names is a list of the target classes.
Example usage:
train_dataloader, test_dataloader, class_names = \
= create_dataloaders(train_dir=path/to/train_dir,
test_dir=path/to/test_dir,
transform=some_transform,
batch_size=32,
num_workers=4)
"""
# Use ImageFolder to create dataset(s)
train_data = datasets.ImageFolder(train_dir, transform=train_transform)
test_data = datasets.ImageFolder(test_dir, transform=test_transform)
# Get class names
class_names = train_data.classes
# Turn images into data loaders
train_dataloader = DataLoader(
train_data,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True, #enables fast data transfre to CUDA-enable GPU
)
test_dataloader = DataLoader(
test_data,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True, #enables fast data transfre to CUDA-enable GPU
)
return train_dataloader, test_dataloader, class_names