-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
208 lines (170 loc) · 7.67 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import pyrootutils
root = pyrootutils.setup_root(
search_from=__file__,
indicator=[".git", "pyproject.toml"],
pythonpath=True,
dotenv=True,
)
# ------------------------------------------------------------------------------------ #
# `pyrootutils.setup_root(...)` is an optional line at the top of each entry file
# that helps to make the environment more robust and convenient
#
# the main advantages are:
# - allows you to keep all entry files in "src/" without installing project as a package
# - makes paths and scripts always work no matter where is your current work dir
# - automatically loads environment variables from ".env" file if exists
#
# how it works:
# - the line above recursively searches for either ".git" or "pyproject.toml" in present
# and parent dirs, to determine the project root dir
# - adds root dir to the PYTHONPATH (if `pythonpath=True`), so this file can be run from
# any place without installing project as a package
# - sets PROJECT_ROOT environment variable which is used in "configs/paths/default.yaml"
# to make all paths always relative to the project root
# - loads environment variables from ".env" file in root dir (if `dotenv=True`)
#
# you can remove `pyrootutils.setup_root(...)` if you:
# 1. either install project as a package or move each entry file to the project root dir
# 2. simply remove PROJECT_ROOT variable from paths in "configs/paths/default.yaml"
# 3. always run entry files from the project root dir
#
# https://github.com/ashleve/pyrootutils
# ------------------------------------------------------------------------------------ #
import os
from typing import List, Tuple
import hydra
import pytorch_lightning as pl
import torchvision
import torchvision.transforms.functional as TF
from omegaconf import DictConfig
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from pytorch_lightning.loggers.logger import Logger
from src import utils
log = utils.get_pylogger(__name__)
@utils.task_wrapper
def evaluate(cfg: DictConfig) -> Tuple[dict, dict]:
"""Evaluates given checkpoint on a datamodule testset.
This method is wrapped in optional @task_wrapper decorator which applies extra utilities
before and after the call.
Args:
cfg (DictConfig): Configuration composed by Hydra.
Returns:
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
"""
# set seed for random number generators in pytorch, numpy and python.random
if cfg.get("seed"):
pl.seed_everything(cfg.seed, workers=True)
if cfg.use_ckpt:
assert cfg.ckpt_path, "You must provide a checkpoint path when `use_ckpt=True`"
log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>")
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.datamodule)
log.info(f"Instantiating model <{cfg.model._target_}>")
model: LightningModule = hydra.utils.instantiate(cfg.model)
# Torch compile() with Pytorch 2.X
# Comment the line below for torch version < 2.X
# model = model.compile()
log.info("Instantiating loggers...")
logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger"))
log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger)
object_dict = {
"cfg": cfg,
"datamodule": datamodule,
"model": model,
"logger": logger,
"trainer": trainer,
}
if logger:
log.info("Logging hyperparameters!")
utils.log_hyperparameters(object_dict)
if cfg.get("task_name") == "eval":
# Logs eval metrics for testing pipeline
log.info("Starting testing!")
trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path)
# Writes output masks to files
if cfg.get("output_masks_dir"):
output_masks_dir = cfg.get("output_masks_dir")
log.info("Generating masks of test dataset")
pred_outputs = trainer.predict(
model=model,
dataloaders=datamodule.test_dataloader(),
ckpt_path=cfg.ckpt_path,
)
preds, mask_names, heights, widths = [], [], [], []
for p in pred_outputs:
preds += list(p["preds"])
mask_names += list(p["mask_names"])
heights += list(p["heights"])
widths += list(p["widths"])
log.info(f"Saving the generated masks in directory {output_masks_dir}")
# Create directory if it doesn't exist and if exists clear the directory
if not os.path.exists(output_masks_dir):
# Recursively create directory
os.makedirs(output_masks_dir, exist_ok=True)
else:
# Clear the directory
# for f in os.listdir(output_masks_dir):
# os.remove(os.path.join(output_masks_dir, f))
pass
for pred, mask_name, h, w in zip(preds, mask_names, heights, widths):
file_path = f"{output_masks_dir}/{mask_name}"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
torchvision.utils.save_image(
TF.resize(
pred.double(),
size=[h, w],
interpolation=TF.InterpolationMode.NEAREST_EXACT,
),
file_path,
)
# Predict the output masks and save in a directory
elif cfg.get("task_name") == "pred":
if cfg.get("output_masks_dir"):
output_masks_dir = cfg.get("output_masks_dir")
log.info(f"Generating masks of test dataset")
pred_outputs = trainer.predict(
model=model,
dataloaders=datamodule.test_dataloader(),
ckpt_path=cfg.ckpt_path,
)
preds, mask_names, heights, widths = [], [], [], []
for p in pred_outputs:
preds += list(p["preds"])
mask_names += list(p["mask_names"])
heights += list(p["heights"])
widths += list(p["widths"])
log.info(f"Saving prediction masks in directory {output_masks_dir}")
# Create directory if it doesn't exist and if exists clear the directory
if not os.path.exists(output_masks_dir):
# Recursively create directory
os.makedirs(output_masks_dir, exist_ok=True)
else:
# Clear the directory
for f in os.listdir(output_masks_dir):
os.remove(os.path.join(output_masks_dir, f))
for pred, mask_name, h, w in zip(preds, mask_names, heights, widths):
file_path = f"{output_masks_dir}/{mask_name}"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
torchvision.utils.save_image(
TF.resize(
pred.double(),
size=[h, w],
interpolation=TF.InterpolationMode.NEAREST_EXACT,
),
file_path,
)
else:
raise ValueError(
f"Expected value at output_masks_dir, but got {cfg.get('output_masks_dir')} instead."
)
else:
raise ValueError(
f"Expected task_name to be either 'eval' or 'pred', but got {cfg.get('task_name')} instead."
)
metric_dict = trainer.callback_metrics
return metric_dict, object_dict
@hydra.main(version_base="1.2", config_path=root / "configs", config_name="eval.yaml")
def main(cfg: DictConfig) -> None:
evaluate(cfg)
if __name__ == "__main__":
main()