-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
155 lines (118 loc) · 3.95 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from time import time
import tkinter as tk
from tkinter import font
import os
from tkinter import filedialog
import torch
import numpy as np
import cv2
import deskew as ds
from subprocess import call
from pathlib import Path
root = tk.Tk()
root.title("AutoVIS")
root.geometry('500x150')
root.maxsize(500, 150)
root.minsize(500, 150)
blue = "#346beb"
robo = font.Font(family="Roboto", size=14, weight="bold")
model = torch.hub.load('ultralytics/yolov5', 'custom', './weights/best.pt')
classes = model.names
def score_frame(frame):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
frame = [frame]
results = model(frame)
labels, cord = results.xyxyn[0][:, -1], results.xyxyn[0][:, :-1]
return labels, cord
def class_to_label(x):
return classes[int(x)]
def plot_boxes(results, frame):
labels, cord = results
n = len(labels)
x_shape, y_shape = frame.shape[1], frame.shape[0]
for i in range(n):
row = cord[i]
if row[4] >= 0.3:
x1, y1, x2, y2 = int(row[0] * x_shape), int(row[1] * y_shape), int(row[2] *
x_shape), int(row[3] * y_shape)
bgr = (0, 255, 0)
#print("X1: ", x1, "X2: ", x2, "Y1: ", y1, "Y2: ", y2)
# Crop image
if class_to_label(labels[i]) == "car":
if x1 > 410 and x1 < 420 and x2 > 730 and x2 < 750:
vehiclecrop = frame[y1:y2, x1:x2]
cv2.imwrite('frame.png', vehiclecrop)
call(["python", "detect-lp.py"])
elif class_to_label(labels[i]) == "van":
if x1 > 300 and x1 < 310 and x2 > 570 and x2 < 580:
vehiclecrop = frame[y1:y2, x1:x2]
cv2.imwrite('frame.png', vehiclecrop)
call(["python", "detect-lp.py"])
##############################
## Define for other vehicles##
cv2.rectangle(frame, (x1, y1), (x2, y2), bgr, 2)
cv2.putText(frame, class_to_label(labels[i]), (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.9, bgr, 2)
return frame
# Browse for video file
def browseVideo():
# Video frame
video_path = filedialog.askopenfilename(initialdir=os.path.normpath(
"C://"), title="Browse video", filetypes=(("MP4", "*.mp4"), ("AVI", "*.avi"), ("All Files", "*.*")))
if (video_path):
cap = cv2.VideoCapture(video_path)
assert cap.isOpened()
while True:
ret, frame = cap.read()
assert ret
frame = cv2.resize(frame, (920, 600))
start_time = time()
results = score_frame(frame)
frame = plot_boxes(results, frame)
end_time = time()
fps = 1 / np.round(end_time - start_time, 2)
#print(f"Frames Per Second : {fps}")
cv2.putText(frame, f'FPS: {int(fps)}', (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 255, 0), 2)
cv2.imshow('YOLOv5 Detection', frame)
keyCode = cv2.waitKey(1)
if cv2.getWindowProperty('YOLOv5 Detection', cv2.WND_PROP_VISIBLE) < 1:
break
cap.release()
# Open reports file explorer
def openReports():
downloads_path = str(Path.home() / "Downloads")
explorer_path = (downloads_path + "\\AutoVIS Reports")
os.startfile(explorer_path)
# Header title
titleLabel = tk.Label(
text="Auto Vehicle Identification System",
foreground="white",
background=blue,
font=robo,
width=500,
height=2
)
titleLabel.pack()
# Browse video button
browseBtn = tk.Button(
text="Browse video",
width=15,
height=2,
bg=blue,
fg="white",
command=browseVideo
)
browseBtn.pack()
browseBtn.place(x=100, y=70)
# Reports button
reportsBtn = tk.Button(
text="Open Reports",
width=15,
height=2,
bg=blue,
fg="white",
command=openReports
)
reportsBtn.pack()
reportsBtn.place(x=240, y=70)
root.mainloop()