-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtraining_pipeline.py
302 lines (241 loc) · 12.1 KB
/
training_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import torch
from joblib import load
import statistics as stats
from sklearn import preprocessing
import torch.backends.cudnn as cudnn
cudnn.enabled = True
cudnn.benchmark = False
cudnn.deterministic = True
from code_psd_shallow_eeg_gcnn.EEGGraphDataset import EEGGraphDataset
from code_psd_shallow_eeg_gcnn.EEGGraphConvNet import EEGGraphConvNet
from torch_geometric.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from sklearn.metrics import make_scorer
from sklearn.metrics import balanced_accuracy_score, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
from torchvision.transforms import Compose, ToTensor
stats_test_data = { }
# after each epoch, record all the metrics on both train and validation sets
def collect_metrics(y_probs_test, y_true_test, y_pred_test, sample_indices_test,
fold_idx, experiment_name):
dataset_index = pd.read_csv("master_metadata_index.csv", dtype={"patient_ID":str, })
# create patient-level train and test dataframes
rows = [ ]
for i in range(len(sample_indices_test)):
idx = sample_indices_test[i]
temp = { }
temp["patient_ID"] = str(dataset_index.loc[idx, "patient_ID"])
temp["sample_idx"] = idx
temp["y_true"] = y_true_test[i]
temp["y_probs_0"] = y_probs_test[i, 0]
temp["y_probs_1"] = y_probs_test[i, 1]
temp["y_pred"] = y_pred_test[i]
rows.append(temp)
test_patient_df = pd.DataFrame(rows)
# get patient-level metrics from window-level dataframes
y_probs_test_patient, y_true_test_patient, y_pred_test_patient = get_patient_prediction(test_patient_df, fold_idx)
stats_test_data[f"probs_0_fold_{fold_idx}"] = y_probs_test_patient[:, 0]
stats_test_data[f"probs_1_fold_{fold_idx}"] = y_probs_test_patient[:, 1]
window_csv_dict = { }
patient_csv_dict = { }
# WINDOW-LEVEL ROC PLOT
# pos_label="healthy"
fpr, tpr, thresholds = roc_curve(y_true_test, y_probs_test[:,1], pos_label=1)
window_csv_dict[f"fpr_fold_{fold_idx}"] = fpr
window_csv_dict[f"tpr_fold_{fold_idx}"] = tpr
window_csv_dict[f"thres_fold_{fold_idx}"] = thresholds
# PATIENT-LEVEL ROC PLOT - select optimal threshold for this, and get patient-level precision, recall, f1
# pos_label="healthy"
fpr, tpr, thresholds = roc_curve(y_true_test_patient, y_probs_test_patient[:,1], pos_label=1)
patient_csv_dict[f"fpr_fold_{fold_idx}"] = fpr
patient_csv_dict[f"tpr_fold_{fold_idx}"] = tpr
patient_csv_dict[f"thres_fold_{fold_idx}"] = thresholds
# select an optimal threshold using the ROC curve
# Youden's J statistic to obtain the optimal probability threshold and this method gives equal weights to both false positives and false negatives
optimal_proba_cutoff = sorted(list(zip(np.abs(tpr - fpr), thresholds)), key=lambda i: i[0], reverse=True)[0][1]
# print (optimal_proba_cutoff)
# calculate class predictions and confusion-based metrics using the optimal threshold
roc_predictions = [1 if i >= optimal_proba_cutoff else 0 for i in y_probs_test_patient[:,1]]
precision_patient_test = precision_score(y_true_test_patient, roc_predictions, pos_label=0)
recall_patient_test = recall_score(y_true_test_patient, roc_predictions, pos_label=0)
f1_patient_test = f1_score(y_true_test_patient, roc_predictions, pos_label=0)
bal_acc_patient_test = balanced_accuracy_score(y_true_test_patient, roc_predictions)
# PATIENT-LEVEL AUROC
from sklearn.metrics import roc_auc_score
auroc_patient_test = roc_auc_score(y_true_test_patient, y_probs_test_patient[:,1])
# AUROC
from sklearn.metrics import roc_auc_score
# CAUTION - The binary case expects a shape (n_samples,), and the scores must be the scores of the class with the greater label.
# https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
auroc_test = roc_auc_score(y_true_test, y_probs_test[:,1])
return auroc_patient_test, auroc_test, precision_patient_test, recall_patient_test, f1_patient_test, bal_acc_patient_test
# create patient-level metrics
def get_patient_prediction(df, fold_idx):
unique_patients = list(df["patient_ID"].unique())
grouped_df = df.groupby("patient_ID")
rows = [ ]
for patient in unique_patients:
patient_df = grouped_df.get_group(patient)
temp = { }
temp["patient_ID"] = patient
temp["y_true"] = list(patient_df["y_true"].unique())[0]
assert len(list(patient_df["y_true"].unique())) == 1
temp["y_pred"] = patient_df["y_pred"].mode()[0]
temp["y_probs_0"] = patient_df["y_probs_0"].mean()
temp["y_probs_1"] = patient_df["y_probs_1"].mean()
rows.append(temp)
return_df = pd.DataFrame(rows)
# need subject names and labels for comparisons testing
if fold_idx == 0:
stats_test_data["subject_id"] = list(return_df["patient_ID"][:])
stats_test_data["label"] = return_df["y_true"][:]
return np.array(list(zip(return_df["y_probs_0"], return_df["y_probs_1"]))), list(return_df["y_true"]), list(return_df["y_pred"])
if __name__ == "__main__":
GPU_IDX = 0
EXPERIMENT_NAME = "psd_gnn_shallow"
BATCH_SIZE = 512
SFREQ = 250.0
NUM_EPOCHS = 100
NUM_WORKERS = 6
PIN_MEMORY = True
# ensure reproducibility of results
SEED = 42
np.random.seed(SEED)
torch.manual_seed(SEED)
print("[MAIN] Numpy and PyTorch seed set to {} for reproducibility.".format(SEED))
MASTER_DATASET_INDEX = pd.read_csv("master_metadata_index.csv", dtype={"patient_ID":str, })
subjects = MASTER_DATASET_INDEX["patient_ID"].astype("str").unique()
print("[MAIN] Subject list fetched! Total subjects are {}...".format(len(subjects)))
# NOTE: splitting whole subjects into train+validation and heldout test
train_val_subjects, test_subjects = train_test_split(subjects, test_size=0.30, random_state=SEED)
print("[MAIN] (Train + validation) and (heldout test) split made at subject level. 30 percent subjects held out for testing.")
train_subjects, val_subjects = train_test_split(train_val_subjects, test_size=0.20, random_state=SEED)
train_indices = MASTER_DATASET_INDEX.index[MASTER_DATASET_INDEX["patient_ID"].astype("str").isin(train_subjects)].tolist()
val_indices = MASTER_DATASET_INDEX.index[MASTER_DATASET_INDEX["patient_ID"].astype("str").isin(val_subjects)].tolist()
# use GPU when available
DEVICE = torch.device('cuda:{}'.format(GPU_IDX) if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(DEVICE)
print('[MAIN] Using device:', DEVICE, torch.cuda.get_device_name(DEVICE))
X = load("psd_features_data_X")
y = load("labels_y")
# normalize psd_features_data_X
normd_x = []
for i in range(len(y)):
arr = X[i, :]
arr = arr.reshape(1, -1)
arr2 = preprocessing.normalize(arr)
arr2 = arr2.reshape(48)
normd_x.append(arr2)
norm = np.array(normd_x)
X = norm.reshape(len(y), 48)
# get 0/1 labels for pytorch, ensure mapping is the same between train and test
label_mapping, y = np.unique(y, return_inverse = True)
print("[MAIN] unique labels to [0 1] mapping:", label_mapping)
model = EEGGraphConvNet(reduced_sensors=False)
model = model.to(DEVICE).double()
labels_unique, counts = np.unique(y, return_counts=True)
class_weights = np.array([1.0/x for x in counts])
# provide weights for samples in the training set only
sample_weights = class_weights[y[train_indices]]
# sampler needs to come up with training set size number of samples
weighted_sampler = WeightedRandomSampler(weights=sample_weights, num_samples=len(train_indices), replacement=True)
# define training set
train_dataset = EEGGraphDataset(X=X, y=y, indices=train_indices, loader_type="train",
sfreq=SFREQ, transform=Compose([ToTensor()]))
train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, sampler=weighted_sampler,
num_workers=NUM_WORKERS, pin_memory=PIN_MEMORY)
# define validation set
val_dataset = EEGGraphDataset(X=X, y=y, indices=val_indices, loader_type="validation",
sfreq=SFREQ, transform=Compose([ToTensor()]))
val_loader = DataLoader(dataset=val_dataset, batch_size=BATCH_SIZE,
shuffle=False, num_workers=NUM_WORKERS, pin_memory=PIN_MEMORY)
# define loss function
loss_function = torch.nn.CrossEntropyLoss()
# define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# define scheduler
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[i*10 for i in range(1, 26)], gamma=0.1)
# start training
for epoch in range(NUM_EPOCHS):
model.train()
train_loss = []
val_loss = []
y_probs_train = torch.empty(0, 2).to(DEVICE)
y_true_train = [ ]
y_pred_train = [ ]
window_indices_train = [ ]
for batch_idx, batch in enumerate(train_loader):
# send batch to GPU
X_batch = batch.to(device=DEVICE, non_blocking=True)
y_batch = torch.tensor(batch.y)
y_batch = y_batch.to(device=DEVICE, non_blocking=True)
window_indices_train += X_batch.dataset_idx.cpu().numpy().tolist()
optimizer.zero_grad()
# forward pass
outputs = model(X_batch.x, X_batch.edge_index, X_batch.edge_attr, X_batch.batch).float()
loss = loss_function(outputs, y_batch)
train_loss.append(loss.item())
# backward pass
loss.backward()
_, predicted = torch.max(outputs.data, 1)
y_pred_train += predicted.cpu().numpy().tolist()
# concatenate along 0th dimension
y_probs_train = torch.cat((y_probs_train, outputs.data), 0)
y_true_train += y_batch.cpu().numpy().tolist()
optimizer.step()
scheduler.step()
# returning prob distribution over target classes, take softmax across the 1st dimension
y_probs_train = torch.nn.functional.softmax(y_probs_train, dim=1).cpu().numpy()
y_true_train = np.array(y_true_train)
# calculate training set metrics
auroc_patient_train, auroc_train, precision_patient_train, recall_patient_train, f1_patient_train, bal_acc_patient_train = collect_metrics(y_probs_test=y_probs_train,
y_true_test=y_true_train,
y_pred_test=y_pred_train,
sample_indices_test = window_indices_train,
fold_idx=0,
experiment_name=EXPERIMENT_NAME)
# evaluate on validation set
model.eval()
with torch.no_grad():
y_probs_val = torch.empty(0, 2).to(DEVICE)
y_true_val = [ ]
y_pred_val = [ ]
window_indices_val = [ ]
for i, batch in enumerate(val_loader):
X_batch = batch.to(device=DEVICE, non_blocking=True)
y_batch = torch.tensor(batch.y)
y_batch = y_batch.to(device=DEVICE, non_blocking=True)
window_indices_val += X_batch.dataset_idx.cpu().numpy().tolist()
outputs = model(X_batch.x, X_batch.edge_index, X_batch.edge_attr, X_batch.batch).float()
loss = loss_function(outputs, y_batch)
val_loss.append(loss.item())
_, predicted = torch.max(outputs.data, 1)
y_pred_val += predicted.cpu().numpy().tolist()
# concatenate along 0th dimension
y_probs_val = torch.cat((y_probs_val, outputs.data), 0)
y_true_val += y_batch.cpu().numpy().tolist()
# returning prob distribution over target classes, take softmax across the 1st dimension
y_probs_val = torch.nn.functional.softmax(y_probs_val, dim=1).cpu().numpy()
y_true_val = np.array(y_true_val)
# get validation set metrics
auroc_patient_val, auroc_val, precision_patient_val, recall_patient_val, f1_patient_val, bal_acc_patient_val = collect_metrics(y_probs_test=y_probs_val,
y_true_test=y_true_val,
y_pred_test=y_pred_val,
sample_indices_test = val_indices,
fold_idx=0,
experiment_name=EXPERIMENT_NAME)
# save the model every 20 epochs
if epoch % 20 == 0:
state = {
'model_description': str(model),
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(state, f"model_{epoch}.ckpt")
print(f'Epoch: {epoch}-----------------------------------------------------------')
print(f"Train loss: {np.mean(train_loss):.3f}; Validation loss: {np.mean(val_loss):.3f}")
print(f"Train AUROC:{auroc_train:.3f}; Validation AUROC: {auroc_val:.3f}")
print(f"Train patient metrics: AUROC{auroc_patient_train:.3f}, precision: {precision_patient_train:.3f}, recall: {recall_patient_train:.3f}, f1: {f1_patient_train:.3f}, bal acc: {bal_acc_patient_train:.3f}")
print(f"Validation patient metrics: AUROC{auroc_patient_val:.3f}, precision: {precision_patient_val:.3f}, recall: {recall_patient_val:.3f}, f1: {f1_patient_val:.3f}, bal acc: {bal_acc_patient_val:.3f}")