-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtrain_krgn.toml
129 lines (108 loc) · 2.14 KB
/
train_krgn.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
name = "train_krgn"
model_type = "image"
scale = 4
use_amp = true
bfloat16 = true
fast_matmul = true
#compile = true
#manual_seed = 1024
[datasets.train]
type = "paired"
dataroot_gt = 'C:\datasets\gt\'
dataroot_lq = 'C:\datasets\lq\'
patch_size = 64
batch_size = 8
#accumulate = 1
augmentation = [ "none", "mixup", "cutmix", "resizemix", "cutblur" ]
aug_prob = [ 0.5, 0.1, 0.1, 0.1, 0.5 ]
[datasets.val]
name = "val"
type = "paired"
dataroot_gt = 'C:\datasets\val\gt\'
dataroot_lq = 'C:\datasets\val\lq\'
[val]
val_freq = 1000
#tile = 200
#[val.metrics.psnr]
#type = "calculate_psnr"
#[val.metrics.ssim]
#type = "calculate_ssim"
#[val.metrics.dists]
#type = "calculate_dists"
#better = "lower"
[path]
#pretrain_network_g = 'experiments\pretrain_g.pth'
#pretrain_network_d = 'experiments\pretrain_d.pth'
[network_g]
type = "krgn"
[network_d]
type = "metagan"
[train]
ema = 0.999
wavelet_guided = true
wavelet_init = 80000
#sam = "fsam"
#sam_init = 1000
#eco = true
#eco_init = 15000
#match_lq_colors = true
[train.optim_g]
type = "adan_sf"
lr = 5e-4
betas = [ 0.98, 0.92, 0.99 ]
weight_decay = 0.01
schedule_free = true
warmup_steps = 1600
[train.optim_d]
type = "adan_sf"
lr = 1e-4
betas = [ 0.98, 0.92, 0.99 ]
weight_decay = 0.01
schedule_free = true
warmup_steps = 600
# losses
[train.mssim_opt]
type = "mssim_loss"
loss_weight = 1.0
[train.consistency_opt]
type = "consistency_loss"
loss_weight = 1.0
[train.ldl_opt]
type = "ldl_loss"
loss_weight = 1.0
[train.fdl_opt]
type = "fdl_loss"
model = "vgg" # "resnet", "effnet", "inception"
loss_weight = 0.5
[train.gan_opt]
type = "gan_loss"
gan_type = "bce"
loss_weight = 0.3
#[train.msswd_opt]
#type = "msswd_loss"
#loss_weight = 1.0
#[train.perceptual_opt]
#type = "vgg_perceptual_loss"
#loss_weight = 0.5
#criterion = "huber"
##patchloss = true
##ipk = true
##patch_weight = 1.0
#[train.dists_opt]
#type = "dists_loss"
#loss_weight = 0.5
#[train.ff_opt]
#type = "ff_loss"
#loss_weight = 0.35
#[train.ncc_opt]
#type = "ncc_loss"
#loss_weight = 1.0
#[train.kl_opt]
#type = "kl_loss"
#loss_weight = 1.0
[logger]
total_iter = 1000000
save_checkpoint_freq = 1000
use_tb_logger = true
#save_tb_img = true
#print_freq = 100