You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
...
[Parser] 120 images, taken by 120 cameras.
Scene scale: 2009.6237303032315
Model initialized. Number of GS: 159431
...
loss=0.475| sh degree=0| : 100%|██▋| 299/30000 [00:25< ......
......
loss=0.185| sh degree=3| : 25%|██████████████████████▌ | 7600/30000 [13:15<39:05, 9.55it/s]
Traceback (most recent call last):
File "/home/ubuntu/gsplat-1.4.0/examples/simple_trainer.py", line 1120, in
cli(main, cfg, verbose=True)
File "/home/ubuntu/gsplat-1.4.0/gsplat/distributed.py", line 360, in cli
return _distributed_worker(0, 1, fn=fn, args=args)
File "/home/ubuntu/gsplat-1.4.0/gsplat/distributed.py", line 295, in _distributed_worker
fn(local_rank, world_rank, world_size, args)
File "/home/ubuntu/gsplat-1.4.0/examples/simple_trainer.py", line 1065, in main
runner.train()
File "/home/ubuntu/gsplat-1.4.0/examples/simple_trainer.py", line 820, in train
self.cfg.strategy.step_post_backward(
File "/home/ubuntu/gsplat-1.4.0/gsplat/strategy/mcmc.py", line 128, in step_post_backward
n_relocated_gs = self._relocate_gs(params, optimizers, binoms)
File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/ubuntu/gsplat-1.4.0/gsplat/strategy/mcmc.py", line 158, in _relocate_gs
relocate(
File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/ubuntu/gsplat-1.4.0/gsplat/strategy/ops.py", line 278, in relocate
sampled_idxs = _multinomial_sample(probs, n, replacement=True)
File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/ubuntu/gsplat-1.4.0/gsplat/strategy/ops.py", line 31, in _multinomial_sample
assert not num_elements == 0, ('_multinomial_sample weights 0')
AssertionError: _multinomial_sample weights 0
It seems gsplat will crash or generate a nothing but noise ply file if change opacity_reg to 0.001, when dataset scene_scale is larger than 2000 or 10000. all of cases is running with high traning loss. I have three datasets from AI tool with this situation here, both these datasets work well with colmap without any errors or warnings. and I nerver encounter such situation with traditional colmap dataset. thanks.
The text was updated successfully, but these errors were encountered:
Current the problem is that loss doesn't converge, it stopped on 0.1 or 0.2.
I have tried noise-lr, opacity_reg, scale_reg and filter theose zero-alive GS cases etc.
gsplat 1.4.0
python3 examples/simple_trainer.py mcmc --use_bilateral_grid --data_factor 1 --data_dir data/test123/ --result_dir exports/test123/
part of logs
...
[Parser] 120 images, taken by 120 cameras.
Scene scale: 2009.6237303032315
Model initialized. Number of GS: 159431
...
loss=0.475| sh degree=0| : 100%|██▋| 299/30000 [00:25< ......
......
loss=0.185| sh degree=3| : 25%|██████████████████████▌ | 7600/30000 [13:15<39:05, 9.55it/s]
Traceback (most recent call last):
File "/home/ubuntu/gsplat-1.4.0/examples/simple_trainer.py", line 1120, in
cli(main, cfg, verbose=True)
File "/home/ubuntu/gsplat-1.4.0/gsplat/distributed.py", line 360, in cli
return _distributed_worker(0, 1, fn=fn, args=args)
File "/home/ubuntu/gsplat-1.4.0/gsplat/distributed.py", line 295, in _distributed_worker
fn(local_rank, world_rank, world_size, args)
File "/home/ubuntu/gsplat-1.4.0/examples/simple_trainer.py", line 1065, in main
runner.train()
File "/home/ubuntu/gsplat-1.4.0/examples/simple_trainer.py", line 820, in train
self.cfg.strategy.step_post_backward(
File "/home/ubuntu/gsplat-1.4.0/gsplat/strategy/mcmc.py", line 128, in step_post_backward
n_relocated_gs = self._relocate_gs(params, optimizers, binoms)
File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/ubuntu/gsplat-1.4.0/gsplat/strategy/mcmc.py", line 158, in _relocate_gs
relocate(
File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/ubuntu/gsplat-1.4.0/gsplat/strategy/ops.py", line 278, in relocate
sampled_idxs = _multinomial_sample(probs, n, replacement=True)
File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/ubuntu/gsplat-1.4.0/gsplat/strategy/ops.py", line 31, in _multinomial_sample
assert not num_elements == 0, ('_multinomial_sample weights 0')
AssertionError: _multinomial_sample weights 0
It seems gsplat will crash or generate a nothing but noise ply file if change opacity_reg to 0.001, when dataset scene_scale is larger than 2000 or 10000. all of cases is running with high traning loss. I have three datasets from AI tool with this situation here, both these datasets work well with colmap without any errors or warnings. and I nerver encounter such situation with traditional colmap dataset. thanks.
The text was updated successfully, but these errors were encountered: