-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
107 lines (90 loc) · 3.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
import torch.optim as optim
from torch.autograd import Variable
from torch.optim import lr_scheduler
import torchvision
import random
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
# Encoder
self.conv1 = nn.Conv2d(1, 16, 3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 8, 3, stride=1, padding=1)
self.conv3 = nn.Conv2d(8, 8, 3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(2, padding=0)
self.pool2 = nn.MaxPool2d(2, padding=1)
# Decoder
self.up1 = nn.ConvTranspose2d(8, 8, 3, stride=2, padding=1)
self.up2 = nn.ConvTranspose2d(8, 8, 3, stride=2, padding=1)
self.up3 = nn.ConvTranspose2d(8, 16, 3, stride=2, padding=0)
self.conv = nn.Conv2d(16, 1, 4, stride=1, padding=2)
def encoder(self, image):
conv1 = self.conv1(image)
relu1 = F.relu(conv1) #28x28x16
pool1 = self.pool1(relu1) #14x14x16
conv2 = self.conv2(pool1) #14x14x8
relu2 = F.relu(conv2)
pool2 = self.pool1(relu2) #7x7x8
conv3 = self.conv3(pool2) #7x7x8
relu3 = F.relu(conv3)
pool3 = self.pool2(relu3) #4x4x8
pool3 = pool3.view([image.size(0), 8, 4, 4]).cuda()
return pool3
def decoder(self, encoding):
up1 = self.up1(encoding)
up_relu1 = F.relu(up1)
up2 = self.up2(up_relu1)
up_relu2 = F.relu(up2)
up3 = self.up3(up_relu2)
up_relu3 = F.relu(up3)
logits = self.conv(up_relu3)
logits = F.sigmoid(logits)
logits = logits.view([encoding.size(0), 1, 28, 28]).cuda()
return logits
def forward(self, image):
encoding = self.encoder(image)
logits = self.decoder(encoding)
return encoding, logits
def main():
epochs = 20
batch_size = 200
in_dim = 28
lr = 0.001
#Load data
train_data = datasets.MNIST('~/data/mnist/', train=True, transform=transforms.ToTensor(), download=True)
test_data = datasets.MNIST('~/data/mnist/', train=False, transform=transforms.ToTensor(), download=True)
data_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
shuffle=True, num_workers=4, drop_last=True)
autoencoder = Autoencoder().cuda()
criterion = nn.BCELoss()
size = len(train_data)
optimizer_fn = optim.Adam
optimizer = optimizer_fn(autoencoder.parameters(), lr=lr)
model = train(data_loader, size, autoencoder, criterion, optimizer, num_epochs=epochs)
test_image = random.choice(test_data)
test_image = Variable(test_image[0].unsqueeze(0).cuda())
_, out = model(test_image)
torchvision.utils.save_image(test_image.data, 'in.png')
torchvision.utils.save_image(out.data, 'out.png')
def train(data_loader, size, autoencoder, criterion, optimizer, num_epochs=20):
print('Start training')
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs-1))
tloss = 0.0
for data in data_loader:
inputs, _ = data
optimizer.zero_grad()
encoding, logits = autoencoder(Variable(inputs.cuda()))
loss = criterion(logits, Variable(inputs.cuda()))
loss.backward()
optimizer.step()
tloss += loss.data[0]
epoch_loss = tloss/size
print('Epoch loss: {:4f}'.format(epoch_loss))
print('Complete training')
return autoencoder
if __name__ == '__main__':
main()