-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_training_model.py
30 lines (26 loc) · 1.19 KB
/
cnn_training_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
import os
import tensorflow as tf
## Dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = np.expand_dims(x_train, axis=-1) # it was 28,28, which cannot be inputted into a conv network,
x_test = np.expand_dims(x_test, axis=-1) # So I used numpy expand dimension, which expands it to 1,28,28,1
## Model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPool2D((2, 2)))
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPool2D((2, 2)))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.summary()
model.compile(optimizer="SGD",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
model.fit(x_train, y_train, epochs=5)
test_loss, test_acc = model.evaluate(x_test, y_test)
print("Test Loss: {0} - Test Acc: {1}".format(test_loss, test_acc))
model.save('cnn.h5')