-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
96 lines (77 loc) · 3.03 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""
Create stats and graphs for the Flow-Corellation Attack
"""
import sys
sys.path.insert(1, 'MixTypes')
import Timed
import Threshold
import ThresholdOrTimed
import ThresholdandTimed
import ThresholdPool
import TimedDynamicPool
import TimedPool
import attack
import matplotlib as mpl
import matplotlib.pyplot as plt
from tqdm import tqdm
# import warnings
# warnings.filterwarnings("ignore")
# res = input("Select type of mix: A for Timed | B for Threshold\n").upper()
def run_stats(min_mess, max_mess, n_nodes, time_window, threshold, fixed_prob, f, p, dist_func):
step = int((max_mess - min_mess) / 15)
if step < 2:
print("Margins too narrow, unable to launch attack. Exiting...\n")
return
n_messages = [i for i in range(min_mess, max_mess, step)]
print(n_messages)
n_nodes = 20
time_window = 5
threshold = 10
fixed_prob = 0.1
f = 5
p = 0.5
dist_func = "tou_mike"
accs = [[], [], [], [], [], [], []]
accs_threshold = []
for n_mess in tqdm(n_messages):
random_time = 2 * n_mess
# Timed
Timed.mix(n_mess, n_nodes, random_time, time_window,fixed_prob)
res = attack.attack(dist_func, time_window)
accs[0].append(res)
# Threshold
Threshold.mix(n_mess, n_nodes, random_time, threshold, fixed_prob)
res = attack.attack(dist_func, time_window)
accs[1].append(res)
# TimedPool
TimedPool.mix(n_mess, n_nodes, random_time, threshold, fixed_prob, f, time_window)
res = attack.attack(dist_func, time_window)
accs[2].append(res)
# TimedDynamicPool
TimedDynamicPool.mix(n_mess, n_nodes, random_time, threshold, fixed_prob, f, time_window, p)
res = attack.attack(dist_func, time_window)
accs[3].append(res)
# ThresholdOrTimed
ThresholdOrTimed.mix(n_mess, n_nodes, random_time, time_window, fixed_prob, threshold)
res = attack.attack(dist_func, time_window)
accs[4].append(res)
# ThresholdandTimed
ThresholdandTimed.mix(n_mess, n_nodes, random_time, threshold, fixed_prob, time_window)
res = attack.attack(dist_func, time_window)
accs[5].append(res)
# ThresholdPool
ThresholdPool.mix(n_mess, n_nodes, random_time, threshold, fixed_prob, f)
res = attack.attack(dist_func, time_window)
accs[6].append(res)
# threshold
# plt.plot(n_messages, accs[0], label='timed', marker='o')
plt.plot(n_messages, accs[1], label='threshold', marker='o')
plt.plot(n_messages, accs[2], label='timedpool', marker='o')
plt.plot(n_messages, accs[3], label='TimedDynamicPool', marker='o')
plt.plot(n_messages, accs[4], label='ThresholdOrTimed', marker='o')
plt.plot(n_messages, accs[5], label='ThresholdandTimed', marker='o')
plt.plot(n_messages, accs[6], label='ThresholdPool', marker='o')
plt.xlabel("Sample Size (Packets)", fontsize=15)
plt.ylabel("Detection Rate", fontsize=15)
plt.legend()
plt.show()