-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
347 lines (298 loc) · 8.27 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import random
#######################################################
#######################################################
# util.py
#
# This file contains the Stack, Card and Counter classes,
# data structures used throughout our implementation of
# Scheisskopf.
#
#######################################################
#######################################################
# Returns the result of flipping a coin with head probability p.
def flipCoin( p ):
r = random.random()
return r < p
# Returns a string representation of a list of cards.
def cardListToString(cardList):
if cardList == []:
return "[]"
else:
output = "["
for card in cardList:
output += card.toString() + ","
return output + "]"
# Represents a single card object with rank, suit, and wildness.
class Card:
# Initializes the rank, suit, and wildness of the Card.
def __init__(self, rank, suit):
self.rank = rank
self.suit = suit
if self.rank == 2 or self.rank == 3 or self.rank == 10:
self.wild = True
else:
self.wild = False
def getRank(self):
return self.rank
def getSuit(self):
return self.suit
def isWild(self):
return self.wild
# Returns a String representation of the Card.
def toString(self):
translatedRank = ""
if self.rank == 11:
translatedRank = "J"
elif self.rank == 12:
translatedRank = "Q"
elif self.rank == 13:
translatedRank = "K"
elif self.rank == 14:
translatedRank = "A"
else:
translatedRank = str(self.rank)
return str(self.suit) + translatedRank
# Returns True iff this card is playable (by Scheisskopf rules) on otherCard.
def isPlayableOn(self, otherCard):
# Pile is empty.
if otherCard == None:
return True
# Wild cards are playable on anything.
elif self.wild:
return True
# 7's case.
elif otherCard.rank == 7:
if self.rank <= 7:
return True
else:
return False
# Normal case.
else:
if self.rank >= otherCard.getRank():
return True
else:
return False
# A general purpose, last in first out (LIFO) data structure.
# In our implementation, used for representing stacks of Cards.
class Stack:
# Elements of the stack are stored in a list, where the last element of the list
# is topmost in the stack.
def __init__(self):
self.list = []
# Removes the topmost element from the stack and returns it.
def pop(self):
if not self.list == []:
return self.list.pop()
# Adds item to the stack, making it the new topmost element.
def push(self, item):
self.list.append(item)
# Push an entire list onto the stack. Note that the last element of the list
# becomes the new topmost element of the stack.
def pushList(self, list):
for item in list:
self.list.append(item)
# Returns the number of elements in the stack.
def size(self):
return len(self.list)
# Returns True iff stack is empty.
def isEmpty(self):
return self.size() == 0
# Returns the item topmost in the stack.
def peek(self):
if self.isEmpty():
return None
index = self.size() - 1
return self.list[index]
# Returns a String representation of the stack.
def toString(self):
output = "["
for item in self.list:
output += item.toString() + " "
output += "]"
return output
class Counter(dict):
"""
A counter keeps track of counts for a set of keys.
The counter class is an extension of the standard python
dictionary type. It is specialized to have number values
(integers or floats), and includes a handful of additional
functions to ease the task of counting data. In particular,
all keys are defaulted to have value 0. Using a dictionary:
a = {}
print a['test']
would give an error, while the Counter class analogue:
>>> a = Counter()
>>> print a['test']
0
returns the default 0 value. Note that to reference a key
that you know is contained in the counter,
you can still use the dictionary syntax:
>>> a = Counter()
>>> a['test'] = 2
>>> print a['test']
2
This is very useful for counting things without initializing their counts,
see for example:
>>> a['blah'] += 1
>>> print a['blah']
1
The counter also includes additional functionality useful in implementing
the classifiers for this assignment. Two counters can be added,
subtracted or multiplied together. See below for details. They can
also be normalized and their total count and arg max can be extracted.
"""
def __getitem__(self, idx):
self.setdefault(idx, 0)
return dict.__getitem__(self, idx)
def incrementAll(self, keys, count):
"""
Increments all elements of keys by the same count.
>>> a = Counter()
>>> a.incrementAll(['one','two', 'three'], 1)
>>> a['one']
1
>>> a['two']
1
"""
for key in keys:
self[key] += count
def argMax(self):
"""
Returns the key with the highest value.
"""
if len(self.keys()) == 0: return None
all = self.items()
values = [x[1] for x in all]
maxIndex = values.index(max(values))
return all[maxIndex][0]
def sortedKeys(self):
"""
Returns a list of keys sorted by their values. Keys
with the highest values will appear first.
>>> a = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> a['third'] = 1
>>> a.sortedKeys()
['second', 'third', 'first']
"""
sortedItems = self.items()
compare = lambda x, y: sign(y[1] - x[1])
sortedItems.sort(cmp=compare)
return [x[0] for x in sortedItems]
def totalCount(self):
"""
Returns the sum of counts for all keys.
"""
return sum(self.values())
def normalize(self):
"""
Edits the counter such that the total count of all
keys sums to 1. The ratio of counts for all keys
will remain the same. Note that normalizing an empty
Counter will result in an error.
"""
total = float(self.totalCount())
if total == 0: return
for key in self.keys():
self[key] = self[key] / total
def divideAll(self, divisor):
"""
Divides all counts by divisor
"""
divisor = float(divisor)
for key in self:
self[key] /= divisor
def copy(self):
"""
Returns a copy of the counter
"""
return Counter(dict.copy(self))
def __mul__(self, y ):
"""
Multiplying two counters gives the dot product of their vectors where
each unique label is a vector element.
>>> a = Counter()
>>> b = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> b['first'] = 3
>>> b['second'] = 5
>>> a['third'] = 1.5
>>> a['fourth'] = 2.5
>>> a * b
14
"""
sum = 0
x = self
if len(x) > len(y):
x,y = y,x
for key in x:
if key not in y:
continue
sum += x[key] * y[key]
return sum
def __radd__(self, y):
"""
Adding another counter to a counter increments the current counter
by the values stored in the second counter.
>>> a = Counter()
>>> b = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> b['first'] = 3
>>> b['third'] = 1
>>> a += b
>>> a['first']
1
"""
for key, value in y.items():
self[key] += value
def __add__( self, y ):
"""
Adding two counters gives a counter with the union of all keys and
counts of the second added to counts of the first.
>>> a = Counter()
>>> b = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> b['first'] = 3
>>> b['third'] = 1
>>> (a + b)['first']
1
"""
addend = Counter()
for key in self:
if key in y:
addend[key] = self[key] + y[key]
else:
addend[key] = self[key]
for key in y:
if key in self:
continue
addend[key] = y[key]
return addend
def __sub__( self, y ):
"""
Subtracting a counter from another gives a counter with the union of all keys and
counts of the second subtracted from counts of the first.
>>> a = Counter()
>>> b = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> b['first'] = 3
>>> b['third'] = 1
>>> (a - b)['first']
-5
"""
addend = Counter()
for key in self:
if key in y:
addend[key] = self[key] - y[key]
else:
addend[key] = self[key]
for key in y:
if key in self:
continue
addend[key] = -1 * y[key]
return addend