@@ -667,7 +667,7 @@ def _run_interface(self, runtime):
667
667
f .write ('\t ' .join (['component' ] + list (metadata .keys ())) + '\n ' )
668
668
for i in zip (components_names , * metadata .values ()):
669
669
f .write ('{0[0]}\t {0[1]}\t {0[2]:.10f}\t '
670
- '{0[3]:.10f}\t {0[4]:.10f}\n ' .format (i ))
670
+ '{0[3]:.10f}\t {0[4]:.10f}\t {0[5]} \ n ' .format (i ))
671
671
672
672
return runtime
673
673
@@ -1268,7 +1268,7 @@ def compute_noise_components(imgseries, mask_images, components_criterion=0.5,
1268
1268
components_criterion = - 1
1269
1269
mask_names = mask_names or range (len (mask_images ))
1270
1270
1271
- comp_list = []
1271
+ components = []
1272
1272
md_mask = []
1273
1273
md_sv = []
1274
1274
md_var = []
@@ -1345,8 +1345,8 @@ def compute_noise_components(imgseries, mask_images, components_criterion=0.5,
1345
1345
md_sv .append (s )
1346
1346
md_var .append (variance_explained )
1347
1347
md_cumvar .append (cumulative_variance_explained )
1348
- md_retained .append (i < num_components for i in range (len (s )))
1349
-
1348
+ md_retained .append ([ i < num_components for i in range (len (s ))] )
1349
+
1350
1350
if len (components ) > 0 :
1351
1351
components = np .hstack (components )
1352
1352
else :
@@ -1355,13 +1355,13 @@ def compute_noise_components(imgseries, mask_images, components_criterion=0.5,
1355
1355
components = np .full ((M .shape [0 ], num_components ),
1356
1356
np .nan , dtype = np .float32 )
1357
1357
1358
- metadata = OrderedDict (
1358
+ metadata = OrderedDict ([
1359
1359
('mask' , list (chain (* md_mask ))),
1360
1360
('singular_value' , np .hstack (md_sv )),
1361
1361
('variance_explained' , np .hstack (md_var )),
1362
1362
('cumulative_variance_explained' , np .hstack (md_cumvar )),
1363
1363
('retained' , list (chain (* md_retained )))
1364
- )
1364
+ ] )
1365
1365
1366
1366
return components , basis , metadata
1367
1367
0 commit comments