-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpolicy_gradient.py
174 lines (147 loc) · 4.42 KB
/
policy_gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
from collections import Counter
WORLD_WIDTH = 300
WORLD_HEIGHT = 200
START_X = 50.0
START_Y = 100.0
INITIAL_VELOCITY = 0.0 # 0.1
INERTIA = 0.0 # 0.99
VELOCITY_LIMIT = 1.0 # 0.1
SIGMA = 1.0
X_BONUS = 10.0
class Environment(object):
def __init__(self):
self.result_log =[]
self.init_state()
def init_state(self):
if INITIAL_VELOCITY:
self.state = np.array([
START_X, START_Y,
np.random.normal(0, INITIAL_VELOCITY),
np.random.normal(0, INITIAL_VELOCITY),
1.0])
else:
self.state = np.array([
START_X, START_Y, 0.0, 0.0, 1.0])
self.time = 300
def get_state(self):
return self.state.copy()
def update(self, action):
m = np.linalg.norm(action)
if m > 1:
action /= m
self.state[2:4] = self.state[2:4] * INERTIA + action * VELOCITY_LIMIT
#m = np.linalg.norm(self.state[2:])
#if m > 10:
# self.state[2:] /= (m / 10)
self.state[:2] += self.state[2:4]
x, y = self.state[:2]
if x < 0:
self.init_state()
self.result_log.append('left')
return -1.0 + X_BONUS * x / WORLD_WIDTH
if y < 0:
self.init_state()
self.result_log.append('top')
return -1.0 + X_BONUS * x / WORLD_WIDTH
if y > WORLD_HEIGHT:
self.init_state()
self.result_log.append('bottom')
return -1.0 + X_BONUS * x / WORLD_WIDTH
if x > WORLD_WIDTH:
self.init_state()
self.result_log.append('goal')
return 10.0
if 100 < x < 200 and 30 < y < 150:
self.init_state()
self.result_log.append('middle')
return -1.0 + X_BONUS * x / WORLD_WIDTH
self.time -= 1
if self.time == 0:
self.init_state()
self.result_log.append('timeout')
return -1.0 + X_BONUS * x / WORLD_WIDTH
return 0.0
def policy_random(state):
return np.random.normal(size=2)
class Policy(object):
def __init__(self):
self.theta = np.random.normal(scale=0.001, size=(5, 2)) * 0
def __call__(self, state):
mean = state.dot(self.theta)
a = np.random.normal(mean, SIGMA)
return a
def grad(self, state, action):
t1 = action - state.dot(self.theta)
# 2
t2 = -state
# 4
g = np.outer(t2, t1)
return g
def play(policy, num_plays=100, to_print=False):
env = Environment()
result = 0
for i in range(num_plays):
while True:
s = env.get_state()
a = policy(s)
r = env.update(a)
if r:
break
#print env.result_log[-1]
return env
def reinforce(policy, num_plays=100, to_print=False):
env = Environment()
result = 0
samples = []
sum_t = 0
sum_r = 0.0
for i in range(num_plays):
t = 0
SARs = []
while True:
s = env.get_state()
a = policy(s)
r = env.update(a)
t += 1
sum_r += r
SARs.append((s, a, r))
if r:
break
samples.append((t, SARs))
sum_t += t
baseline = float(sum_r) / sum_t
grad = np.zeros((5, 2))
for (t, SARs) in samples:
tmp_grad = np.zeros((5, 2))
for (s, a, r) in SARs:
g = policy.grad(s, a)
tmp_grad += g * (r - baseline)
grad += tmp_grad / t
grad /= num_plays
#policy.theta /= np.linalg.norm(policy.theta)
if np.linalg.norm(grad) > 1:
grad /= np.linalg.norm(grad)
print 'theta'
print policy.theta
print 'grad'
print grad
policy.theta -= 0.01 * grad
print baseline, sum_t
return env, samples
#print Counter(play(policy_random).result_log)
#print Counter(play(Policy()).result_log)
policy = Policy()
for i in range(10000):
env, samples = reinforce(policy, 100)
print Counter(env.result_log)
from PIL import Image, ImageDraw
im = Image.new('RGB', (300, 200), color=(255,255,255))
d = ImageDraw.Draw(im)
for t, SARs in samples:
points = [(START_X, START_Y)]
for s, a, r in SARs:
points.append(tuple(s[:2]))
d.line(points, fill=0)
d.rectangle((100, 30, 200, 150), fill=(128, 128, 128))
im.save('reinforce{:04d}.png'.format(i))