-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_models.py
260 lines (223 loc) · 11 KB
/
train_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import argparse
import sys
sys.path.insert(0, '/proj/digbose92/VQA/VisualQuestion_VQA/Visual_All')
import numpy as np
import torch
import torchvision.transforms as transforms
import json
import _pickle as cPickle
from torch.utils.data import Dataset, DataLoader
import os
import utils
from PIL import Image
from dataset_vqa import Dictionary, VQAFeatureDataset
import glob
import matplotlib.pyplot as plt
import cv2
from models import *
from tqdm import tqdm
import time
import h5py
from model_combined import *
import torch.nn.functional as F
from vqa_dataset_attention import *
import torch.nn as nn
import random
import utils
def instance_bce_with_logits(logits, labels):
assert logits.dim() == 2
loss = F.binary_cross_entropy_with_logits(logits, labels)
loss *= labels.size(1)
return loss
def compute_score_with_logits(logits, labels):
logits = torch.max(logits, 1)[1].data # argmax
one_hots = torch.zeros(*labels.size()).cuda()
one_hots.scatter_(1, logits.view(-1, 1), 1)
scores = (one_hots * labels)
return scores
def evaluate_model(model, valid_dataloader,device):
score = 0
Validation_loss = 0
upper_bound = 0
num_data = 0
V_loss=0
print('Validation started')
#i, (feat, quest, label, target)
for data in tqdm(valid_dataloader):
feat, quest, quest_sent, quest_id, target= data
feat = feat.to(device)
quest = quest.to(device)
target = target.to(device) # true labels
pred = model(feat, quest, target)
loss = instance_bce_with_logits(pred, target)
V_loss += loss.item() * feat.size(0)
batch_score = compute_score_with_logits(pred, target.data).sum()
score += batch_score
upper_bound += (target.max(1)[0]).sum()
num_data += pred.size(0)
score = score / len(valid_dataloader.dataset)
V_loss /= len(valid_dataloader.dataset)
upper_bound = upper_bound / len(valid_dataloader.dataset)
print(score,V_loss)
return score, upper_bound, V_loss
def single_batch_run(model,train_dataloader,valid_dataloader,device,output_folder,optim):
feat_train, quest_train, label_train, target_train = next(iter(train_dataloader))
feat_train = feat_train.to(device_select)
quest_train = quest_train.to(device_select)
target_train = target_train.to(device_select) # true labels
pred = model(feat_train, quest_train, target_train)
loss = instance_bce_with_logits(pred, target_train)
logger = utils.Logger(os.path.join(output_folder, 'log_single_batch.txt'))
#print(loss)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
optim.zero_grad()
batch_score = compute_score_with_logits(pred, target_train.data).sum()
model.train(False)
eval_score, bound, V_loss = evaluate_model(model, valid_dataloader,device)
model.train(True)
#logger.write('epoch %d, time: %.2f' % (epoch, time.time()-t))
#logger.write('\ttrain_loss: %.3f, score: %.3f' % (total_loss, train_score))
logger.write('\teval loss: %.3f, score: %.3f (%.3f)' % (V_loss, 100 * eval_score, 100 * bound))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--eval', action='store_true', help='set this to evaluate.')
parser.add_argument('--epochs', type=int, default=45)
parser.add_argument('--num_hid', type=int, default=1280) # they used 1024
parser.add_argument('--dropout', type=float, default=0.3)
parser.add_argument('--dropout_L', type=float, default=0.1)
parser.add_argument('--dropout_G', type=float, default=0.2)
parser.add_argument('--dropout_W', type=float, default=0.4)
parser.add_argument('--dropout_C', type=float, default=0.5)
parser.add_argument('--activation', type=str, default='LeakyReLU', help='PReLU, ReLU, LeakyReLU, Tanh, Hardtanh, Sigmoid, RReLU, ELU, SELU')
parser.add_argument('--norm', type=str, default='weight', help='weight, batch, layer, none')
parser.add_argument('--model', type=str, default='A3x2')
parser.add_argument('--output', type=str, default='saved_models/')
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--optimizer', type=str, default='Adamax', help='Adam, Adamax, Adadelta, RMSprop')
parser.add_argument('--initializer', type=str, default='kaiming_normal')
parser.add_argument('--seed', type=int, default=9731, help='random seed')
parser.add_argument('--bert_option', type=bool, default=True, help='bert option')
parser.add_argument('--mfb_out_dim', type=int, default=1000, help='mfb output dimension')
args = parser.parse_args()
return args
if __name__ == '__main__':
image_root_dir="/data/digbose92/VQA/COCO"
dictionary=Dictionary.load_from_file('../Visual_All/data/dictionary.pkl')
feats_data_path="/data/digbose92/VQA/COCO/train_hdf5_COCO/"
data_root="/proj/digbose92/VQA/VisualQuestion_VQA/common_resources"
npy_file="../../VisualQuestion_VQA/Visual_All/data/glove6b_init_300d.npy"
output_folder="/proj/digbose92/VQA/VisualQuestion_VQA/Visual_Attention/results_GRU_uni/results_rcnn_hid_1280_mfh_bert_yes_no_adam"
train_rcnn_pickle_file="/proj/digbose92/VQA/VisualQuestion_VQA/Visual_All/data/train36_imgid2idx.pkl"
valid_rcnn_pickle_file="/proj/digbose92/VQA/VisualQuestion_VQA/Visual_All/data/val36_imgid2idx.pkl"
seed = 0
args = parse_args()
#device_selection
device_ids=[0,1]
#device_select=1
#torch.cuda.set_device(device_select)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.seed == 0:
seed = random.randint(1, 10000)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(args.seed)
else:
seed = args.seed
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
#train dataset
train_dataset=Dataset_VQA(img_root_dir=image_root_dir,feats_data_path=feats_data_path,dictionary=dictionary,bert_option=args.bert_option,rcnn_pkl_path=train_rcnn_pickle_file,choice='train',dataroot=data_root,arch_choice="rcnn",layer_option="pool")
valid_dataset=Dataset_VQA(img_root_dir=image_root_dir,feats_data_path=feats_data_path,dictionary=dictionary,bert_option=args.bert_option,rcnn_pkl_path=valid_rcnn_pickle_file,choice='val',dataroot=data_root,arch_choice="rcnn",layer_option="pool")
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=12)
val_loader=DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=12)
#data=(next(iter(train_loader)))
#feat, quest, quest_sent, quest_id, target = data
#print(quest.size())
#input()
#print(len(train_loader))
#print(len(val_loader))
total_step=len(train_loader)
#model related issues
#model = attention_bert_baseline(train_dataset, num_hid=args.num_hid, dropout= args.dropout, norm=args.norm,\
#activation=args.activation, drop_L=args.dropout_L, drop_G=args.dropout_G,\
#drop_W=args.dropout_W, drop_C=args.dropout_C)
model=attention_bert_mfh_fusion(train_dataset, num_hid=args.num_hid, dropout= args.dropout, norm=args.norm,\
activation=args.activation, drop_L=args.dropout_L, drop_G=args.dropout_G,\
drop_W=args.dropout_W, drop_C=args.dropout_C,mfb_out_dim=args.mfb_out_dim)
#model=model.to(device_select)
print(model)
input()
if args.initializer == 'xavier_normal':
model.apply(weights_init_xn)
elif args.initializer == 'xavier_uniform':
model.apply(weights_init_xu)
elif args.initializer == 'kaiming_normal':
model.apply(weights_init_kn)
elif args.initializer == 'kaiming_uniform':
model.apply(weights_init_ku)
#model.w_emb.init_embedding(npy_file)
#if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model=torch.nn.DataParallel(model, device_ids=device_ids).to(device)
if args.optimizer == 'Adadelta':
optim = torch.optim.Adadelta(model.parameters(), rho=0.95, eps=1e-6, weight_decay=args.weight_decay)
elif args.optimizer == 'RMSprop':
optim = torch.optim.RMSprop(model.parameters(), lr=0.01, alpha=0.99, eps=1e-08, weight_decay=args.weight_decay, momentum=0, centered=False)
elif args.optimizer == 'Adam':
optim = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=args.weight_decay)
else:
optim = torch.optim.Adamax(model.parameters(), weight_decay=args.weight_decay)
logger = utils.Logger(os.path.join(output_folder, 'log.txt'))
best_eval_score = 0
print('Starting training')
#placeholder for checking training and testuing working or not
#single_batch_run(model,train_loader,val_loader,device_select,output_folder,optim)
device_select=0
for epoch in range(args.epochs):
total_loss = 0
train_score = 0
t = time.time()
correct = 0
step=0
start_time=time.time()
for i, (feat, quest, quest_sent, quest_id, target) in enumerate(train_loader):
feat = feat.to(device)
quest = quest.to(device)
#print(type(quest))
target = target.to(device) # true labels
#print(feat.size())
#print(quest.size())
pred = model(feat, quest, target)
loss = instance_bce_with_logits(pred, target)
#print(loss)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
optim.zero_grad()
batch_score = compute_score_with_logits(pred, target.data).sum()
total_loss += loss.item() * feat.size(0)
train_score += batch_score
if(step%10==0):
end_time=time.time()
time_elapsed=end_time-start_time
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Time elapsed: {:.4f}'
.format(epoch, args.epochs, step, total_step, loss.item(), time_elapsed))
start_time=end_time
step=step+1
total_loss /= len(train_loader.dataset)
train_score = 100 * train_score / len(train_loader.dataset)
print('Epoch [{}/{}], Training Loss: {:.4f}, Training Accuracy {:.4f}'
.format(epoch, args.epochs, total_loss, train_score))
model.train(False)
eval_score, bound, V_loss = evaluate_model(model, val_loader, device)
model.train(True)
logger.write('epoch %d, time: %.2f' % (epoch, time.time()-t))
logger.write('\ttrain_loss: %.3f, score: %.3f' % (total_loss, train_score))
logger.write('\teval loss: %.3f, score: %.3f (%.3f)' % (V_loss, 100 * eval_score, 100 * bound))
if eval_score > best_eval_score:
model_path = os.path.join(output_folder, 'model.pth')
torch.save(model.state_dict(), model_path)
best_eval_score = eval_score