-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathtext_loader.py
44 lines (33 loc) · 1.49 KB
/
text_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
This code is simplified version of
https://github.com/sherjilozair/char-rnn-tensorflow/blob/master/utils.py
"""
import collections
import numpy as np
# this is for word count, this has to change to process efficiently with char-level
def build_vocab(sentences):
word_counts = collections.Counter(sentences)
vocabulary_inv = [x[0] for x in word_counts.most_common()]
vocabulary_inv.append("<START>")
vocabulary_inv.append("<END>")
vocabulary_inv = list(sorted(vocabulary_inv))
vocabulary = {x: i for i, x in enumerate(vocabulary_inv)}
return [vocabulary, vocabulary_inv]
class TextLoader:
def __init__(self, path):
with open(path, "r") as _file:
text = list(_file.read())
self.vocab, self.words = build_vocab(text)
self.text = np.array([self.vocab[word] for word in text])
self.X = np.empty((len(self.text)+1), dtype=np.int64)
self.y = np.empty((len(self.text)+1), dtype=np.int64)
self.X[0] = self.vocab["<START>"]
self.X[1:] = np.copy(self.text)
self.y[:-1] = self.X[1:]
self.y[-1] = self.vocab["<END>"]
def next_batch(self, batch_size, seq_length):
start = np.random.randint(0, len(self.X)-batch_size*seq_length)
end = start + batch_size*seq_length
X_to_return = self.X[start:end].reshape(batch_size, seq_length)
y_to_return = self.y[start:end].reshape(batch_size, seq_length)
return X_to_return, y_to_return