Skip to content

Commit 51f25d9

Browse files
committed
updating article
1 parent 173589b commit 51f25d9

File tree

4 files changed

+21
-21
lines changed

4 files changed

+21
-21
lines changed

docs/on-device-ai-goes-mainstream.mdx

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ Two megatrends are converging:
3333

3434
- **[Edge Computing](https://objectbox.io/dev-how-to/edge-computing-state-2025)** - Processing data where it is created, on the device, locally, at the edge of the network, is called "Edge Computing" and it is growing
3535
- **AI** - AI capabilities and use are expanding rapidly and without a need for further explanation
36-
<img src="/dev-how-to/img/edge-ai/edge-ai.png" alt="Edge AI: Where Edge Computing and AI intersect" />
36+
<img src="/img/edge-ai/edge-ai.png" alt="Edge AI: Where Edge Computing and AI intersect" />
3737

3838
--> where these two trends overlap (at the intersection), it is called Edge AI (or local AI, on-device AI, or with regards to a subsection: "Mobile AI")
3939

@@ -45,18 +45,18 @@ The shift to Edge AI is driven by use cases that:
4545
* are not economically viable when using the cloud / a cloud AI
4646
* want to be sustainable
4747

48-
<img src="/dev-how-to/img/edge-ai/edge-ai-benefits.png" alt="Edge AI drivers (benefits)" />
48+
<img src="/img/edge-ai/edge-ai-benefits.png" alt="Edge AI drivers (benefits)" />
4949

5050
If you're interested in the sustainability aspect, see also: [Why Edge Computing matters for a sustainable future](https://objectbox.io/why-do-we-need-edge-computing-for-a-sustainable-future/)
5151

5252
## It's not Edge AI vs. Cloud AI - the reality is Hybrid AI
5353

5454
Of course, while we see a market shift towards Edge Computing, there is no Edge Computing vs. Cloud Computing - the two complement each other and the question is mainly: How much edge does your use case need?
5555

56-
<img src="/dev-how-to/img/edge-ai/cloud-to-edge-continuum.png" alt="Edge AI drivers (benefits)" />
56+
<img src="/img/edge-ai/cloud-to-edge-continuum.png" alt="Edge AI drivers (benefits)" />
5757

5858
Every shift in computing is empowered by core technologies
59-
<img src="/dev-how-to/img/edge-ai/computing-shifts-empowered-by-core-tech.png" alt="Every shift in computing is empowered by core technologies" />
59+
<img src="/img/edge-ai/computing-shifts-empowered-by-core-tech.png" alt="Every shift in computing is empowered by core technologies" />
6060

6161
## What are the core technologies empowering Edge AI?
6262

@@ -67,7 +67,7 @@ Typically, Mobile AI apps need **three core components**:
6767
2. A [**vector database**](https://objectbox.io/vector-database/)
6868
3. **Data sync** for hybrid architectures ([Data Sync Alternatives](https://objectbox.io/data-sync-alternatives-offline-vs-online-solutions/))
6969

70-
<img src="/dev-how-to/img/edge-ai/core-tech-enabling-edge-ai.png" alt="The core technologies empowering Edge AI" />
70+
<img src="/img/edge-ai/core-tech-enabling-edge-ai.png" alt="The core technologies empowering Edge AI" />
7171

7272

7373
## A look at AI models
@@ -76,15 +76,15 @@ Typically, Mobile AI apps need **three core components**:
7676

7777
Large foundation models (LLMs) remain costly and centralized. In contrast, **Small Language Models (SLMs)** bring similar capabilities in a lightweight, resource-efficient way.
7878

79-
<img src="/dev-how-to/img/edge-ai/slm-quality-cost.png" alt="SLM quality and cost comparison" />
79+
<img src="/img/edge-ai/slm-quality-cost.png" alt="SLM quality and cost comparison" />
8080
- Up to **100x cheaper** to run
8181
- Faster, with lower energy consumption
8282
- Near-Large-Model quality in some cases
8383

8484
This makes them ideal for **local AI** scenarios: assistants, semantic search, or multimodal apps running directly on-device. However....
8585

8686
### Frontier AI Models are still getting bigger and costs are skyrocketing
87-
<img src="/dev-how-to/img/edge-ai/llm-costs-still-skyrocketing.png" alt="SLM quality and cost comparison" />
87+
<img src="/img/edge-ai/llm-costs-still-skyrocketing.png" alt="SLM quality and cost comparison" />
8888

8989
### Why this matters for developers: Monetary and hidden costs of using Cloud AI
9090

@@ -99,10 +99,10 @@ Running cloud AI comes at a cost:
9999
### What about Open Source AI Models?
100100

101101
Yes, they are an option, but be mindful of potential risks and caveats. Be aware that you also pay to be free of liability risks.
102-
<img src="/dev-how-to/img/edge-ai/opensource-ai-models.png" alt="SLM quality and cost comparison" />
102+
<img src="/img/edge-ai/opensource-ai-models.png" alt="SLM quality and cost comparison" />
103103

104104
### While SLMs are all the rage, it's really about specialised AI models in Edge AI (at this moment...)
105-
<img src="/dev-how-to/img/edge-ai/for-mobile-it-is-specialized-models-not-SLM.png" alt="SLM quality and cost comparison" />
105+
<img src="/img/edge-ai/for-mobile-it-is-specialized-models-not-SLM.png" alt="SLM quality and cost comparison" />
106106

107107

108108
## On-device Vector Databases are the second essential piece of the Edge AI Tech Stack
@@ -118,7 +118,7 @@ Edge Vector databases, or on-device vector databases, are still rare. Some serve
118118
:::
119119

120120

121-
<img src="/dev-how-to/img/edge-ai/vector-database.png" alt="Vector Databases" />
121+
<img src="/img/edge-ai/vector-database.png" alt="Vector Databases" />
122122

123123

124124
## Developer Story: On-device AI Screenshot Searcher Example App
@@ -133,19 +133,19 @@ To test the waters, I built a [**Screenshot Searcher** app with ObjectBox Vector
133133
This was easy and took less than a day. However, I learned more with the stuff I tried that wasn't easy... ;)
134134

135135
### What I learned about text classification (and hopefully helps you)
136-
<img src="/dev-how-to/img/edge-ai/on-device-text-classification.png" alt="On-device Text Classification Learnings" />
136+
<img src="/img/edge-ai/on-device-text-classification.png" alt="On-device Text Classification Learnings" />
137137

138138
--> See Finetuning.... without Finetuning, no model, no text classification.
139139

140140
### What I learned about finetuning (and hopefully helps you)
141-
<img src="/dev-how-to/img/edge-ai/finetuning-text-model-learnings.png" alt="Finetuning Learnings (exemplary, based on finetuning DBpedia)" />
141+
<img src="/img/edge-ai/finetuning-text-model-learnings.png" alt="Finetuning Learnings (exemplary, based on finetuning DBpedia)" />
142142

143143
--> Finetuning failed --> I will try again ;)
144144

145145
### What I learned about integrating an SLM (Google's Gemma)
146146

147147
Integrating Gemma was super straightforward; it worked on-device in less than an hour (just don't try to use the Android emulator (AVD) - it's not recommended to try and run Gemma on the AVD, and it also did not work for me).
148-
<img src="/dev-how-to/img/edge-ai/using-gemma-on-android.png" alt="Using Gemma on Android" />
148+
<img src="/img/edge-ai/using-gemma-on-android.png" alt="Using Gemma on Android" />
149149

150150

151151
In this example app, we are using Gemma to enhance the screenshot search with an additional AI layer:
@@ -161,7 +161,7 @@ It's already fairly easy - and vibe coding an Edge AI app very doable. While of
161161

162162

163163

164-
<img src="/dev-how-to/img/edge-ai/final-tech-stack.png" alt="Final Tech Stack" />
164+
<img src="/img/edge-ai/final-tech-stack.png" alt="Final Tech Stack" />
165165

166166

167167

@@ -198,6 +198,6 @@ We’re at an inflection point: AI is moving from centralized, cloud-based servi
198198

199199
The future of AI is not just big — it's also **small, local, and synced**.
200200

201-
<img src="/dev-how-to/img/edge-ai/ai-anytime-anywhere.png" alt="AI Anytime Anywhere Future" />
201+
<img src="/img/edge-ai/ai-anytime-anywhere.png" alt="AI Anytime Anywhere Future" />
202202

203203
---

docs/realm-to-objectbox-migration.mdx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ sidebar_label: "Realm → ObjectBox migration"
55
description: "Step-by-step guide to migrate data and code from Realm to ObjectBox."
66
slug: /migrate/realm-to-objectbox/guide
77
keywords: [ObjectBox, Realm, migration, guide]
8-
image: /img/social/realm-objectbox-migration-guide.jpg
8+
image: /img/social/realm-to-objectbox-migration-guide.jpg
99
author: Dr. Vivien Dollinger
1010
author_url: https://www.linkedin.com/in/vivien-dollinger/
1111
---
@@ -104,7 +104,7 @@ Unless you mark the ID as **assignable** (e.g., `@Id(assignable = true)` in Java
104104
<Head>
105105
<meta property="og:title" content="Realm → ObjectBox Migration Guide" />
106106
<meta property="og:description" content="Step-by-step guide to migrate data and code from Realm to ObjectBox." />
107-
<meta property="og:image" content="https://objectbox.io/dev-how-to/img/social/realm-objectbox-migration-guide.jpg" />
107+
<meta property="og:image" content="https://objectbox.io/dev-how-to/img/social/realm-to-objectbox-migration-guide.jpg" />
108108
<meta property="og:type" content="article" />
109109
<script type="application/ld+json">{JSON.stringify({"@context": "https://schema.org", "@type": "TechArticle", "mainEntityOfPage": {"@type": "WebPage", "@id": "https://dev.objectbox.io/migrate/realm-to-objectbox/guide"}, "headline": "Realm → ObjectBox Migration Guide", "description": "Step-by-step guide to migrate data and code from Realm to ObjectBox", "keywords": "ObjectBox, Realm, Realm DB, Data Sync, MongoDB, MongoDB Atlas Device Sync, migration, guide", "datePublished": "2025-03-15T09:00:00+01:00", "dateModified": "2025-09-09T14:30:00+02:00", "author": {"@type": "Organization", "name": "ObjectBox", "url": "https://dev.objectbox.io/"}})}</script>
110110
</Head>

docs/technical-realm-vs-object-box-audit.mdx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ sidebar_label: "Technical Realm Vs Object Box Audit"
55
description: "A Technical Audit of RealmDB and ObjectBox, comparing the on-device databases on a technical level"
66
slug: /migrate/technical-realm-vs-object-box-audit
77
keywords: [ObjectBox, Realm]
8-
image: /img/social/technical-realm-vs-object-box-audit.jpg
8+
image: /img/social/technical-realm-vs-objectbox-a-code-level-comparison.jpg
99
author: Dr. Vivien Dollinger
1010
author_url: https://www.linkedin.com/in/vivien-dollinger/
1111
---
@@ -14,7 +14,7 @@ import Head from '@docusaurus/Head';
1414
<Head>
1515
<meta property="og:title" content="Technical Realm Vs Object Box Audit" />
1616
<meta property="og:description" content="A Technical Audit of RealmDB and ObjectBox, comparing the on-device databases on a technical level" />
17-
<meta property="og:image" content="https://objectbox.io/dev-how-to/img/social/technical-realm-vs-object-box-audit.jpg" />
17+
<meta property="og:image" content="https://objectbox.io/dev-how-to/img/social/technical-realm-vs-objectbox-a-code-level-comparison.jpg" />
1818
<meta property="og:type" content="article" />
1919
<script
2020
type="application/ld+json"

docs/transactions.mdx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ keywords:
1010
- ACID
1111
- runInTx
1212
- bulk update performance
13-
image: /img/social/api-fact-using-transactions-in-objectbox.jpg
13+
image: /img/social/transactions-in-objectbox.jpg
1414
author: Dr. Vivien Dollinger
1515
author_url: https://www.linkedin.com/in/vivien-dollinger/
1616
---
@@ -212,7 +212,7 @@ with store.write_tx():
212212
<Head>
213213
<meta property="og:title" content="API Fact: Using Transactions in ObjectBox" />
214214
<meta property="og:description" content="Learn how to use transactions in ObjectBox with store.runInTx for atomic, consistent, and high-performance database operations." />
215-
<meta property="og:image" content="https://objectbox.io/dev-how-to/img/social/api-fact-using-transactions-in-objectbox.jpg" />
215+
<meta property="og:image" content="https://objectbox.io/dev-how-to/img/social/transactions-in-objectbox.jpg" />
216216
<meta property="og:type" content="article" />
217217
<script type="application/ld+json">
218218
{JSON.stringify({"@context": "https://schema.org", "@type": "TechArticle", "mainEntityOfPage": {"@type": "WebPage", "@id": "https://dev.objectbox.io/api-facts/transactions"}, "headline": "API Fact: Using Transactions in ObjectBox", "description": "Learn how to use transactions in ObjectBox with store.runInTx for atomic, consistent, and high-performance database operations.", "keywords": "ObjectBox transactions, atomic operations, database transaction, ACID, runInTx, bulk update performance", "datePublished": "2025-05-20T11:00:00+02:00", "dateModified": "2025-09-10T09:15:00+02:00", "author": {"@type": "Organization", "name": "ObjectBox", "url": "https://dev.objectbox.io/"}}, null, 2)}

0 commit comments

Comments
 (0)