-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yaml
162 lines (161 loc) · 4.49 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#在这里修改生成参数,例如模型路径等。
#因为有的参数训练和生成时都需要,懒得区分就把包括训练参数在内的大部分参数都放这里了(
#只有在web端生成时生效。
model:
DDPM:
#-----------------------------------------------#
# 模型路径
#-----------------------------------------------#
model_path: 'training/my_checkpoint/diffusion_model_last_epoch_weights.pth'
#-----------------------------------------------#
# 卷积通道数的设置
#-----------------------------------------------#
channel: 128
#-----------------------------------------------#
# 输入图像大小的设置
#-----------------------------------------------#
input_shape: [96, 96]
#-----------------------------------------------#
# betas相关参数
#-----------------------------------------------#
schedule: "linear"
num_timesteps: 1000
schedule_low: 1e-4
schedule_high: 0.02
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
cuda: true
save_dir: "Web/front_end/static"
DCGAN:
latent_dim: 100
model_name: "DCGAN"
#-----------------------------------------------#
# 模型路径
#-----------------------------------------------#
checkpoint_path: "training/my_checkpoint/DC_GAN_epoch=999.ckpt"
image_size: 128
batch_size: 512
image_channels: 3
num_workers: 8
g_lr: 0.0003
d_lr: 0.0001
epochs: 5000
unrolled_DCGAN:
latent_dim: 100
model_name: "unrolled_DCGAN"
#-----------------------------------------------#
# 模型路径
#-----------------------------------------------#
checkpoint_path: "training/my_checkpoint/unrolled_DCGAN_epoch=1199.ckpt"
image_size: 128
batch_size: 512
image_channels: 3
num_workers: 8
g_lr: 0.0003
d_lr: 0.0001
epochs: 5000
unrolled_step: 5
EBGAN:
latent_dim: 100
model_name: "EBGAN"
#-----------------------------------------------#
# 模型路径
#-----------------------------------------------#
checkpoint_path: "training/my_checkpoint/EBGAN_epoch=1199.ckpt"
image_size: 128
batch_size: 512
image_channels: 3
num_workers: 8
g_lr: 0.0003
d_lr: 0.0001
epochs: 5000
WGAN:
DATALOADER:
BATCH_SIZE: 32
NUM_WORKERS: 0
DATASET:
NAME: dataset/cartoon_color
TRAIN_TEST_RATIO: 1.0
IMAGE:
CHANNEL: 3
HEIGHT: 64
NUMBER: 10
PIXEL_MEAN: (0.5, 0.5, 0.5)
PIXEL_STD: (0.5, 0.5, 0.5)
SAVE_NUMBER: 64
SAVE_PATH: Web/front_end/static
SAVE_ROW_NUMBER: 8
SEPARATE: True
WIDTH: 64
LOG_CONFIGURATION: config/logging.conf
MODEL:
CHECKPOINT_DIR: checkpoints
D:
DIMENSION: 256
PATH:
DEVICE: cuda
G:
DIMENSION: 1024
INPUT_SIZE: 100
#-----------------------------------------------#
# 模型路径
#-----------------------------------------------#
PATH: training\my_checkpoint\WGAN_G_epoch_39999.pth
NAME: WGAN
WGAN:
CRITIC_ITERS: 5
GENERATOR_ITERS: 40000
IC: False
LAMBDA: 10
WEIGHT_CLIPING_LIMIT: 0.01
OUTPUT_DIR: log
PROJECT_NAME: WGAN
SOLVER:
BASE_LR: 0.0001
BETAS: 0.5, 0.999
CHECKPOINT_FREQ: 500
EPOCHS: 300
EVALUATE_BATCH: 128
EVALUATE_ITERATION: 125
WEIGHT_DECAY: 1e-05
WALKING_LATENT_SPACE:
IMAGE_FPS: 10
IMAGE_NUMBER: 16
IMAGE_ROW_NUMBER: 4
STEP: 50
WGAN-GP:
#-----------------------------------------------#
# 模型路径
#-----------------------------------------------#
generator_path: "training/my_checkpoint/WGANGP_gen.pth"
discriminator_path: "training/my_checkpoint/WGANGP_disc.pth"
channels_img: 3
features_gen: 64
features_disc: 64
noise_dim: 100
device: cuda
gen_search_num: 100
gen_num: 10
seed: 42
output_dir: "Web/front_end/static"
GAN:
#-----------------------------------------------#
# 模型路径
#-----------------------------------------------#
generator_path: "training/my_checkpoint/GAN_netg.pth"
discriminator_path: "training/my_checkpoint/GAN_netd.pth"
num_workers: 4
image_size: 96
batch_size: 256
max_epoch: 280
lr1: 2e-4
lr2: 2e-4
beta1: 0.5
gpu: True
d_every: 1
g_every: 5
nz: 100
ngf: 64
ndf: 64