forked from nod-ai/transformer-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusion_fastgelu.py
316 lines (260 loc) · 12.7 KB
/
fusion_fastgelu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#-------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#--------------------------------------------------------------------------
from typing import Dict, Optional
from logging import getLogger
from onnx import helper
from onnx_model import OnnxModel
from fusion_base import Fusion
logger = getLogger(__name__)
class FusionFastGelu(Fusion):
def __init__(self, model: OnnxModel):
super().__init__(model, "FastGelu", "Tanh")
def fuse(self, tanh_node, input_name_to_nodes: Dict, output_name_to_node: Dict):
if self.fuse_1(tanh_node, input_name_to_nodes, output_name_to_node):
return
if self.fuse_2(tanh_node, input_name_to_nodes, output_name_to_node):
return
if self.fuse_3(tanh_node, input_name_to_nodes, output_name_to_node):
return
def fuse_1(self, tanh_node, input_name_to_nodes, output_name_to_node) -> Optional[bool]:
"""
Fuse Gelu with tanh into one node:
+---------------------------+
| |
| v
[root] --> Pow --> Mul -----> Add --> Mul --> Tanh --> Add --> Mul
| (Y=3) (B=0.0447...) (B=0.7978...) (B=1) ^
| |
+------> Mul(B=0.5)--------------------------------------------+
Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
"""
if tanh_node.output[0] not in input_name_to_nodes:
return
children = input_name_to_nodes[tanh_node.output[0]]
if len(children) != 1 or children[0].op_type != 'Add':
return
add_after_tanh = children[0]
if not self.model.has_constant_input(add_after_tanh, 1.0):
return
if add_after_tanh.output[0] not in input_name_to_nodes:
return
children = input_name_to_nodes[add_after_tanh.output[0]]
if len(children) != 1 or children[0].op_type != 'Mul':
return
mul_after_tanh = children[0]
mul_half = self.model.match_parent(mul_after_tanh, 'Mul', None, output_name_to_node)
if mul_half is None:
return
i = self.model.find_constant_input(mul_half, 0.5)
if i < 0:
return
root_input = mul_half.input[0 if i == 1 else 1]
#root_node could be None when root_input is graph input
root_node = self.model.get_parent(mul_half, 0 if i == 1 else 1, output_name_to_node)
mul_before_tanh = self.model.match_parent(tanh_node, 'Mul', 0, output_name_to_node)
if mul_before_tanh is None:
return
i = self.model.find_constant_input(mul_before_tanh, 0.7978, delta=0.0001)
if i < 0:
return
add_before_tanh = self.model.match_parent(mul_before_tanh, 'Add', 0 if i == 1 else 1, output_name_to_node)
if add_before_tanh is None:
return
mul_after_pow = self.model.match_parent(add_before_tanh,
'Mul',
None,
output_name_to_node,
exclude=[root_node] if root_node else [])
if mul_after_pow is None:
return
i = self.model.find_constant_input(mul_after_pow, 0.0447, delta=0.0001)
if i < 0:
return
pow = self.model.match_parent(mul_after_pow, 'Pow', 0 if i == 1 else 1, output_name_to_node)
if pow is None:
return
if not self.model.has_constant_input(pow, 3.0):
return
if pow.input[0] != root_input:
return
subgraph_nodes = [
mul_after_tanh, mul_half, add_after_tanh, tanh_node, mul_before_tanh, add_before_tanh, mul_after_pow, pow
]
if not self.model.is_safe_to_fuse_nodes(subgraph_nodes, [mul_after_tanh.output[0]], input_name_to_nodes,
output_name_to_node):
return
self.nodes_to_remove.extend(subgraph_nodes)
fused_node = helper.make_node('FastGelu',
inputs=[root_input],
outputs=mul_after_tanh.output,
name=self.model.create_node_name('FastGelu'))
fused_node.domain = "com.microsoft"
self.nodes_to_add.append(fused_node)
self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
return True
def fuse_2(self, tanh_node, input_name_to_nodes: Dict, output_name_to_node: Dict) -> Optional[bool]:
"""
This pattern is from Tensorflow model.
Fuse Gelu with tanh into one node:
+---------------------------+
| |
| v
[root] --> Pow --> Mul -----> Add --> Mul --> Tanh --> Add --> Mul(B=0.5)-->Mul-->
| (Y=3) (B=0.0447...) (B=0.7978...) (B=1) ^
| |
+---------------------------------------------------------------------------+
Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
"""
if tanh_node.output[0] not in input_name_to_nodes:
return
children = input_name_to_nodes[tanh_node.output[0]]
if len(children) != 1 or children[0].op_type != 'Add':
return
add_after_tanh = children[0]
if not self.model.has_constant_input(add_after_tanh, 1.0):
return
if add_after_tanh.output[0] not in input_name_to_nodes:
return
children = input_name_to_nodes[add_after_tanh.output[0]]
if len(children) != 1 or children[0].op_type != 'Mul':
return
mul_half = children[0]
i = self.model.find_constant_input(mul_half, 0.5)
if i < 0:
return
if mul_half.output[0] not in input_name_to_nodes:
return
children = input_name_to_nodes[mul_half.output[0]]
if len(children) != 1 or children[0].op_type != 'Mul':
return
mul_after_mul_half = children[0]
root_node = self.model.get_parent(mul_after_mul_half,
0 if mul_after_mul_half.input[1] == mul_half.output[0] else 1,
output_name_to_node)
if root_node is None:
return
mul_before_tanh = self.model.match_parent(tanh_node, 'Mul', 0, output_name_to_node)
if mul_before_tanh is None:
return
i = self.model.find_constant_input(mul_before_tanh, 0.7978, delta=0.0001)
if i < 0:
return
add_before_tanh = self.model.match_parent(mul_before_tanh, 'Add', 0 if i == 1 else 1, output_name_to_node)
if add_before_tanh is None:
return
mul_after_pow = self.model.match_parent(add_before_tanh, 'Mul', None, output_name_to_node, exclude=[root_node])
if mul_after_pow is None:
return
i = self.model.find_constant_input(mul_after_pow, 0.0447, delta=0.0001)
if i < 0:
return
pow = self.model.match_parent(mul_after_pow, 'Pow', 0 if i == 1 else 1, output_name_to_node)
if pow is None:
return
if not self.model.has_constant_input(pow, 3.0):
return
if pow.input[0] != root_node.output[0]:
return
subgraph_nodes = [
mul_after_mul_half, mul_half, add_after_tanh, tanh_node, mul_before_tanh, add_before_tanh, mul_after_pow,
pow
]
if not self.model.is_safe_to_fuse_nodes(subgraph_nodes, [mul_after_mul_half.output[0]], input_name_to_nodes,
output_name_to_node):
return
self.nodes_to_remove.extend(subgraph_nodes)
fused_node = helper.make_node('FastGelu',
inputs=[root_node.output[0]],
outputs=mul_after_mul_half.output,
name=self.model.create_node_name('FastGelu'))
fused_node.domain = "com.microsoft"
self.nodes_to_add.append(fused_node)
self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
return True
def fuse_3(self, tanh_node, input_name_to_nodes: Dict, output_name_to_node: Dict) -> Optional[bool]:
"""
OpenAI's gelu implementation, also used in Megatron:
Gelu(x) = x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1.0 + 0.044715 * x * x)))
Fuse subgraph into a FastGelu node:
+------------ Mul (B=0.79788456) -------------------+
| |
+-------------------------------+ |
| | |
| v v
[root] --> Mul (B=0.044715) --> Mul --> Add(B=1) --> Mul --> Tanh --> Add(B=1) --> Mul-->
| ^
| |
+-----------> Mul (B=0.5) --------------------------------------------------------+
"""
if tanh_node.output[0] not in input_name_to_nodes:
return
children = input_name_to_nodes[tanh_node.output[0]]
if len(children) != 1 or children[0].op_type != 'Add':
return
add_after_tanh = children[0]
if not self.model.has_constant_input(add_after_tanh, 1.0):
return
if add_after_tanh.output[0] not in input_name_to_nodes:
return
children = input_name_to_nodes[add_after_tanh.output[0]]
if len(children) != 1 or children[0].op_type != 'Mul':
return
mul_last = children[0]
mul_half = self.model.match_parent(mul_last, 'Mul', None, output_name_to_node)
if mul_half is None:
return
i = self.model.find_constant_input(mul_half, 0.5)
if i < 0:
return
root_input = mul_half.input[0 if i == 1 else 1]
mul_before_tanh = self.model.match_parent(tanh_node, 'Mul', 0, output_name_to_node)
if mul_before_tanh is None:
return
add_1 = self.model.match_parent(mul_before_tanh, 'Add', None, output_name_to_node)
if add_1 is None:
return
j = self.model.find_constant_input(add_1, 1.0)
if j < 0:
return
mul_7978 = self.model.match_parent(mul_before_tanh, 'Mul', None, output_name_to_node)
if mul_7978 is None:
return
k = self.model.find_constant_input(mul_7978, 0.7978, delta=0.0001)
if k < 0:
return
if mul_7978.input[0 if k == 1 else 1] != root_input:
return
mul_before_add_1 = self.model.match_parent(add_1, 'Mul', 0 if j == 1 else 1, output_name_to_node)
if mul_before_add_1 is None:
return
if mul_before_add_1.input[0] == root_input:
another = 1
elif mul_before_add_1.input[1] == root_input:
another = 0
else:
return
mul_0447 = self.model.match_parent(mul_before_add_1, 'Mul', another, output_name_to_node)
if mul_0447 is None:
return
m = self.model.find_constant_input(mul_0447, 0.0447, delta=0.0001)
if m < 0:
return
if mul_0447.input[0 if m == 1 else 1] != root_input:
return
subgraph_nodes = [
mul_0447, mul_before_add_1, add_1, mul_before_tanh, tanh_node, add_after_tanh, mul_7978, mul_half, mul_last
]
if not self.model.is_safe_to_fuse_nodes(subgraph_nodes, [mul_last.output[0]], input_name_to_nodes,
output_name_to_node):
return
self.nodes_to_remove.extend(subgraph_nodes)
fused_node = helper.make_node('FastGelu',
inputs=[root_input],
outputs=mul_last.output,
name=self.model.create_node_name('FastGelu'))
fused_node.domain = "com.microsoft"
self.nodes_to_add.append(fused_node)
self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
return True