forked from nod-ai/transformer-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusion_shape.py
100 lines (82 loc) · 3.6 KB
/
fusion_shape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#-------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#--------------------------------------------------------------------------
from fusion_base import Fusion
from logging import getLogger
from onnx import TensorProto, NodeProto
from onnx_model import OnnxModel
from fusion_utils import FusionUtils
from typing import Union, Dict, List
logger = getLogger(__name__)
class FusionShape(Fusion):
def __init__(self, model: OnnxModel):
super().__init__(model, "Shape", "Concat")
self.utils = FusionUtils(model)
self.shape_infer = None
self.shape_infer_done = False
def get_dimensions_from_tensor_proto(self, tensor_proto: TensorProto) -> Union[int, None]:
if tensor_proto.type.tensor_type.HasField('shape'):
return len(tensor_proto.type.tensor_type.shape.dim)
else:
return None
def get_dimensions(self, input_name: str) -> Union[int, None]:
graph_input = self.model.find_graph_input(input_name)
if graph_input:
return self.get_dimensions_from_tensor_proto(graph_input)
if not self.shape_infer_done:
self.shape_infer = self.model.infer_runtime_shape({}, update=True)
self.shape_infer_done = True
if self.shape_infer is not None:
return self.get_dimensions_from_tensor_proto(self.shape_infer.known_vi_[input_name])
return None
def fuse(self, concat_node: NodeProto, input_name_to_nodes: Dict[str, List[NodeProto]],
output_name_to_node: Dict[str, NodeProto]):
"""
Smplify subgraph like
(2d_input)
/ \
Shape shape
/ \
Gather(indices=0) Gather(indices=1)
| |
Unsqueeze(axes=0) Unsqueeze(axes=0)
\ /
Concat
|
into (2d_input) --> Shape -->
"""
opset_version = self.model.get_opset_version()
inputs = len(concat_node.input)
root = None
shape_output = None
for i in range(inputs):
path = self.model.match_parent_path(concat_node, ['Unsqueeze', 'Gather', 'Shape'], [i, 0, 0],
output_name_to_node)
if path is None:
return
unsqueeze, gather, shape = path
if i == 0:
shape_output = shape.output[0]
if root is None:
root = shape.input[0]
if self.get_dimensions(root) != inputs:
return
elif shape.input[0] != root:
return
if not FusionUtils.check_node_attribute(unsqueeze, 'axis', 0, default_value=0):
return
if opset_version < 13:
if not FusionUtils.check_node_attribute(unsqueeze, 'axes', [0]):
return
else:
if not self.utils.check_node_input_value(unsqueeze, 1, [0]):
return
value = self.model.get_constant_value(gather.input[1])
from numpy import ndarray, array_equal
if not (isinstance(value, ndarray) and value.size == 1 and value.item() == i):
return
if self.model.find_graph_output(concat_node.output[0]) is None:
self.model.replace_input_of_all_nodes(concat_node.output[0], shape_output)
self.fused_count += 1
self.prune_graph = True