forked from nod-ai/transformer-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt2_helper.py
814 lines (675 loc) · 37 KB
/
gpt2_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
# This script helps onnx conversion and validation for GPT2 model with past state.
import os
import logging
import torch
import shutil
import random
import numpy
import time
import re
import pickle
from pathlib import Path
from typing import List, Dict, Tuple, Union
from transformers import GPT2Model, GPT2LMHeadModel, GPT2Config, TFGPT2Model
from benchmark_helper import Precision
logger = logging.getLogger(__name__)
PRETRAINED_GPT2_MODELS = ['distilgpt2', 'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']
DEFAULT_TOLERANCE = {Precision.FLOAT32: 0.0005, Precision.FLOAT16: 0.2, Precision.INT8: 3.0}
class GPT2ModelNoPastState(GPT2Model):
""" Here we wrap a class to disable past state output.
"""
def __init__(self, config):
super().__init__(config)
def forward(self, input_ids):
return super().forward(input_ids, use_cache=False, return_dict=False)
class TFGPT2ModelNoPastState(TFGPT2Model):
""" Here we wrap a class to disable past state output.
"""
def __init__(self, config):
config.use_cache = False
super().__init__(config)
def forward(self, input_ids):
return super().call(input_ids, use_cache=False)
class MyGPT2Model(GPT2Model):
""" Here we wrap a class for Onnx model conversion for GPT2Model with past state.
"""
def __init__(self, config):
super().__init__(config)
@staticmethod
def post_process(result, num_layer):
if isinstance(result[1][0], tuple) or isinstance(result[1][0], list):
assert len(result[1]) == num_layer and len(result[1][0]) == 2
#assert len(result[1][0][0].shape) == 4 and result[1][0][0].shape == result[1][0][1].shape
present = []
for i in range(num_layer):
# Since transformers v4.*, past key and values are separated outputs.
# Here we concate them into one tensor to be compatible with Attention operator.
present.append(torch.cat((result[1][i][0].unsqueeze(0), result[1][i][1].unsqueeze(0)), dim=0))
return (result[0], tuple(present))
return result
def forward(self, input_ids, position_ids, attention_mask, *past):
result = super().forward(input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past,
return_dict=False)
return MyGPT2Model.post_process(result, self.config.n_layer)
class MyGPT2LMHeadModel(GPT2LMHeadModel):
""" Here we wrap a class for Onnx model conversion for GPT2LMHeadModel with past state.
"""
def __init__(self, config):
super().__init__(config)
def forward(self, input_ids, position_ids, attention_mask, *past):
result = super().forward(input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past,
return_dict=False)
return MyGPT2Model.post_process(result, self.config.n_layer)
class MyGPT2LMHeadModel_NoPadding(GPT2LMHeadModel):
""" Here we wrap a class for Onnx model conversion for GPT2LMHeadModel with past state and no padding.
When you always use batch_size=1 in inference, there is no padding in inputs. In such case, position_ids
and attention_mask need no be in inputs.
"""
def __init__(self, config):
super().__init__(config)
def forward(self, input_ids, *past):
result = super().forward(input_ids, past_key_values=past, return_dict=False)
return MyGPT2Model.post_process(result, self.config.n_layer)
# Maps model class name to a tuple of model class, name of first output and use padding or not
MODEL_CLASSES = {
'GPT2LMHeadModel': (MyGPT2LMHeadModel, 'logits', True),
'GPT2LMHeadModel_NoPadding': (MyGPT2LMHeadModel_NoPadding, 'logits', False),
'GPT2Model': (MyGPT2Model, 'last_state', True),
}
class Gpt2Inputs:
def __init__(self, input_ids, position_ids, attention_mask, past):
self.input_ids: torch.LongTensor = input_ids
self.position_ids: torch.LongTensor = position_ids
self.attention_mask: Union[torch.FloatTensor, torch.HalfTensor] = attention_mask
self.past: Union[List[torch.FloatTensor], List[torch.HalfTensor]] = past
def to_list(self) -> List:
input_list = [v for v in [self.input_ids, self.position_ids, self.attention_mask] if v is not None]
if self.past:
input_list.extend(self.past)
return input_list
def to_tuple(self) -> Tuple:
return tuple(v for v in [self.input_ids, self.position_ids, self.attention_mask, self.past] if v is not None)
def to_fp32(self):
attention_mask = self.attention_mask.to(dtype=torch.float32) if self.attention_mask is not None else None
past = [p.to(dtype=torch.float32) for p in self.past]
return Gpt2Inputs(self.input_ids, self.position_ids, attention_mask, past)
class Gpt2Helper:
""" A helper class for Gpt2 model conversion, inference and verification.
"""
@staticmethod
def get_dummy_inputs(batch_size: int,
past_sequence_length: int,
sequence_length: int,
num_attention_heads: int,
hidden_size: int,
num_layer: int,
vocab_size: int,
device: torch.device,
float16: bool = False,
has_position_ids: bool = True,
has_attention_mask: bool = True) -> Gpt2Inputs:
""" Create random inputs for GPT2 model.
Returns torch tensors of input_ids, position_ids, attention_mask and a list of past state tensors.
"""
float_type = torch.float16 if float16 else torch.float32
past_shape = [2, batch_size, num_attention_heads, past_sequence_length, int(hidden_size / num_attention_heads)]
past = [(torch.rand(past_shape, dtype=float_type, device=device) * 2.0 - 1.0) for _ in range(num_layer)]
input_ids = torch.randint(low=0,
high=vocab_size - 1,
size=(batch_size, sequence_length),
dtype=torch.int64,
device=device)
attention_mask = None
if has_attention_mask:
total_sequence_length = past_sequence_length + sequence_length
attention_mask = torch.ones([batch_size, total_sequence_length], dtype=float_type, device=device)
if total_sequence_length >= 2:
padding_position = random.randint(0, total_sequence_length - 1) # test input with padding.
attention_mask[:, padding_position] = 0
# Deduce position_ids from attention mask
position_ids = None
if has_position_ids:
position_ids = (attention_mask.long().cumsum(-1) - 1)
position_ids.masked_fill_(position_ids < 0, 0)
position_ids = position_ids[:, past_sequence_length:]
return Gpt2Inputs(input_ids, position_ids, attention_mask, past)
@staticmethod
def get_output_shapes(batch_size: int,
past_sequence_length: int,
sequence_length: int,
config: GPT2Config,
model_class: str = "GPT2LMHeadModel") -> Dict[str, List[int]]:
""" Returns a dictionary with output name as key, and shape as value.
"""
num_attention_heads = config.num_attention_heads
hidden_size = config.hidden_size
num_layer = config.num_hidden_layers
vocab_size = config.vocab_size
output_name = MODEL_CLASSES[model_class][1]
last_state_shape = [batch_size, sequence_length, vocab_size if output_name == "logits" else hidden_size]
present_state_shape = [
2, batch_size, num_attention_heads, past_sequence_length + sequence_length,
int(hidden_size / num_attention_heads)
]
output_shapes = {output_name: last_state_shape}
for i in range(num_layer):
output_shapes["present_" + str(i)] = present_state_shape
return output_shapes
@staticmethod
def auto_increase_buffer_size(output_buffers, output_shapes):
for key in output_shapes:
assert key in output_buffers
buffer = output_buffers[key]
if numpy.prod(output_shapes[key]) > buffer.nelement():
output_buffers[key] = torch.empty(numpy.prod(output_shapes[key]),
dtype=buffer.dtype,
device=buffer.device)
@staticmethod
def get_output_buffers(output_shapes, device, is_float16=False):
""" Returns a dictionary of output name as key, and 1D tensor as value. The tensor has enough space for given shape.
"""
data_type = torch.float16 if is_float16 else torch.float32
output_buffers = {}
for name, shape in output_shapes.items():
output_buffers[name] = torch.empty(numpy.prod(shape), dtype=data_type, device=device)
return output_buffers
@staticmethod
def diff_outputs(torch_outputs, ort_outputs, relative=False):
""" Returns the maximum difference between PyTorch and OnnxRuntime outputs.
"""
expected_outputs = torch_outputs[0].cpu().numpy()
diff = numpy.abs(expected_outputs - ort_outputs[0])
if relative:
return numpy.amax(diff / (numpy.abs(expected_outputs) + 1e-6))
else:
return numpy.amax(diff)
@staticmethod
def compare_outputs(torch_outputs, ort_outputs, rtol=1e-03, atol=1e-03):
""" Returns True if torch and ORT outputs are close for given thresholds, and False otherwise.
"""
is_close = numpy.allclose(ort_outputs[0], torch_outputs[0].cpu().numpy(), rtol=rtol, atol=atol)
logger.debug(f'PyTorch and OnnxRuntime output 0 (last_state) are close: {is_close}')
is_all_close = is_close
num_layers = len(ort_outputs) - 1
for layer in range(num_layers):
is_close = numpy.allclose(ort_outputs[1 + layer],
torch_outputs[1][layer].cpu().numpy(),
rtol=rtol,
atol=atol)
logger.debug(f'PyTorch and OnnxRuntime layer {layer} state (present_{layer}) are close:{is_close}')
is_all_close = is_all_close and is_close
if not is_all_close:
max_abs_diff = Gpt2Helper.diff_outputs(torch_outputs, ort_outputs)
logger.info(f'PyTorch and OnnxRuntime results are not all close: max_abs_diff={max_abs_diff:.5f}')
return is_all_close
@staticmethod
def compare_outputs_v2(torch_outputs, ort_outputs, atol=1e-06):
"""Compare outputs from PyTorch and OnnxRuntime
Args:
torch_outputs (Tuple[Torch.Tensor]): PyTorch model output
ort_outputs (List[numpy.ndarray]): OnnxRuntime output
atol (float, optional): Absolute tollerance. Defaults to 1e-06.
Returns:
is_all_close(bool): whether all elements are close.
max_abs_diff(float): maximum absolute difference.
messages(str): a list of debug message for each output
"""
is_all_close = True
is_top1_matched = False
max_diffs = []
messages = []
for i in range(len(ort_outputs)):
ort_output = ort_outputs[i]
torch_output = (torch_outputs[0] if i == 0 else torch_outputs[1][i - 1]).cpu().numpy()
is_close = numpy.allclose(ort_output, torch_output, atol=atol, rtol=0)
max_diffs.append(numpy.amax(numpy.abs(torch_output - ort_output)))
is_all_close = is_all_close and is_close
if numpy.isnan(torch_output).any():
logger.debug(f'PyTorch output {i} has nan')
if numpy.isinf(torch_output).any():
logger.debug(f'PyTorch output {i} has inf')
if numpy.isnan(ort_output).any():
logger.debug(f'ORT output {i} has nan')
if numpy.isinf(ort_output).any():
logger.debug(f'ORT output {i} has inf')
diff = numpy.fabs(ort_output - torch_output)
idx = numpy.unravel_index(diff.argmax(), diff.shape)
messages.append(
f'diff={diff[idx]:.9f} index={idx} ort={ort_output[idx]:.9f} torch={float(torch_output[idx]):.9f}')
if i == 0: # logits
ort_max_index = numpy.unravel_index(numpy.argmax(ort_output, axis=None), ort_output.shape)
torch_max_index = numpy.unravel_index(numpy.argmax(torch_output, axis=None), torch_output.shape)
is_top1_matched = numpy.array_equal(ort_max_index, torch_max_index)
max_diff_output_index = max_diffs.index(max(max_diffs))
return is_all_close, max(max_diffs), max_diff_output_index, messages, is_top1_matched
@staticmethod
def export_onnx(model,
device,
onnx_model_path: str,
verbose: bool = False,
use_external_data_format: bool = False,
has_position_ids: bool = True,
has_attention_mask: bool = True):
""" Export GPT-2 model with past state to ONNX model.
"""
config: GPT2Config = model.config
num_layer = config.n_layer
dummy_inputs = Gpt2Helper.get_dummy_inputs(batch_size=1,
past_sequence_length=1,
sequence_length=1,
num_attention_heads=config.num_attention_heads,
hidden_size=config.hidden_size,
num_layer=num_layer,
vocab_size=config.vocab_size,
device=device,
float16=False,
has_position_ids=has_position_ids,
has_attention_mask=has_attention_mask)
input_list = dummy_inputs.to_list()
with torch.no_grad():
outputs = model(*input_list)
past_names = [f'past_{i}' for i in range(num_layer)]
present_names = [f'present_{i}' for i in range(num_layer)]
# GPT2Model outputs last_state; GPT2LMHeadModel outputs logits (prediction_scores)
assert outputs[0].shape[2] == config.vocab_size or outputs[0].shape[2] == config.hidden_size
output_names = ["logits" if outputs[0].shape[2] == config.vocab_size else "last_state"] + present_names
# Shape of input tensors:
# input_ids: (batch_size, seq_len)
# past_{i}: (2, batch_size, num_heads, past_seq_len, hidden_size/num_heads)
# attention_mask: (batch_size, past_seq_len + seq_len)
# Shape of output tensors:
# last_state: (batch_size, seq_len, hidden_size)
# or logits: (batch_size, seq_len, vocab_size)
# present_{i}: (2, batch_size, num_heads, past_seq_len + seq_len, hidden_size/num_heads)
dynamic_axes = {'input_ids': {0: 'batch_size', 1: 'seq_len'}, output_names[0]: {0: 'batch_size', 1: 'seq_len'}}
for name in past_names:
dynamic_axes[name] = {1: 'batch_size', 3: 'past_seq_len'}
for name in present_names:
dynamic_axes[name] = {1: 'batch_size', 3: 'total_seq_len'}
input_names = ['input_ids']
if has_position_ids:
dynamic_axes['position_ids'] = {0: 'batch_size', 1: 'seq_len'}
input_names.append('position_ids')
if has_attention_mask:
dynamic_axes['attention_mask'] = {0: 'batch_size', 1: 'total_seq_len'}
input_names.append('attention_mask')
input_names.extend(past_names)
assert len(outputs) == 2 and len(outputs[1]) == num_layer
logger.info(
f"Shapes: input_ids={dummy_inputs.input_ids.shape} past={dummy_inputs.past[0].shape} output={outputs[0].shape} present={outputs[1][0].shape}"
)
Path(onnx_model_path).parent.mkdir(parents=True, exist_ok=True)
torch.onnx.export(model,
args=tuple(input_list),
f=onnx_model_path,
input_names=input_names,
output_names=output_names,
example_outputs=outputs,
dynamic_axes=dynamic_axes,
opset_version=11,
do_constant_folding=True,
use_external_data_format=use_external_data_format,
verbose=verbose)
@staticmethod
def optimize_onnx(onnx_model_path,
optimized_model_path,
is_float16,
num_attention_heads,
hidden_size,
use_external_data_format=False,
**kwargs):
""" Optimize ONNX model with an option to convert it to use mixed precision.
"""
from optimizer import optimize_model
from fusion_options import FusionOptions
optimization_options = FusionOptions('gpt2')
#optimization_options.enable_gelu = False
#optimization_options.enable_layer_norm = False
#optimization_options.enable_attention = False
m = optimize_model(onnx_model_path,
model_type='gpt2',
num_heads=num_attention_heads,
hidden_size=hidden_size,
opt_level=0,
optimization_options=optimization_options,
use_gpu=False)
if is_float16:
op_full_list = set([node.op_type for node in m.nodes()])
op_block_list = set(kwargs["op_block_list"]) if "op_block_list" in kwargs else set()
op_remain_list = op_full_list.difference(op_block_list)
logger.info(f"op_block_list={op_block_list} op_remain_list={op_remain_list}")
m.convert_float_to_float16(use_symbolic_shape_infer=True, **kwargs)
m.save_model_to_file(optimized_model_path, use_external_data_format)
@staticmethod
def pytorch_inference(model, inputs: Gpt2Inputs, total_runs: int = 0):
""" Run inference of PyTorch model, and returns average latency in ms when total_runs > 0 besides outputs.
"""
logger.debug("start pytorch_inference")
# Convert it to fp32 as the PyTroch model cannot deal with half input.
input_list = inputs.to_fp32().to_list()
with torch.no_grad():
outputs = model(*input_list)
if total_runs == 0:
return outputs
latency = []
with torch.no_grad():
for _ in range(total_runs):
start = time.time()
outputs = model(*input_list)
latency.append(time.time() - start)
average_latency = sum(latency) * 1000 / len(latency)
logger.debug("PyTorch inference time = {} ms".format(format(average_latency, '.2f')))
return outputs, average_latency
@staticmethod
def onnxruntime_inference(ort_session, inputs: Gpt2Inputs, total_runs: int = 0):
""" Run inference of ONNX model, and returns average latency in ms when total_runs > 0 besides outputs.
"""
logger.debug(f"start onnxruntime_inference")
ort_inputs = {'input_ids': numpy.ascontiguousarray(inputs.input_ids.cpu().numpy())}
if inputs.past is not None:
for i, past_i in enumerate(inputs.past):
ort_inputs[f'past_{i}'] = numpy.ascontiguousarray(past_i.cpu().numpy())
if inputs.attention_mask is not None:
ort_inputs['attention_mask'] = numpy.ascontiguousarray(inputs.attention_mask.cpu().numpy())
if inputs.position_ids is not None:
ort_inputs['position_ids'] = numpy.ascontiguousarray(inputs.position_ids.cpu().numpy())
ort_outputs = ort_session.run(None, ort_inputs)
if total_runs == 0:
return ort_outputs
latency = []
for _ in range(total_runs):
start = time.time()
ort_outputs = ort_session.run(None, ort_inputs)
latency.append(time.time() - start)
average_latency = sum(latency) * 1000 / len(latency)
logger.debug("OnnxRuntime Inference time = {} ms".format(format(average_latency, '.2f')))
return ort_outputs, average_latency
@staticmethod
def prepare_io_binding(ort_session, input_ids, position_ids, attention_mask, past, output_buffers, output_shapes):
""" Returnas IO binding object for a session.
"""
# Bind inputs and outputs to onnxruntime session
io_binding = ort_session.io_binding()
# Bind inputs
assert input_ids.is_contiguous()
io_binding.bind_input('input_ids', input_ids.device.type, 0, numpy.longlong, list(input_ids.size()),
input_ids.data_ptr())
data_type = output_buffers[ort_session.get_outputs()[0].name].dtype
float_type = numpy.float16 if data_type == torch.float16 else numpy.float32
if past is not None:
for i, past_i in enumerate(past):
assert past_i.is_contiguous()
data_ptr = past_i.data_ptr()
if data_ptr == 0:
# When past_sequence_length is 0, its data_ptr will be zero. IO Binding asserts that data_ptr shall not be zero.
# Here we workaround and pass data pointer of input_ids. Actual data is not used for past so it does not matter.
data_ptr = input_ids.data_ptr()
io_binding.bind_input(f'past_{i}', past_i.device.type, 0, float_type, list(past_i.size()), data_ptr)
if attention_mask is not None:
assert attention_mask.is_contiguous()
io_binding.bind_input('attention_mask', attention_mask.device.type, 0, float_type,
list(attention_mask.size()), attention_mask.data_ptr())
if position_ids is not None:
assert position_ids.is_contiguous()
io_binding.bind_input('position_ids', position_ids.device.type, 0, numpy.longlong,
list(position_ids.size()), position_ids.data_ptr())
# Bind outputs
for output in ort_session.get_outputs():
output_name = output.name
output_buffer = output_buffers[output_name]
logger.debug(f"{output_name} device type={output_buffer.device.type} shape={list(output_buffer.size())}")
io_binding.bind_output(output_name, output_buffer.device.type, 0, float_type, output_shapes[output_name],
output_buffer.data_ptr())
return io_binding
@staticmethod
def get_outputs_from_io_binding_buffer(ort_session, output_buffers, output_shapes, return_numpy=True):
""" Copy results to cpu. Returns a list of numpy array.
"""
ort_outputs = []
for output in ort_session.get_outputs():
output_name = output.name
buffer = output_buffers[output_name]
shape = output_shapes[output_name]
copy_tensor = buffer[0:numpy.prod(shape)].reshape(shape).clone().detach()
if return_numpy:
ort_outputs.append(copy_tensor.cpu().numpy())
else:
ort_outputs.append(copy_tensor)
return ort_outputs
@staticmethod
def onnxruntime_inference_with_binded_io(ort_session,
inputs: Gpt2Inputs,
output_buffers: Dict[str, torch.Tensor],
output_shapes: Dict[str, List[int]],
total_runs: int = 0,
return_numpy: bool = True,
include_copy_output_latency: bool = False):
""" Inference with IO binding. Returns outputs, and optional latency when total_runs > 0.
"""
logger.debug(f"start onnxruntime_inference_with_binded_io")
# Bind inputs and outputs to onnxruntime session
io_binding = Gpt2Helper.prepare_io_binding(ort_session, inputs.input_ids, inputs.position_ids,
inputs.attention_mask, inputs.past, output_buffers, output_shapes)
# Run onnxruntime with io binding
ort_session.run_with_iobinding(io_binding)
# Copy results to cpu for verification
ort_outputs = Gpt2Helper.get_outputs_from_io_binding_buffer(ort_session, output_buffers, output_shapes,
return_numpy)
if total_runs == 0:
return ort_outputs
latency = []
for _ in range(total_runs):
start = time.time()
# Run onnxruntime with io binding
ort_session.run_with_iobinding(io_binding)
if include_copy_output_latency:
_ = Gpt2Helper.get_outputs_from_io_binding_buffer(ort_session, output_buffers, output_shapes,
return_numpy)
latency.append(time.time() - start)
average_latency = sum(latency) * 1000 / len(latency)
logger.debug("OnnxRuntime with IO binding inference time = {} ms".format(format(average_latency, '.2f')))
return ort_outputs, average_latency
@staticmethod
def save_outputs(i, ort_outputs, torch_outputs):
with open(f'ort_outputs_{i}.pickle', 'wb') as f:
pickle.dump(ort_outputs, f)
logger.info(f"ORT output are saved to ort_outputs_{i}.pickle")
with open(f'torch_outputs_{i}.pickle', 'wb') as f:
pickle.dump(torch_outputs, f)
logger.info(f"Torch output are saved to torch_outputs_{i}.pickle")
@staticmethod
def save_inputs(i, dummy_inputs, ort_outputs, torch_outputs):
with open(f'dummy_inputs_{i}.pickle', 'wb') as f:
pickle.dump(dummy_inputs, f)
logger.info(f"inputs are saved to dummy_inputs_{i}.pickle")
@staticmethod
def test_parity(ort_session,
model,
device,
is_float16=False,
rtol=5e-4,
atol=5e-4,
test_cases_per_run=10000,
total_runs=1,
use_io_binding=True,
model_class="GPT2LMHeadModel",
has_position_ids=True,
has_attention_mask=True,
verbose=False,
enable_pickle_output=False):
""" Generate random inputs and compare the results of PyTorch and Onnx Runtime.
"""
config: GPT2Config = model.config
logger.info(
f"Running parity test (atol={atol}, test_cases={test_cases_per_run}, runs={total_runs}, use_io_binding={use_io_binding}, model_class={model_class}, is_float16={is_float16}) ..."
)
max_batch_size = 8
max_past_seq_len = 4 # Do not use large number here for higher chance of hitting empty past (past_seq_len=0)
max_seq_len = 2
output_buffers = None
if use_io_binding:
max_output_shapes = Gpt2Helper.get_output_shapes(max_batch_size, max_past_seq_len, max_seq_len, config,
model_class)
output_buffers = Gpt2Helper.get_output_buffers(max_output_shapes, device, is_float16)
passed_test_cases = 0
top1_matched_cases = 0
max_abs_diff_list = []
top1_matched_cases_per_run = [0] * total_runs
total_test_cases = test_cases_per_run * total_runs
for i in range(total_test_cases):
run_id = int(i / test_cases_per_run)
sequence_length = random.randint(1, max_seq_len)
past_sequence_length = random.randint(0, max_past_seq_len)
batch_size = random.randint(1, max_batch_size)
logger.debug(
f"Running parity test for batch_size={batch_size} past_sequence_length={past_sequence_length}...")
dummy_inputs = Gpt2Helper.get_dummy_inputs(batch_size, past_sequence_length, sequence_length,
config.num_attention_heads, config.hidden_size, config.n_layer,
config.vocab_size, device, is_float16, has_position_ids,
has_attention_mask)
outputs = Gpt2Helper.pytorch_inference(model, dummy_inputs)
if use_io_binding:
ort_outputs = Gpt2Helper.onnxruntime_inference(ort_session, dummy_inputs)
else:
output_shapes = Gpt2Helper.get_output_shapes(batch_size, past_sequence_length, sequence_length, config,
model_class)
ort_outputs = Gpt2Helper.onnxruntime_inference_with_binded_io(ort_session, dummy_inputs, output_buffers,
output_shapes)
is_all_close, max_abs_diff, max_diff_output_index, messages, is_top1_matched = Gpt2Helper.compare_outputs_v2(
outputs, ort_outputs, atol=atol)
if not numpy.isnan(max_abs_diff):
max_abs_diff_list.append(max_abs_diff)
if is_all_close:
passed_test_cases += 1
if is_top1_matched:
top1_matched_cases += 1
top1_matched_cases_per_run[run_id] += 1
if verbose and not is_all_close:
logger.info(
f"test_case={i} batch_size={batch_size} past_sequence_length={past_sequence_length} sequence_length={sequence_length} MaxDiff={max_abs_diff}"
)
for i, message in enumerate(messages):
logger.info(f"\t{i}: Name={ort_session.get_outputs()[i].name}, {message}")
# Collect data for debugging
if enable_pickle_output and (numpy.isnan(max_abs_diff) or max_abs_diff > 100 * atol):
Gpt2Helper.save_inputs(i, dummy_inputs)
Gpt2Helper.save_outputs(i, ort_outputs, outputs)
if max_abs_diff_list:
result = {
f"max_diff_percentile_{p}": "{:.5f}".format(numpy.percentile(max_abs_diff_list, p))
for p in [50, 90, 95, 99]
}
else:
result = {f"max_diff_percentile_{p}": "nan" for p in [50, 90, 95, 99]}
result["top1_match_rate"] = top1_matched_cases * 1.0 / total_test_cases
result["top1_match_rate_per_run"] = [x * 1.0 / test_cases_per_run for x in top1_matched_cases_per_run]
result["diff_pass_rate"] = passed_test_cases * 1.0 / total_test_cases
result["nan_rate"] = (total_test_cases - len(max_abs_diff_list)) * 1.0 / total_test_cases
logger.info(
f"Parity Test Cases={total_test_cases}; Passed={passed_test_cases}; Nan={total_test_cases-len(max_abs_diff_list)}; Top1_Matched={top1_matched_cases}"
)
if passed_test_cases > 0.95 * total_test_cases:
logger.info(f"Parity is good: passed rate={int(passed_test_cases*100/total_test_cases):.0f}%")
return result
@staticmethod
def test_performance(ort_session,
model,
device,
is_float16=False,
total_runs=100,
use_io_binding=True,
model_class="GPT2LMHeadModel",
has_position_ids=True,
has_attention_mask=True,
batch_size=8,
sequence_length=1,
past_sequence_length=32):
""" Generate random inputs and measure average latency of Onnx Runtime.
"""
config: GPT2Config = model.config
output_buffers = None
if use_io_binding:
output_shapes = Gpt2Helper.get_output_shapes(batch_size, past_sequence_length, sequence_length, config,
model_class)
output_buffers = Gpt2Helper.get_output_buffers(output_shapes, device, is_float16)
dummy_inputs = Gpt2Helper.get_dummy_inputs(batch_size, past_sequence_length, sequence_length,
config.num_attention_heads, config.hidden_size, config.n_layer,
config.vocab_size, device, is_float16, has_position_ids,
has_attention_mask)
if use_io_binding:
_, latency = Gpt2Helper.onnxruntime_inference(ort_session, dummy_inputs, total_runs)
else:
_, latency = Gpt2Helper.onnxruntime_inference_with_binded_io(ort_session, dummy_inputs, output_buffers,
output_shapes, total_runs)
return latency
@staticmethod
def torchscript(model, config, device, has_position_ids=True, has_attention_mask=True):
""" JIT trace for TorchScript.
"""
input_list = Gpt2Helper.get_dummy_inputs(batch_size=1,
past_sequence_length=1,
sequence_length=1,
num_attention_heads=config.num_attention_heads,
hidden_size=config.hidden_size,
num_layer=config.n_layer,
vocab_size=config.vocab_size,
device=device,
float16=False,
has_position_ids=has_position_ids,
has_attention_mask=has_attention_mask).to_list()
return torch.jit.trace(model, input_list)
@staticmethod
def get_onnx_paths(output_dir,
model_name_or_path,
model_class: str = 'GPT2LMHeadModel',
has_past=True,
new_folder=False,
remove_existing=["raw", "fp32", "fp16", "int8"]):
""" Build a path name for given model based on given attributes.
"""
model_name = model_name_or_path
if not re.match(r'^[\w_-]+$', model_name_or_path): # It is not a name, shall be a path
assert os.path.isdir(model_name_or_path)
model_name = Path(model_name_or_path).parts[-1]
if model_class != 'GPT2LMHeadModel':
model_name += "_" + model_class
if has_past:
model_name += "_past"
if new_folder:
suffix = {"raw": "", "fp32": "_fp32", "fp16": "_fp16", "int8": "_int8"}
# Remove the directories if existed.
for model_type in ["raw", "fp32", "fp16", "int8"]:
new_dir = os.path.join(output_dir, model_name + suffix[model_type])
if os.path.exists(new_dir):
if (model_type in remove_existing):
try:
shutil.rmtree(new_dir)
logger.info(f"Removed the existed directory: {new_dir}")
except OSError as e:
logger.info(f"Failed to remove the directory {new_dir}: {e.strerror}")
else:
logger.info(f"Directory for {model_type} existed: {new_dir}")
# store each model to its own directory (for external data format).
return {
"raw": os.path.join(os.path.join(output_dir, model_name), model_name + ".onnx"),
"fp32": os.path.join(os.path.join(output_dir, model_name + "_fp32"), model_name + "_fp32.onnx"),
"fp16": os.path.join(os.path.join(output_dir, model_name + "_fp16"), model_name + "_fp16.onnx"),
"int8": os.path.join(os.path.join(output_dir, model_name + "_int8"), model_name + "_int8.onnx")
}
return {
"raw": os.path.join(output_dir, model_name + ".onnx"),
"fp32": os.path.join(output_dir, model_name + "_fp32.onnx"),
"fp16": os.path.join(output_dir, model_name + "_fp16.onnx"),
"int8": os.path.join(output_dir, model_name + "_int8.onnx")
}