-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathscalar_porowaves2D.jl
109 lines (103 loc) · 5.43 KB
/
scalar_porowaves2D.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
const USE_GPU = false # Use GPU? If this is set false, then no GPU needs to be available
using ParallelStencil
using ParallelStencil.FiniteDifferences2D
@static if USE_GPU
@init_parallel_stencil(CUDA, Float64, 2)
else
@init_parallel_stencil(Threads, Float64, 2)
end
using Plots, Printf, Statistics
@parallel function compute_nonlin!(K_mu::Data.Array, EtaR::Data.Array, Phi::Data.Array, Eta::Data.Array, k_μ0::Data.Number, n::Data.Number)
@all(K_mu) = k_μ0 * @all(Phi)^n
@all(EtaR) = @all(Eta)
return
end
@parallel_indices (ix,iy) function compute_EtaR!(EtaR::Data.Array, Pe::Data.Array, ηR::Data.Number)
if (ix<size(EtaR,1) && iy<size(EtaR,2)) if (Pe[ix+1,iy+1]<0.0) EtaR[ix,iy] = ηR; end; end
return
end
@parallel function compute_flux!(qx::Data.Array, qy::Data.Array, K_mu::Data.Array, Pe::Data.Array, Δρg::Data.Number, dx::Data.Number, dy::Data.Number)
@all(qx) = -@av_xi(K_mu)* @d_xi(Pe)/dx
@all(qy) = -@av_yi(K_mu)*(@d_yi(Pe)/dy + Δρg)
return
end
@parallel function compute_Pe_Phi!(dPedt::Data.Array, Pe::Data.Array, Phi::Data.Array, dPhidt::Data.Array, qx::Data.Array, qy::Data.Array, EtaR::Data.Array, β::Data.Number, dt::Data.Number, dx::Data.Number, dy::Data.Number)
@all(dPedt) = 1.0/β*(-@d_xa(qx)/dx -@d_ya(qy)/dy -1.0/@all(EtaR)*@inn(Pe))
@inn(Pe) = @inn(Pe) + dt*@all(dPedt)
@all(dPhidt) = -β*@all(dPedt) - 1.0/@all(EtaR)*@inn(Pe)
@inn(Phi) = max(0.0, @inn(Phi) + dt*@all(dPhidt))
return
end
##################################################
@views function poroVEP2D()
chan = 0 # chan=1: channel setup; chan=0: blob setup
# Physics
sc = 1.0+chan*30 # domain extend scaling
lx, ly = 250.0/sc, 500.0/sc # domain extend
k_μ0 = 1.0 # permeability/fuild viscosity
Δρg = 1.0 # density*gravity (total-fluid)
n = 3.0 # Karman-Cozeny exponant
η = 1.0 # compaction bulk viscosity
ηR = η/(1.0+chan*1000) # decompaction bulk viscosity
β = 0.2 # bulk compressibility
λ = 20.0/sc # wave length
ϕ0 = 1.0 # background porosity
ϕA = 2.0 # perturbation amplitude
t = 0.0 # physical time initialisation
# Numerics
nx, ny = 256, 512 # numerical grid resolution; should be a mulitple of 32 for optimal GPU perf
nt = 4e4 # if chan=0 setup - number of timesteps
nout = 5e2 # if chan=0 setup - plotting frequency
# nt = 2e6 # if chan=1 setup - number of timesteps
# nout = 2e4 # if chan=1 setup - plotting frequency
# Derived numerics
dx, dy = lx/(nx-1), ly/(ny-1) # cell sizes
# Array allocations
Eta = η*@ones(nx-2,ny-2)
EtaR = @zeros(nx-2,ny-2)
Pe = @zeros(nx ,ny )
dPedt = @zeros(nx-2,ny-2)
dPhidt = @zeros(nx-2,ny-2)
K_mu = @zeros(nx ,ny )
qx = @zeros(nx-1,ny-2)
qy = @zeros(nx-2,ny-1)
# Initial conditions
Phi = ϕ0*ones(nx ,ny )
Radc = zeros(nx ,ny )
Radc .= [ (((ix-1)*dx-0.5*lx)/λ/4.)^2 + (((iy-1)*dy-0.2*ly)/λ)^2 for ix=1:size(Radc,1), iy=1:size(Radc,2)]
Phi[Radc.<1.0] .= Phi[Radc.<1.0] .+ ϕA
Phi[2:end-1,2:end-1] .= Phi[2:end-1,2:end-1] .+ 1.0/4.1*(diff(diff(Phi[:,2:end-1],dims=1),dims=1).+diff(diff(Phi[2:end-1,:],dims=2),dims=2))
Phi = Data.Array(Phi)
dt = 1.0
# Preparation of visualisation
ENV["GKSwstype"]="nul"; if isdir("viz2D_out")==false mkdir("viz2D_out") end; loadpath = "./viz2D_out/"; anim = Animation(loadpath,String[])
println("Animation directory: $(anim.dir)")
X, Y = -lx/2:dx:lx/2, -ly/2:dy:ly/2
# Time loop
for it = 1:nt
if (it==11) global wtime0 = Base.time() end
@parallel compute_nonlin!(K_mu, EtaR, Phi, Eta, k_μ0, n)
@parallel compute_EtaR!(EtaR, Pe, ηR)
if mod(it,100)==1 dt = dx^2/(maximum(K_mu)/β)/5.0 end
@parallel compute_flux!(qx, qy, K_mu, Pe, Δρg, dx, dy)
@parallel compute_Pe_Phi!(dPedt, Pe, Phi, dPhidt, qx, qy, EtaR, β, dt, dx, dy)
t = t + dt
# Visualisation
if mod(it,nout)==0
@printf("it=%d, time=%1.3e \n", it, t)
p1 = heatmap(X, Y, Array(Phi)', aspect_ratio=1, xlims=(X[1],X[end]), ylims=(Y[1],Y[end]), c=:inferno, title="Porosity")
p2 = heatmap(X, Y, Array(Pe)', aspect_ratio=1, xlims=(X[1],X[end]), ylims=(Y[1],Y[end]), c=:inferno, title="Effective pressure")
# display(plot(p1, p2))
plot(p1, p2); frame(anim)
end
end
# Performance
wtime = Base.time() - wtime0
A_eff = (2*2+2)/1e9*nx*ny*sizeof(Data.Number) # Effective main memory access per iteration [GB] (Lower bound of required memory access: H and dHdτ have to be read and written (dHdτ for damping): 4 whole-array memaccess; B has to be read: 1 whole-array memaccess)
wtime_it = wtime/(nt-10) # Execution time per iteration [s]
T_eff = A_eff/wtime_it # Effective memory throughput [GB/s]
@printf("Total steps=%d, time=%1.3e sec (@ T_eff = %1.2f GB/s) \n", nt, wtime, round(T_eff, sigdigits=2))
return
gif(anim, "poroVEP2D.gif", fps = 15)
end
poroVEP2D()