-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_generation.py
107 lines (95 loc) · 2.94 KB
/
data_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from neuralop.datasets.output_encoder import UnitGaussianNormalizer
from neuralop.datasets.tensor_dataset import TensorDataset
from neuralop.datasets.transforms import PositionalEmbedding2D
from neuralop.datasets.data_transforms import DefaultDataProcessor
def data_generator(
n_train,
n_test,
encode_input=True,
encode_output=True,
):
x_train = torch.randn(n_train, 1, 16, 16)
y_train = x_train ** 2 + 2
x_test = torch.randn(n_test, 1, 16, 16)
y_test = x_test ** 2 + 2
# %% 归一化
encoding = "channel-wise"
# encode_input = True
if encode_input:
if encoding == "channel-wise":
reduce_dims = list(range(x_train.ndim))
elif encoding == "pixel-wise":
reduce_dims = [0]
input_encoder = UnitGaussianNormalizer(dim=reduce_dims)
input_encoder.fit(x_train)
x_train = input_encoder.transform(x_train)
x_test = input_encoder.transform(x_test)
else:
input_encoder = None
sample_index = 0
x_sample = x_train[sample_index].squeeze().numpy() # 去除多余的维度以便于绘图
# encode_output = True
if encode_output:
if encoding == "channel-wise":
reduce_dims = list(range(y_train.ndim))
elif encoding == "pixel-wise":
reduce_dims = [0]
output_encoder = UnitGaussianNormalizer(dim=reduce_dims)
output_encoder.fit(y_train)
y_train = output_encoder.transform(y_train)
else:
output_encoder = None
#%%
# 训练
batch_size = n_train
train_db = TensorDataset(
x_train,
y_train
)
train_loader = DataLoader(
train_db,
batch_size=batch_size,
shuffle=True,
num_workers=0,
pin_memory=True,
persistent_workers=False,
)
# 测试
test_db = TensorDataset(
x_test,
y_test,
)
test_batch_size = n_test
test_loader = DataLoader(
test_db,
batch_size=test_batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
persistent_workers=False,
)
train_resolution = 32
test_loaders = {train_resolution: test_loader}
# %%
grid_boundaries = [[0, 1], [0, 1]]
positional_encoding = True
if positional_encoding:
pos_encoding = PositionalEmbedding2D(grid_boundaries=grid_boundaries)
else:
pos_encoding = None
data_processor = DefaultDataProcessor(
in_normalizer=input_encoder,
out_normalizer=output_encoder,
positional_encoding=pos_encoding
)
return train_loader, test_loaders, data_processor
# %%
# # 绘制图形
# plt.figure(figsize=(5, 5))
# plt.imshow(x_sample, cmap='viridis')
# plt.colorbar()
# plt.title('x_train Sample')
# plt.show()