-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathsort.hpp
284 lines (205 loc) · 8.59 KB
/
sort.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// SPDX-FileCopyrightText: Intel Corporation
//
// SPDX-License-Identifier: BSD-3-Clause
#pragma once
#include <oneapi/dpl/execution>
#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/async>
#include <dr/concepts/concepts.hpp>
#include <dr/detail/onedpl_direct_iterator.hpp>
#include <dr/shp/init.hpp>
#include <sycl/sycl.hpp>
namespace dr::shp {
namespace __detail {
template <typename LocalPolicy, typename InputIt, typename Compare>
sycl::event sort_async(LocalPolicy &&policy, InputIt first, InputIt last,
Compare &&comp) {
if (rng::distance(first, last) >= 2) {
dr::__detail::direct_iterator d_first(first);
dr::__detail::direct_iterator d_last(last);
return oneapi::dpl::experimental::sort_async(
std::forward<LocalPolicy>(policy), d_first, d_last,
std::forward<Compare>(comp));
} else {
return sycl::event{};
}
}
template <typename LocalPolicy, typename InputIt1, typename InputIt2,
typename OutputIt, typename Comparator = std::less<>>
OutputIt lower_bound(LocalPolicy &&policy, InputIt1 start, InputIt1 end,
InputIt2 value_first, InputIt2 value_last, OutputIt result,
Comparator comp = Comparator()) {
dr::__detail::direct_iterator d_start(start);
dr::__detail::direct_iterator d_end(end);
dr::__detail::direct_iterator d_value_first(value_first);
dr::__detail::direct_iterator d_value_last(value_last);
dr::__detail::direct_iterator d_result(result);
return oneapi::dpl::lower_bound(std::forward<LocalPolicy>(policy), d_start,
d_end, d_value_first, d_value_last, d_result,
comp)
.base();
}
} // namespace __detail
template <dr::distributed_range R, typename Compare = std::less<>>
void sort(R &&r, Compare comp = Compare()) {
auto &&segments = dr::ranges::segments(r);
if (rng::size(segments) == 0) {
return;
} else if (rng::size(segments) == 1) {
auto &&segment = *rng::begin(segments);
auto &&local_policy =
dr::shp::__detail::dpl_policy(dr::ranges::rank(segment));
auto &&local_segment = dr::shp::__detail::local(segment);
__detail::sort_async(local_policy, rng::begin(local_segment),
rng::end(local_segment), comp)
.wait();
return;
}
using T = rng::range_value_t<R>;
std::vector<sycl::event> events;
std::size_t n_segments = std::size_t(rng::size(segments));
std::size_t n_splitters = n_segments - 1;
// Sort each local segment, then compute medians.
// Each segment has `n_splitters` medians,
// so `n_segments * n_splitters` medians total.
T *medians =
sycl::malloc_device<T>(n_segments * n_splitters, shp::__detail::queue(0));
std::size_t segment_id = 0;
for (auto &&segment : segments) {
auto &&q = dr::shp::__detail::queue(dr::ranges::rank(segment));
auto &&local_policy =
dr::shp::__detail::dpl_policy(dr::ranges::rank(segment));
auto &&local_segment = dr::shp::__detail::local(segment);
auto s = __detail::sort_async(local_policy, rng::begin(local_segment),
rng::end(local_segment), comp);
double step_size = static_cast<double>(rng::size(segment)) / n_segments;
auto local_begin = rng::begin(local_segment);
auto e = q.submit([&](auto &&h) {
h.depends_on(s);
h.parallel_for(n_splitters, [=](auto i) {
medians[n_splitters * segment_id + i] =
local_begin[std::size_t(step_size * (i + 1) + 0.5)];
});
});
events.push_back(e);
++segment_id;
}
dr::shp::__detail::wait(events);
events.clear();
// Compute global medians by sorting medians and
// computing `n_splitters` medians from the medians.
auto &&local_policy = dr::shp::__detail::dpl_policy(0);
__detail::sort_async(local_policy, medians,
medians + n_segments * n_splitters, comp)
.wait();
double step_size = static_cast<double>(n_segments * n_splitters) / n_segments;
// - Collect median of medians to get final splitters.
// - Write splitters to [0, n_splitters) in `medians`
auto &&q = dr::shp::__detail::queue(0);
q.single_task([=] {
for (std::size_t i = 0; i < n_splitters; i++) {
medians[i] = medians[std::size_t(step_size * (i + 1) + 0.5)];
}
}).wait();
std::vector<std::size_t *> splitter_indices;
std::vector<std::size_t> sorted_seg_sizes(n_splitters + 1);
std::vector<std::vector<std::size_t>> push_positions(n_segments);
// Compute how many elements will be sent to each of the new "sorted
// segments". Simultaneously compute the offsets `push_positions` where each
// segments' corresponding elements will be pushed.
segment_id = 0;
for (auto &&segment : segments) {
auto &&q = dr::shp::__detail::queue(dr::ranges::rank(segment));
auto &&local_policy =
dr::shp::__detail::dpl_policy(dr::ranges::rank(segment));
auto &&local_segment = dr::shp::__detail::local(segment);
std::size_t *splitter_i = sycl::malloc_shared<std::size_t>(n_splitters, q);
splitter_indices.push_back(splitter_i);
// Local copy `medians_l` necessary due to [GSD-3893]
T *medians_l = sycl::malloc_device<T>(n_splitters, q);
q.memcpy(medians_l, medians, sizeof(T) * n_splitters).wait();
__detail::lower_bound(local_policy, rng::begin(local_segment),
rng::end(local_segment), medians_l,
medians_l + n_splitters, splitter_i, comp);
sycl::free(medians_l, q);
auto p_first = rng::begin(local_segment);
auto p_last = p_first;
for (std::size_t i = 0; i < n_splitters; i++) {
p_last = rng::begin(local_segment) + splitter_i[i];
std::size_t n_elements = rng::distance(p_first, p_last);
std::size_t pos =
std::atomic_ref(sorted_seg_sizes[i]).fetch_add(n_elements);
push_positions[segment_id].push_back(pos);
p_first = p_last;
}
std::size_t n_elements = rng::distance(p_first, rng::end(local_segment));
std::size_t pos =
std::atomic_ref(sorted_seg_sizes.back()).fetch_add(n_elements);
push_positions[segment_id].push_back(pos);
++segment_id;
}
// Allocate new "sorted segments"
std::vector<T *> sorted_segments;
segment_id = 0;
for (auto &&segment : segments) {
auto &&q = dr::shp::__detail::queue(dr::ranges::rank(segment));
T *buffer = sycl::malloc_device<T>(sorted_seg_sizes[segment_id], q);
sorted_segments.push_back(buffer);
++segment_id;
}
// Copy corresponding elements to each "sorted segment"
segment_id = 0;
for (auto &&segment : segments) {
auto &&local_segment = dr::shp::__detail::local(segment);
std::size_t *splitter_i = splitter_indices[segment_id];
auto p_first = rng::begin(local_segment);
auto p_last = p_first;
for (std::size_t i = 0; i < n_splitters; i++) {
p_last = rng::begin(local_segment) + splitter_i[i];
std::size_t pos = push_positions[segment_id][i];
auto e = shp::copy_async(p_first, p_last, sorted_segments[i] + pos);
events.push_back(e);
p_first = p_last;
}
std::size_t pos = push_positions[segment_id].back();
auto e = shp::copy_async(p_first, rng::end(local_segment),
sorted_segments.back() + pos);
events.push_back(e);
++segment_id;
}
dr::shp::__detail::wait(events);
events.clear();
// Sort each of these new segments
for (std::size_t i = 0; i < sorted_segments.size(); i++) {
auto &&local_policy =
dr::shp::__detail::dpl_policy(dr::ranges::rank(segments[i]));
T *seg = sorted_segments[i];
std::size_t n_elements = sorted_seg_sizes[i];
auto e = __detail::sort_async(local_policy, seg, seg + n_elements, comp);
events.push_back(e);
}
dr::shp::__detail::wait(events);
events.clear();
// Copy the results into the output.
auto d_first = rng::begin(r);
for (std::size_t i = 0; i < sorted_segments.size(); i++) {
T *seg = sorted_segments[i];
std::size_t n_elements = sorted_seg_sizes[i];
auto e = shp::copy_async(seg, seg + n_elements, d_first);
events.push_back(e);
rng::advance(d_first, n_elements);
}
dr::shp::__detail::wait(events);
// Free temporary memory.
for (std::size_t i = 0; i < sorted_segments.size(); i++) {
auto &&q = dr::shp::__detail::queue(dr::ranges::rank(segments[i]));
sycl::free(sorted_segments[i], q);
sycl::free(splitter_indices[i], q);
}
sycl::free(medians, shp::__detail::queue(0));
}
template <dr::distributed_iterator RandomIt, typename Compare = std::less<>>
void sort(RandomIt first, RandomIt last, Compare comp = Compare()) {
sort(rng::subrange(first, last), comp);
}
} // namespace dr::shp