-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoptree.c
142 lines (130 loc) · 3.8 KB
/
optree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
//
// Created by Once on 2019/12/3.
//
#include "optree.h"
#include <stdio.h>
#include <stdlib.h>
#include "queue.h"
Optree *optree_new(){
Optree *optree = (Optree*)malloc(sizeof(Optree));
if(!optree){
perror("alloc for opt tree error");
return NULL;
}
optree->n = optree->length = 0;
optree->list = optree->root = NULL;
return optree;
}
int optree_is_empty(Optree *optree){
if(optree == NULL)
return 1;
return optree->n == 0;
}
void optree_add(Optree *optree, int key, double p){
if(optree == NULL)
return;
if(optree->n == optree->length){
optree->length += 16;
optree->list = (ONode*)realloc(optree->list, sizeof(ONode) * optree->length);
}
optree->list[optree->n].key = key;
optree->list[optree->n].p = p;
optree->list[optree->n].left = optree->list[optree->n].right = NULL;
optree->n++;
}
// add all data once
void optree_add_all(Optree *optree, ONode nodes[], int size){
if(optree == NULL || nodes == NULL || size < 3)
return;
optree->length = size;
optree->list = (ONode*)malloc(sizeof(ONode) * size);
for (int i = 0; i < size; ++i) {
optree->list[i].key = nodes[i].key;
optree->list[i].p = nodes[i].p;
optree->list[i].left = optree->list[i].right = NULL;
}
optree->n = size;
}
static int compare(const void *a, const void *b){
return ((ONode*)a)->p > ((ONode*)b)->p;
}
static ONode *build_tree(Optree *optree, int *s, int i, int j){
if(i - 1 == j){
if(i < optree->n)
return &optree->list[i];
else
return &optree->list[j];
}
if(i == j)
return &optree->list[i];
int k = s[i * optree->n + j];
ONode *left = i != k ? build_tree(optree, s, i, k - 1) : NULL;
ONode *right = j !=k ? build_tree(optree, s, k + 1, j) : NULL;
ONode *root = &optree->list[k];
root->left = root != left ? left : NULL;
root->right = root != right ? right : NULL;
return root;
}
// core algorithm for creating optimal binary search tree
void optree_build(Optree *optree){
if(optree == NULL || optree->n == 0)
return;
// qsort(optree->list, optree->n, sizeof(ONode), compare);
int n = optree->n;
double m[n * n];
int s[optree->n * optree->n];
for (int i = 0; i < optree->n; ++i) {
m[i * n + i] = optree->list[i].p;
}
int j;
double psum;
for (int l = 1; l < optree->n; ++l) {
for (int i = 0; i < optree->n - l; ++i) {
j = i + l;
m[i * n + j] = INT_MAX;
psum = 0;
for (int x = i; x <= j; ++x) {
psum += optree->list[x].p;
}
for (int k = i; k <= j; ++k) {
double q = m[i * n + (k - 1)] + m[(k + 1) * n + j] + psum;
if(m[i * n + j] > q){
m[i * n + j] = q;
s[i * n + j] = k;
}
}
}
}
optree->root = build_tree(optree, s, 0 , optree->n - 1);
}
void optree_traverse(Optree *optree){
if(optree == NULL || optree->n == 0 || optree->root == NULL)
return;
Queue *queue = queue_new();
queue_push(queue, optree->root);
ONode *node;
while(!queue_is_empty(queue)){
node = queue_pop(queue);
printf("[%d: %.2f] ", node->key, node->p);
if(node->left != NULL)
queue_push(queue, node->left);
if(node->right != NULL)
queue_push(queue, node->right);
}
}
static void _free_node(ONode *root){
if(root == NULL)
return;
_free_node(root->left);
_free_node(root->right);
free(root);
}
void optree_clear(Optree *optree){
if(optree == NULL)
return;
if(optree->list != NULL)
free(optree->list);
if(optree->root != NULL)
_free_node(optree->root);
free(optree);
}