@@ -39,14 +39,15 @@ def __getitem__(self, key):
39
39
NWP_PROVIDERS = [
40
40
"ukv" ,
41
41
"gfs" ,
42
+ "gfs_india" ,
42
43
"icon-eu" ,
43
44
"icon-global" ,
44
45
"ecmwf" ,
45
46
"ecmwf_india" ,
46
47
"excarta" ,
47
48
"merra2" ,
48
49
"merra2_uk" ,
49
- "mo_global" ,
50
+ "mo_global"
50
51
]
51
52
52
53
# ------ UKV
@@ -132,17 +133,32 @@ def __getitem__(self, key):
132
133
UKV_STD = _to_data_array (UKV_STD )
133
134
UKV_MEAN = _to_data_array (UKV_MEAN )
134
135
135
- # These were calculated from 200 random init times (step 0s) from the MO global data
136
+ # --- MO Global
137
+
136
138
MO_GLOBAL_INDIA_MEAN = {
137
- "temperature_sl" : 298.2 ,
138
- "wind_u_component_10m" : 0.5732 ,
139
- "wind_v_component_10m" : - 0.2831 ,
139
+ "temperature_sl" : 295.34392488 ,
140
+ "wind_u_component_10m" : 0.83223102 ,
141
+ "wind_v_component_10m" : 0.0802083 ,
142
+ "downward_shortwave_radiation_flux_gl" : 225.54222068 ,
143
+ "cloud_cover_high" : 0.34935897 ,
144
+ "cloud_cover_low" : 0.096081 ,
145
+ "cloud_cover_medium" : 0.13878676 ,
146
+ "relative_humidity_sl" : 69.59633137 ,
147
+ "snow_depth_gl" : 3.45158744 ,
148
+ "visibility_sl" : 23181.81547681 ,
140
149
}
141
150
142
- MO_GLOBAL_INDIA_STD = {
143
- "temperature_sl" : 8.473 ,
144
- "wind_u_component_10m" : 2.599 ,
145
- "wind_v_component_10m" : 2.016 ,
151
+ MO_GLOBAL_INDIA_STD = {
152
+ "temperature_sl" : 12.26983825 ,
153
+ "wind_u_component_10m" : 3.45169835 ,
154
+ "wind_v_component_10m" : 2.9825603 ,
155
+ "downward_shortwave_radiation_flux_gl" : 303.85182864 ,
156
+ "cloud_cover_high" : 0.40563507 ,
157
+ "cloud_cover_low" : 0.18374192 ,
158
+ "cloud_cover_medium" : 0.25972151 ,
159
+ "relative_humidity_sl" : 21.00264399 ,
160
+ "snow_depth_gl" : 30.19116501 ,
161
+ "visibility_sl" : 5385.35839715 ,
146
162
}
147
163
148
164
@@ -197,6 +213,48 @@ def __getitem__(self, key):
197
213
GFS_MEAN = _to_data_array (GFS_MEAN )
198
214
199
215
216
+ # ------ GFS
217
+ GFS_INDIA_STD_DICT = {
218
+ "t" : 14.93798 ,
219
+ "prate" : 5.965701e-05 ,
220
+ "u10" : 3.4826114 ,
221
+ "v10" : 3.167296 ,
222
+ "u100" :4.140226 ,
223
+ "v100" :3.984121 ,
224
+ "dlwrf" : 79.30329 ,
225
+ "dswrf" : 325.58582 ,
226
+ "hcc" : 39.91955 ,
227
+ "lcc" : 23.208075 ,
228
+ "mcc" : 33.283035 ,
229
+ "r" : 25.545837 ,
230
+ "sde" : 0.10192183 ,
231
+ "tcc" : 42.583195 ,
232
+ "vis" : 3491.437
233
+ }
234
+ GFS_INDIA_MEAN_DICT = {
235
+ "t" : 298.27713 ,
236
+ "prate" : 1.7736e-05 ,
237
+ "u10" : 1.5782778 ,
238
+ "v10" : 0.09856875 ,
239
+ "u100" :1.4558668 ,
240
+ "v100" :- 0.28256148 ,
241
+ "dlwrf" : 356.57776 ,
242
+ "dswrf" : 284.358 ,
243
+ "hcc" : 26.965801 ,
244
+ "lcc" : 9.2288 ,
245
+ "mcc" : 17.2132 ,
246
+ "r" : 38.2474 ,
247
+ "sde" : 0.02070413 ,
248
+ "tcc" : 36.962795 ,
249
+ "vis" : 23386.936
250
+ }
251
+
252
+
253
+ GFS_INDIA_VARIABLE_NAMES = tuple (GFS_INDIA_MEAN_DICT .keys ())
254
+ GFS_INDIA_STD = _to_data_array (GFS_INDIA_STD_DICT )
255
+ GFS_INDIA_MEAN = _to_data_array (GFS_INDIA_MEAN_DICT )
256
+
257
+
200
258
# ------ ECMWF
201
259
# These were calculated from 100 random init times of UK data from 2020-2023
202
260
ECMWF_STD = {
@@ -369,6 +427,7 @@ def __getitem__(self, key):
369
427
NWP_VARIABLE_NAMES = NWPStatDict (
370
428
ukv = UKV_VARIABLE_NAMES ,
371
429
gfs = GFS_VARIABLE_NAMES ,
430
+ gfs_india = GFS_INDIA_VARIABLE_NAMES ,
372
431
ecmwf = ECMWF_VARIABLE_NAMES ,
373
432
ecmwf_india = INDIA_ECMWF_VARIABLE_NAMES ,
374
433
excarta = EXCARTA_VARIABLE_NAMES ,
@@ -379,22 +438,24 @@ def __getitem__(self, key):
379
438
NWP_STDS = NWPStatDict (
380
439
ukv = UKV_STD ,
381
440
gfs = GFS_STD ,
441
+ gfs_india = GFS_INDIA_STD ,
382
442
ecmwf = ECMWF_STD ,
383
443
ecmwf_india = INDIA_ECMWF_STD ,
384
444
excarta = EXCARTA_STD ,
385
445
merra2 = MERRA2_STD ,
386
446
merra2_uk = UK_MERRA2_STD ,
387
- mo_global = MO_GLOBAL_INDIA_STD ,
447
+ mo_global = MO_GLOBAL_INDIA_STD
388
448
)
389
449
NWP_MEANS = NWPStatDict (
390
450
ukv = UKV_MEAN ,
391
451
gfs = GFS_MEAN ,
452
+ gfs_india = GFS_INDIA_MEAN ,
392
453
ecmwf = ECMWF_MEAN ,
393
454
ecmwf_india = INDIA_ECMWF_MEAN ,
394
455
excarta = EXCARTA_MEAN ,
395
456
merra2 = MERRA2_MEAN ,
396
457
merra2_uk = UK_MERRA2_MEAN ,
397
- mo_global = MO_GLOBAL_INDIA_MEAN ,
458
+ mo_global = MO_GLOBAL_INDIA_MEAN
398
459
)
399
460
400
461
# --------------------------- SATELLITE ------------------------------
0 commit comments