diff --git a/demo/demo.py b/demo/demo.py index a3bd6d03..3b470cdc 100644 --- a/demo/demo.py +++ b/demo/demo.py @@ -1,25 +1,25 @@ import os from loguru import logger -from magic_pdf.pipe.UNIPipe import UNIPipe -from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter +from magic_pdf.data.data_reader_writer import FileBasedDataWriter +from magic_pdf.pipe.UNIPipe import UNIPipe try: current_script_dir = os.path.dirname(os.path.abspath(__file__)) - demo_name = "demo1" - pdf_path = os.path.join(current_script_dir, f"{demo_name}.pdf") - pdf_bytes = open(pdf_path, "rb").read() - jso_useful_key = {"_pdf_type": "", "model_list": []} + demo_name = 'demo1' + pdf_path = os.path.join(current_script_dir, f'{demo_name}.pdf') + pdf_bytes = open(pdf_path, 'rb').read() + jso_useful_key = {'_pdf_type': '', 'model_list': []} local_image_dir = os.path.join(current_script_dir, 'images') image_dir = str(os.path.basename(local_image_dir)) - image_writer = DiskReaderWriter(local_image_dir) + image_writer = FileBasedDataWriter(local_image_dir) pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer) pipe.pipe_classify() pipe.pipe_analyze() pipe.pipe_parse() - md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none") - with open(f"{demo_name}.md", "w", encoding="utf-8") as f: + md_content = pipe.pipe_mk_markdown(image_dir, drop_mode='none') + with open(f'{demo_name}.md', 'w', encoding='utf-8') as f: f.write(md_content) except Exception as e: - logger.exception(e) \ No newline at end of file + logger.exception(e) diff --git a/demo/demo1.json b/demo/demo1.json index e3b5a30a..7758c325 100644 --- a/demo/demo1.json +++ b/demo/demo1.json @@ -1 +1 @@ -[{"layout_dets": [{"category_id": 2, "poly": [117.85147857666016, 198.19203186035156, 268.09375, 198.19203186035156, 268.09375, 365.4513854980469, 117.85147857666016, 365.4513854980469], "score": 1.0}, {"category_id": 2, "poly": [516.9244995117188, 193.8611297607422, 983.7249145507812, 193.8611297607422, 983.7249145507812, 288.566650390625, 516.9244995117188, 288.566650390625], "score": 0.9999980926513672}, {"category_id": 2, "poly": [119.0521469116211, 1793.3775634765625, 774.3035888671875, 1793.3775634765625, 774.3035888671875, 1842.8583984375, 119.0521469116211, 1842.8583984375], "score": 0.9999951720237732}, {"category_id": 1, "poly": [213.19744873046875, 621.9070434570312, 1290.4381103515625, 621.9070434570312, 1290.4381103515625, 733.4085693359375, 213.19744873046875, 733.4085693359375], "score": 0.9999936819076538}, {"category_id": 1, "poly": [390.47998046875, 751.6647338867188, 1108.0994873046875, 751.6647338867188, 1108.0994873046875, 774.5253295898438, 390.47998046875, 774.5253295898438], "score": 0.9999909400939941}, {"category_id": 2, "poly": [556.6760864257812, 343.6651306152344, 942.158447265625, 343.6651306152344, 942.158447265625, 368.6150207519531, 556.6760864257812, 368.6150207519531], "score": 0.9999899864196777}, {"category_id": 0, "poly": [245.8207244873047, 472.72943115234375, 1257.65380859375, 472.72943115234375, 1257.65380859375, 520.0311889648438, 245.8207244873047, 520.0311889648438], "score": 0.9999768137931824}, {"category_id": 2, "poly": [1119.6229248046875, 199.3274383544922, 1376.630859375, 199.3274383544922, 1376.630859375, 384.0538024902344, 1119.6229248046875, 384.0538024902344], "score": 0.9999668002128601}, {"category_id": 1, "poly": [118.14305114746094, 1571.5140380859375, 864.8477172851562, 1571.5140380859375, 864.8477172851562, 1594.3565673828125, 118.14305114746094, 1594.3565673828125], "score": 0.999945342540741}, {"category_id": 0, "poly": [118.69384002685547, 862.561767578125, 209.67910766601562, 862.561767578125, 209.67910766601562, 888.9332885742188, 118.69384002685547, 888.9332885742188], "score": 0.9999412298202515}, {"category_id": 1, "poly": [239.3308868408203, 550.2936401367188, 1257.6968994140625, 550.2936401367188, 1257.6968994140625, 596.7587280273438, 239.3308868408203, 596.7587280273438], "score": 0.9999355673789978}, {"category_id": 2, "poly": [117.71773529052734, 1687.8800048828125, 1379.2835693359375, 1687.8800048828125, 1379.2835693359375, 1766.3516845703125, 117.71773529052734, 1766.3516845703125], "score": 0.999925971031189}, {"category_id": 1, "poly": [115.68157958984375, 913.7571411132812, 1385.33837890625, 913.7571411132812, 1385.33837890625, 1533.5689697265625, 115.68157958984375, 1533.5689697265625], "score": 0.999893307685852}, {"category_id": 2, "poly": [1084.155517578125, 374.07135009765625, 1378.12109375, 374.07135009765625, 1378.12109375, 396.0621032714844, 1084.155517578125, 396.0621032714844], "score": 0.9371034502983093}, {"category_id": 13, "poly": [714, 1383, 767, 1383, 767, 1411, 714, 1411], "score": 0.89, "latex": "N_{\\mathrm{zero}}"}, {"category_id": 13, "poly": [571, 1351, 636, 1351, 636, 1380, 571, 1380], "score": 0.87, "latex": "(N_{\\mathrm{zero}})"}, {"category_id": 13, "poly": [398, 1793, 419, 1793, 419, 1815, 398, 1815], "score": 0.75, "latex": "\\copyright"}, {"category_id": 13, "poly": [116, 1509, 140, 1509, 140, 1533, 116, 1533], "score": 0.73, "latex": "\\copyright"}, {"category_id": 13, "poly": [315, 1713, 479, 1713, 479, 1739, 315, 1739], "score": 0.36, "latex": "+61\\;3\\;9450\\;8719"}, {"category_id": 13, "poly": [148, 1743, 166, 1743, 166, 1765, 148, 1765], "score": 0.35, "latex": "E"}, {"category_id": 13, "poly": [369, 1743, 387, 1743, 387, 1764, 369, 1764], "score": 0.26, "latex": "@"}, {"category_id": 15, "poly": [120.0, 338.0, 266.0, 338.0, 266.0, 374.0, 120.0, 374.0], "score": 1.0, "text": "ELSEVIER"}, {"category_id": 15, "poly": [515.0, 194.0, 986.0, 194.0, 986.0, 224.0, 515.0, 224.0], "score": 0.99, "text": "Available online at www.sciencedirect.com"}, {"category_id": 15, "poly": [599.0, 245.0, 728.0, 245.0, 728.0, 275.0, 599.0, 275.0], "score": 0.99, "text": "SCIENCE"}, {"category_id": 15, "poly": [712.0, 237.0, 905.0, 229.0, 907.0, 281.0, 714.0, 289.0], "score": 0.77, "text": "CDIRECT."}, {"category_id": 15, "poly": [116.0, 1819.0, 427.0, 1819.0, 427.0, 1847.0, 116.0, 1847.0], "score": 0.99, "text": "doi:10.1016/j.jhydrol.2005.01.006"}, {"category_id": 15, "poly": [114.0, 1793.0, 397.0, 1793.0, 397.0, 1821.0, 114.0, 1821.0], "score": 0.96, "text": "0022-1694/$ - see front matter"}, {"category_id": 15, "poly": [420.0, 1793.0, 777.0, 1793.0, 777.0, 1821.0, 420.0, 1821.0], "score": 0.98, "text": " 2005 Elsevier B.V. All rights reserved."}, {"category_id": 15, "poly": [210.0, 624.0, 1291.0, 624.0, 1291.0, 654.0, 210.0, 654.0], "score": 0.97, "text": "aSchool of Forest and Ecosystem Studies,University of Melbourne,P.O.Box 137,Heidelberg,Victoria 3084,Australia"}, {"category_id": 15, "poly": [460.0, 647.0, 1040.0, 649.0, 1039.0, 679.0, 460.0, 677.0], "score": 0.96, "text": "bCSIRODivision of Land andWater,Canberra,ACT,Australia"}, {"category_id": 15, "poly": [369.0, 679.0, 1130.0, 679.0, 1130.0, 710.0, 369.0, 710.0], "score": 0.97, "text": "cCooperative Research Centre for Catchment Hydrology, Canberra,ACT, Australia"}, {"category_id": 15, "poly": [299.0, 701.0, 1203.0, 703.0, 1203.0, 740.0, 299.0, 737.0], "score": 0.98, "text": "dDepartment of Civil and Environmental Engineering, University of Melbourne, Victoria, Australia"}, {"category_id": 15, "poly": [389.0, 750.0, 1108.0, 750.0, 1108.0, 780.0, 389.0, 780.0], "score": 0.99, "text": "Received 1 October 2003; revised 22 December 2004; accepted 3 January 2005"}, {"category_id": 15, "poly": [554.0, 340.0, 945.0, 337.0, 945.0, 374.0, 554.0, 376.0], "score": 0.98, "text": "Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [247.0, 477.0, 1252.0, 477.0, 1252.0, 520.0, 247.0, 520.0], "score": 0.99, "text": "The response of flow duration curves to afforestation"}, {"category_id": 15, "poly": [1165.0, 212.0, 1285.0, 218.0, 1283.0, 256.0, 1164.0, 251.0], "score": 1.0, "text": "Journal"}, {"category_id": 15, "poly": [1171.0, 260.0, 1207.0, 260.0, 1207.0, 290.0, 1171.0, 290.0], "score": 0.84, "text": "of"}, {"category_id": 15, "poly": [1157.0, 290.0, 1379.0, 297.0, 1378.0, 351.0, 1155.0, 343.0], "score": 1.0, "text": "Hydrology"}, {"category_id": 15, "poly": [1164.0, 374.0, 1368.0, 374.0, 1368.0, 389.0, 1164.0, 389.0], "score": 0.73, "text": "nuriarnom/laonta/ihrdr"}, {"category_id": 15, "poly": [116.0, 1572.0, 868.0, 1572.0, 868.0, 1600.0, 116.0, 1600.0], "score": 0.99, "text": "Keywords: Afforestation; Flow duration curves; Flow reduction; Paired catchments"}, {"category_id": 15, "poly": [116.0, 862.0, 213.0, 862.0, 213.0, 894.0, 116.0, 894.0], "score": 1.0, "text": "Abstract"}, {"category_id": 15, "poly": [238.0, 557.0, 1254.0, 557.0, 1254.0, 600.0, 238.0, 600.0], "score": 0.94, "text": "Patrick N.J. Lanea,c,*, Alice E. Bestb,c,d, Klaus Hickelb;c, Lu Zhangbc"}, {"category_id": 15, "poly": [127.0, 1681.0, 1381.0, 1683.0, 1381.0, 1720.0, 127.0, 1718.0], "score": 0.98, "text": "* Corresponding author. Address: Forest Science Centre, Department of Sustainability and Environment, P.O. Box 137, Heidelberg, Vic."}, {"category_id": 15, "poly": [114.0, 1711.0, 314.0, 1714.0, 314.0, 1744.0, 114.0, 1741.0], "score": 0.97, "text": "3084,Australia.Tel.:"}, {"category_id": 15, "poly": [480.0, 1711.0, 702.0, 1714.0, 702.0, 1744.0, 480.0, 1741.0], "score": 0.93, "text": ";fax: +61 3 9450 8644."}, {"category_id": 15, "poly": [167.0, 1744.0, 368.0, 1744.0, 368.0, 1772.0, 167.0, 1772.0], "score": 1.0, "text": "mailaddress:patrickl"}, {"category_id": 15, "poly": [388.0, 1744.0, 657.0, 1744.0, 657.0, 1772.0, 388.0, 1772.0], "score": 1.0, "text": "unimelb.edu.au (P.N.J. Lane)."}, {"category_id": 15, "poly": [137.0, 912.0, 1385.0, 912.0, 1385.0, 948.0, 137.0, 948.0], "score": 0.98, "text": " The hydrologic effect of replacing pasture or other short crops with trees is reasonably well understood on a mean annual"}, {"category_id": 15, "poly": [116.0, 946.0, 1383.0, 946.0, 1383.0, 976.0, 116.0, 976.0], "score": 0.99, "text": "basis. The impact on fow regime, as described by the annual flow duration curve (FDC) is less certain. A method to assess the"}, {"category_id": 15, "poly": [114.0, 974.0, 1383.0, 974.0, 1383.0, 1010.0, 114.0, 1010.0], "score": 0.99, "text": "impact of plantation establishment on FDCs was developed. The starting point for the analyses was the assumption that rainfall"}, {"category_id": 15, "poly": [116.0, 1008.0, 1381.0, 1008.0, 1381.0, 1038.0, 116.0, 1038.0], "score": 0.99, "text": "and vegetation age are the principal drivers of evapotranspiration. A key objective was to remove the variability in the rainfall"}, {"category_id": 15, "poly": [116.0, 1041.0, 1381.0, 1041.0, 1381.0, 1071.0, 116.0, 1071.0], "score": 0.99, "text": "signal, leaving changes in streamflow solely attributable to the evapotranspiration of the plantation. A method was developed to"}, {"category_id": 15, "poly": [116.0, 1073.0, 1381.0, 1073.0, 1381.0, 1103.0, 116.0, 1103.0], "score": 0.98, "text": "(1) fit a model to the observed annual time series of FDC percentiles; i.e. 1oth percentile for each year of record with annual"}, {"category_id": 15, "poly": [114.0, 1101.0, 1381.0, 1103.0, 1381.0, 1133.0, 114.0, 1131.0], "score": 0.99, "text": "rainfall and plantation age as parameters, (2) replace the annual rainfall variation with the long term mean to obtain climate"}, {"category_id": 15, "poly": [118.0, 1135.0, 1383.0, 1135.0, 1383.0, 1165.0, 118.0, 1165.0], "score": 0.99, "text": "adjusted FDCs, and (3) quantify changes in FDC percentiles as plantations age. Data from 10 catchments from Australia, South"}, {"category_id": 15, "poly": [118.0, 1165.0, 1381.0, 1165.0, 1381.0, 1195.0, 118.0, 1195.0], "score": 0.99, "text": "Africa and New Zealand were used. The model was able to represent flow variation for the majority of percentiles at eight of the"}, {"category_id": 15, "poly": [114.0, 1191.0, 1383.0, 1193.0, 1383.0, 1230.0, 114.0, 1228.0], "score": 0.98, "text": "10 catchments, particularly for the 10-50th percentiles. The adjusted FDCs revealed variable patterns in flow reductions with"}, {"category_id": 15, "poly": [116.0, 1230.0, 1379.0, 1230.0, 1379.0, 1260.0, 116.0, 1260.0], "score": 0.98, "text": "two types of responses (groups) being identified. Group 1 catchments show a substantial increase in the number of zero fow"}, {"category_id": 15, "poly": [114.0, 1258.0, 1381.0, 1260.0, 1381.0, 1290.0, 114.0, 1288.0], "score": 0.98, "text": "days, with low flows being more affected than high flows. Group 2 catchments show a more uniform reduction in flows across"}, {"category_id": 15, "poly": [116.0, 1292.0, 1383.0, 1292.0, 1383.0, 1322.0, 116.0, 1322.0], "score": 0.98, "text": "all percentiles. The differences may be partly explained by storage characteristics. The modelled fow reductions were in accord"}, {"category_id": 15, "poly": [116.0, 1322.0, 1381.0, 1322.0, 1381.0, 1352.0, 116.0, 1352.0], "score": 1.0, "text": "with published results of paired catchment experiments. An additional analysis was performed to characterise the impact of"}, {"category_id": 15, "poly": [116.0, 1417.0, 1381.0, 1417.0, 1381.0, 1447.0, 116.0, 1447.0], "score": 1.0, "text": "in the occurrence of any given flow in response to afforestation. The methods used in this study proved satisfactory in removing"}, {"category_id": 15, "poly": [116.0, 1449.0, 1383.0, 1449.0, 1383.0, 1479.0, 116.0, 1479.0], "score": 0.99, "text": "the rainfall variability, and have added useful insight into the hydrologic impacts of plantation establishment. This approach"}, {"category_id": 15, "poly": [116.0, 1479.0, 1379.0, 1479.0, 1379.0, 1509.0, 116.0, 1509.0], "score": 0.99, "text": "provides a methodology for understanding catchment response to afforestation, where paired catchment data is not available."}, {"category_id": 15, "poly": [114.0, 1382.0, 713.0, 1387.0, 713.0, 1417.0, 114.0, 1413.0], "score": 0.98, "text": "when adjusted for climate, indicated a significant increase in"}, {"category_id": 15, "poly": [768.0, 1382.0, 1381.0, 1387.0, 1381.0, 1417.0, 768.0, 1413.0], "score": 0.98, "text": ".The zero flow day method could be used to determine change"}, {"category_id": 15, "poly": [116.0, 1354.0, 570.0, 1354.0, 570.0, 1385.0, 116.0, 1385.0], "score": 0.98, "text": "afforestation on the number of zero flow days"}, {"category_id": 15, "poly": [637.0, 1354.0, 1383.0, 1354.0, 1383.0, 1385.0, 637.0, 1385.0], "score": 0.99, "text": "for the catchments in group 1. This model performed particularly well, and"}, {"category_id": 15, "poly": [141.0, 1507.0, 541.0, 1509.0, 541.0, 1539.0, 141.0, 1537.0], "score": 0.98, "text": "2005 Elsevier B.V. All rights reserved."}, {"category_id": 15, "poly": [1080.0, 368.0, 1383.0, 365.0, 1383.0, 402.0, 1080.0, 404.0], "score": 0.99, "text": "www.elsevier.com/locate/jhydrol"}], "page_info": {"page_no": 0, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 0, "poly": [130.931640625, 251.82516479492188, 312.8154296875, 251.82516479492188, 312.8154296875, 283.4620056152344, 130.931640625, 283.4620056152344], "score": 0.9999987483024597}, {"category_id": 4, "poly": [794.2171020507812, 763.5051879882812, 1396.4493408203125, 763.5051879882812, 1396.4493408203125, 818.8292236328125, 794.2171020507812, 818.8292236328125], "score": 0.9999982714653015}, {"category_id": 1, "poly": [130.19113159179688, 1017.6807861328125, 732.7059326171875, 1017.6807861328125, 732.7059326171875, 1849.8070068359375, 130.19113159179688, 1849.8070068359375], "score": 0.9999954104423523}, {"category_id": 1, "poly": [793.3727416992188, 1280.632568359375, 1397.07080078125, 1280.632568359375, 1397.07080078125, 1849.0452880859375, 793.3727416992188, 1849.0452880859375], "score": 0.9999947547912598}, {"category_id": 1, "poly": [793.5277099609375, 849.8186645507812, 1397.0140380859375, 849.8186645507812, 1397.0140380859375, 1280.6221923828125, 793.5277099609375, 1280.6221923828125], "score": 0.999994158744812}, {"category_id": 1, "poly": [130.5381317138672, 317.5604248046875, 731.9227905273438, 317.5604248046875, 731.9227905273438, 1015.91748046875, 130.5381317138672, 1015.91748046875], "score": 0.9999940395355225}, {"category_id": 2, "poly": [130.44467163085938, 194.42764282226562, 166.39125061035156, 194.42764282226562, 166.39125061035156, 215.1434783935547, 130.44467163085938, 215.1434783935547], "score": 0.999992847442627}, {"category_id": 2, "poly": [479.5857849121094, 195.1154022216797, 1045.4803466796875, 195.1154022216797, 1045.4803466796875, 218.7963104248047, 479.5857849121094, 218.7963104248047], "score": 0.99998939037323}, {"category_id": 3, "poly": [799.3821411132812, 256.1320495605469, 1390.73681640625, 256.1320495605469, 1390.73681640625, 742.4434204101562, 799.3821411132812, 742.4434204101562], "score": 0.9999882578849792}, {"category_id": 13, "poly": [984, 1180, 1065, 1180, 1065, 1211, 984, 1211], "score": 0.88, "latex": "<20\\%"}, {"category_id": 13, "poly": [128, 1415, 183, 1415, 183, 1445, 128, 1445], "score": 0.86, "latex": "95\\%"}, {"category_id": 13, "poly": [573, 618, 723, 618, 723, 649, 573, 649], "score": 0.67, "latex": "400\u2013500\\;\\mathrm{mm}"}, {"category_id": 15, "poly": [127.0, 249.0, 316.0, 254.0, 315.0, 291.0, 126.0, 286.0], "score": 1.0, "text": "1. Introduction"}, {"category_id": 15, "poly": [793.0, 765.0, 1394.0, 765.0, 1394.0, 793.0, 793.0, 793.0], "score": 0.98, "text": "Fig. 1. Annual flow duration curves of daily flows from Pine Creek,"}, {"category_id": 15, "poly": [793.0, 793.0, 999.0, 793.0, 999.0, 821.0, 793.0, 821.0], "score": 0.97, "text": "Australia, 1989-2000."}, {"category_id": 15, "poly": [161.0, 1017.0, 735.0, 1017.0, 735.0, 1054.0, 161.0, 1054.0], "score": 0.98, "text": "Zhang et al. (1999, 2001) developed simple and"}, {"category_id": 15, "poly": [127.0, 1051.0, 735.0, 1051.0, 735.0, 1088.0, 127.0, 1088.0], "score": 0.99, "text": "easily parameterised models to predict changes in"}, {"category_id": 15, "poly": [129.0, 1086.0, 730.0, 1086.0, 730.0, 1116.0, 129.0, 1116.0], "score": 0.99, "text": "mean annual fows following afforestation. However,"}, {"category_id": 15, "poly": [129.0, 1120.0, 732.0, 1120.0, 732.0, 1150.0, 129.0, 1150.0], "score": 0.98, "text": "there is a need to consider the annual flow regime as the"}, {"category_id": 15, "poly": [129.0, 1152.0, 732.0, 1152.0, 732.0, 1182.0, 129.0, 1182.0], "score": 0.99, "text": "relative changes in high and low flows may have"}, {"category_id": 15, "poly": [129.0, 1187.0, 730.0, 1187.0, 730.0, 1217.0, 129.0, 1217.0], "score": 0.98, "text": "considerable site specific and downstream impacts.."}, {"category_id": 15, "poly": [129.0, 1219.0, 732.0, 1219.0, 732.0, 1249.0, 129.0, 1249.0], "score": 0.99, "text": "Sikka et al. (2003) recently showed a change from"}, {"category_id": 15, "poly": [127.0, 1249.0, 734.0, 1247.0, 735.0, 1284.0, 127.0, 1286.0], "score": 1.0, "text": "grassland to Eucalyptus globulus plantations in India"}, {"category_id": 15, "poly": [129.0, 1284.0, 728.0, 1284.0, 728.0, 1314.0, 129.0, 1314.0], "score": 0.98, "text": "decreased alow flow index by a factor of two during the"}, {"category_id": 15, "poly": [127.0, 1316.0, 735.0, 1316.0, 735.0, 1352.0, 127.0, 1352.0], "score": 0.99, "text": "first rotation (9 years), and by 3.75 during the second"}, {"category_id": 15, "poly": [129.0, 1352.0, 732.0, 1352.0, 732.0, 1382.0, 129.0, 1382.0], "score": 1.0, "text": "rotation, with more subdued impact on peak flows. The"}, {"category_id": 15, "poly": [129.0, 1385.0, 732.0, 1385.0, 732.0, 1415.0, 129.0, 1415.0], "score": 0.99, "text": "index was defined as the 10 day average flow exceeded"}, {"category_id": 15, "poly": [125.0, 1447.0, 735.0, 1449.0, 734.0, 1486.0, 125.0, 1483.0], "score": 0.98, "text": "duration curves. Scott and Smith (1997) reported"}, {"category_id": 15, "poly": [129.0, 1486.0, 732.0, 1486.0, 732.0, 1516.0, 129.0, 1516.0], "score": 0.96, "text": "proportionally greater reductions in low fows"}, {"category_id": 15, "poly": [125.0, 1511.0, 737.0, 1514.0, 737.0, 1550.0, 125.0, 1548.0], "score": 0.98, "text": "(75-100th percentiles) than annual flows from South"}, {"category_id": 15, "poly": [127.0, 1548.0, 735.0, 1550.0, 734.0, 1580.0, 127.0, 1578.0], "score": 0.99, "text": "African research catchments under conversions from"}, {"category_id": 15, "poly": [125.0, 1582.0, 737.0, 1580.0, 737.0, 1617.0, 125.0, 1619.0], "score": 0.98, "text": " grass to pine and eucalypt plantations, while Bosch"}, {"category_id": 15, "poly": [129.0, 1619.0, 732.0, 1619.0, 732.0, 1649.0, 129.0, 1649.0], "score": 0.98, "text": "(1979) found the greatest reduction in seasonal flow"}, {"category_id": 15, "poly": [129.0, 1651.0, 732.0, 1651.0, 732.0, 1681.0, 129.0, 1681.0], "score": 0.98, "text": "from the summer wet season. Fahey and Jackson"}, {"category_id": 15, "poly": [125.0, 1679.0, 735.0, 1681.0, 734.0, 1718.0, 125.0, 1716.0], "score": 0.99, "text": "(1997) reported the reduction in peak flows was twice"}, {"category_id": 15, "poly": [129.0, 1718.0, 732.0, 1718.0, 732.0, 1748.0, 129.0, 1748.0], "score": 0.98, "text": "that of total flow and low flows for pine afforestation in"}, {"category_id": 15, "poly": [125.0, 1746.0, 732.0, 1748.0, 732.0, 1785.0, 125.0, 1782.0], "score": 0.98, "text": " New Zealand. The generalisations that can be drawn"}, {"category_id": 15, "poly": [129.0, 1784.0, 728.0, 1784.0, 728.0, 1815.0, 129.0, 1815.0], "score": 0.99, "text": "from annual analyses, where processes and hydrologic"}, {"category_id": 15, "poly": [127.0, 1819.0, 732.0, 1817.0, 732.0, 1847.0, 127.0, 1849.0], "score": 0.99, "text": "responses are to a certain extent integrated may not"}, {"category_id": 15, "poly": [184.0, 1415.0, 732.0, 1417.0, 732.0, 1447.0, 184.0, 1445.0], "score": 0.99, "text": "of the time, obtained from analysis of 10-day flow"}, {"category_id": 15, "poly": [823.0, 1277.0, 1400.0, 1279.0, 1400.0, 1316.0, 823.0, 1314.0], "score": 0.98, "text": " This paper presents the results of a project aimed at"}, {"category_id": 15, "poly": [793.0, 1316.0, 1398.0, 1316.0, 1398.0, 1346.0, 793.0, 1346.0], "score": 0.96, "text": "quantifying changes in annual fow regime of"}, {"category_id": 15, "poly": [793.0, 1350.0, 1398.0, 1350.0, 1398.0, 1380.0, 793.0, 1380.0], "score": 0.99, "text": "catchments following plantation establishment. The"}, {"category_id": 15, "poly": [793.0, 1385.0, 1398.0, 1385.0, 1398.0, 1415.0, 793.0, 1415.0], "score": 0.98, "text": "flow regime is represented by the flow duration curve"}, {"category_id": 15, "poly": [793.0, 1417.0, 1398.0, 1417.0, 1398.0, 1447.0, 793.0, 1447.0], "score": 0.99, "text": "(FDC). The key assumption was that rainfall and"}, {"category_id": 15, "poly": [793.0, 1451.0, 1396.0, 1451.0, 1396.0, 1481.0, 793.0, 1481.0], "score": 0.99, "text": "forest age are the principal drivers of evapotranspira-"}, {"category_id": 15, "poly": [788.0, 1481.0, 1400.0, 1481.0, 1400.0, 1518.0, 788.0, 1518.0], "score": 0.99, "text": "tion. For any generalisation of response of the FDC to"}, {"category_id": 15, "poly": [793.0, 1518.0, 1398.0, 1518.0, 1398.0, 1548.0, 793.0, 1548.0], "score": 0.99, "text": "vegetation change, the variation in the annual climate"}, {"category_id": 15, "poly": [790.0, 1550.0, 1398.0, 1550.0, 1398.0, 1580.0, 790.0, 1580.0], "score": 0.97, "text": "signal must be removed. The time-tested solution to"}, {"category_id": 15, "poly": [790.0, 1585.0, 1398.0, 1585.0, 1398.0, 1615.0, 790.0, 1615.0], "score": 1.0, "text": "this problem is the paired-catchment (control versus"}, {"category_id": 15, "poly": [790.0, 1617.0, 1398.0, 1617.0, 1398.0, 1647.0, 790.0, 1647.0], "score": 0.98, "text": "treatment) experiment. The benefits in such studies"}, {"category_id": 15, "poly": [793.0, 1651.0, 1396.0, 1651.0, 1396.0, 1681.0, 793.0, 1681.0], "score": 0.98, "text": "are manifold: unambiguous measures of trends,"}, {"category_id": 15, "poly": [790.0, 1686.0, 1392.0, 1686.0, 1392.0, 1716.0, 790.0, 1716.0], "score": 0.99, "text": "insights into the processes driving those trends,"}, {"category_id": 15, "poly": [793.0, 1716.0, 1400.0, 1716.0, 1400.0, 1752.0, 793.0, 1752.0], "score": 0.96, "text": "excellent opportunities for model parameterisation"}, {"category_id": 15, "poly": [793.0, 1750.0, 1394.0, 1750.0, 1394.0, 1780.0, 793.0, 1780.0], "score": 0.98, "text": "and validation. However these data are not readily"}, {"category_id": 15, "poly": [790.0, 1784.0, 1390.0, 1784.0, 1390.0, 1815.0, 790.0, 1815.0], "score": 0.99, "text": "available for the range of treamtments and environ-"}, {"category_id": 15, "poly": [790.0, 1817.0, 1396.0, 1817.0, 1396.0, 1847.0, 790.0, 1847.0], "score": 0.99, "text": " ments required. Consequently, the aims of this project"}, {"category_id": 15, "poly": [793.0, 851.0, 1398.0, 851.0, 1398.0, 882.0, 793.0, 882.0], "score": 0.99, "text": "apply on a seasonal or shorter scale. Further, the"}, {"category_id": 15, "poly": [788.0, 879.0, 1398.0, 882.0, 1398.0, 918.0, 788.0, 916.0], "score": 1.0, "text": " observed impacts of any land use change on flows may"}, {"category_id": 15, "poly": [788.0, 916.0, 1400.0, 916.0, 1400.0, 952.0, 788.0, 952.0], "score": 0.96, "text": "be exaggerated or understated depending on the"}, {"category_id": 15, "poly": [788.0, 948.0, 1400.0, 948.0, 1400.0, 985.0, 788.0, 985.0], "score": 0.99, "text": "prevailing climate. Observations of fow during"}, {"category_id": 15, "poly": [793.0, 985.0, 1398.0, 985.0, 1398.0, 1015.0, 793.0, 1015.0], "score": 0.98, "text": "extended wet or dry spells, or with high annual"}, {"category_id": 15, "poly": [793.0, 1017.0, 1398.0, 1017.0, 1398.0, 1047.0, 793.0, 1047.0], "score": 1.0, "text": "variability can obscure the real impacts. Fig. 1 plots"}, {"category_id": 15, "poly": [790.0, 1051.0, 1398.0, 1051.0, 1398.0, 1081.0, 790.0, 1081.0], "score": 0.98, "text": " annual FDCs over 12 years of plantation growth for one"}, {"category_id": 15, "poly": [793.0, 1084.0, 1398.0, 1084.0, 1398.0, 1114.0, 793.0, 1114.0], "score": 0.99, "text": "of the catchments used in this study, Pine Creek. The"}, {"category_id": 15, "poly": [786.0, 1114.0, 1400.0, 1116.0, 1400.0, 1152.0, 786.0, 1150.0], "score": 0.97, "text": " net change in flow is obscured by rainfall variability;"}, {"category_id": 15, "poly": [788.0, 1148.0, 1400.0, 1146.0, 1400.0, 1182.0, 788.0, 1185.0], "score": 1.0, "text": "e.g. the greatest change in the FDC is in 1996, with the"}, {"category_id": 15, "poly": [786.0, 1215.0, 1398.0, 1213.0, 1398.0, 1249.0, 786.0, 1251.0], "score": 0.99, "text": " compared with 2000, where there is substantially"}, {"category_id": 15, "poly": [788.0, 1249.0, 941.0, 1249.0, 941.0, 1279.0, 788.0, 1279.0], "score": 0.99, "text": "higher flows."}, {"category_id": 15, "poly": [788.0, 1180.0, 983.0, 1180.0, 983.0, 1217.0, 788.0, 1217.0], "score": 0.96, "text": "stream flowing"}, {"category_id": 15, "poly": [1066.0, 1180.0, 1400.0, 1180.0, 1400.0, 1217.0, 1066.0, 1217.0], "score": 0.96, "text": " of the time. This may be"}, {"category_id": 15, "poly": [161.0, 318.0, 728.0, 318.0, 728.0, 355.0, 161.0, 355.0], "score": 1.0, "text": "Widespread afforestation through plantation estab-"}, {"category_id": 15, "poly": [125.0, 348.0, 732.0, 350.0, 732.0, 387.0, 125.0, 385.0], "score": 1.0, "text": "lishment on non-forested land represents a potentially"}, {"category_id": 15, "poly": [129.0, 389.0, 732.0, 389.0, 732.0, 417.0, 129.0, 417.0], "score": 0.98, "text": "significant alteration of catchment evapotranspiration"}, {"category_id": 15, "poly": [129.0, 421.0, 730.0, 421.0, 730.0, 452.0, 129.0, 452.0], "score": 0.98, "text": "(ET). Using data collated from multiple catchment"}, {"category_id": 15, "poly": [129.0, 456.0, 732.0, 456.0, 732.0, 484.0, 129.0, 484.0], "score": 0.99, "text": "studies, researchers have demonstrated a consistent"}, {"category_id": 15, "poly": [125.0, 482.0, 737.0, 484.0, 737.0, 520.0, 125.0, 518.0], "score": 0.98, "text": " difference in ET between forests and grass or short "}, {"category_id": 15, "poly": [122.0, 518.0, 734.0, 516.0, 735.0, 553.0, 123.0, 555.0], "score": 0.99, "text": " crops, and the relationship between ET and rainfall on"}, {"category_id": 15, "poly": [127.0, 553.0, 732.0, 553.0, 732.0, 583.0, 127.0, 583.0], "score": 1.0, "text": "a mean annual basis (Holmes and Sinclair, 1986;"}, {"category_id": 15, "poly": [127.0, 585.0, 732.0, 585.0, 732.0, 621.0, 127.0, 621.0], "score": 0.99, "text": "Vertessy and Bessard, 1999; Zhang et al., 1999,"}, {"category_id": 15, "poly": [129.0, 654.0, 732.0, 654.0, 732.0, 684.0, 129.0, 684.0], "score": 0.99, "text": "there is an increasing divergence between forest and"}, {"category_id": 15, "poly": [125.0, 684.0, 734.0, 682.0, 735.0, 718.0, 125.0, 720.0], "score": 0.99, "text": "grassland ET (Zhang et al., 2001). Research from"}, {"category_id": 15, "poly": [127.0, 718.0, 732.0, 718.0, 732.0, 755.0, 127.0, 755.0], "score": 0.98, "text": "South Africa in particular has demonstrated flow"}, {"category_id": 15, "poly": [129.0, 755.0, 730.0, 755.0, 730.0, 785.0, 129.0, 785.0], "score": 1.0, "text": "reduction following afforestation with both pine and"}, {"category_id": 15, "poly": [125.0, 783.0, 732.0, 780.0, 732.0, 817.0, 125.0, 819.0], "score": 0.99, "text": "eucalypt species (Bosch, 1979; Van Lill et al., 1980;"}, {"category_id": 15, "poly": [131.0, 819.0, 732.0, 819.0, 732.0, 849.0, 131.0, 849.0], "score": 0.98, "text": "Van Wyk, 1987; Bosch and Von Gadow, 1990; Scott"}, {"category_id": 15, "poly": [129.0, 854.0, 730.0, 854.0, 730.0, 884.0, 129.0, 884.0], "score": 0.99, "text": "and Smith, 1997; Scott et al., 2000). In regions, where"}, {"category_id": 15, "poly": [129.0, 888.0, 732.0, 888.0, 732.0, 918.0, 129.0, 918.0], "score": 1.0, "text": "water is an increasingly valuable resource, prediction"}, {"category_id": 15, "poly": [125.0, 914.0, 735.0, 916.0, 734.0, 952.0, 125.0, 950.0], "score": 1.0, "text": " of the long-term hydrologic impact of afforestation is"}, {"category_id": 15, "poly": [127.0, 952.0, 732.0, 952.0, 732.0, 983.0, 127.0, 983.0], "score": 1.0, "text": "a prerequisite for the optimal planning of catchment"}, {"category_id": 15, "poly": [126.0, 982.0, 232.0, 987.0, 231.0, 1017.0, 124.0, 1012.0], "score": 0.98, "text": "land use."}, {"category_id": 15, "poly": [129.0, 619.0, 572.0, 619.0, 572.0, 649.0, 129.0, 649.0], "score": 0.97, "text": "2001). Once annual rainfall exceeds "}, {"category_id": 15, "poly": [127.0, 189.0, 172.0, 189.0, 172.0, 234.0, 127.0, 234.0], "score": 0.86, "text": "254"}, {"category_id": 15, "poly": [481.0, 194.0, 1046.0, 194.0, 1046.0, 224.0, 481.0, 224.0], "score": 0.97, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}], "page_info": {"page_no": 1, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 0, "poly": [117.54735565185547, 651.1103515625, 250.780029296875, 651.1103515625, 250.780029296875, 683.0104370117188, 117.54735565185547, 683.0104370117188], "score": 0.9999984502792358}, {"category_id": 0, "poly": [118.68109130859375, 719.37060546875, 523.2320556640625, 719.37060546875, 523.2320556640625, 748.71435546875, 118.68109130859375, 748.71435546875], "score": 0.9999982714653015}, {"category_id": 1, "poly": [782.3466796875, 254.3662872314453, 1379.406005859375, 254.3662872314453, 1379.406005859375, 382.8451843261719, 782.3466796875, 382.8451843261719], "score": 0.9999969005584717}, {"category_id": 2, "poly": [466.16595458984375, 194.14617919921875, 1030.9322509765625, 194.14617919921875, 1030.9322509765625, 218.86849975585938, 466.16595458984375, 218.86849975585938], "score": 0.9999963641166687}, {"category_id": 9, "poly": [1347.212890625, 1178.8819580078125, 1379.9034423828125, 1178.8819580078125, 1379.9034423828125, 1209.0960693359375, 1347.212890625, 1209.0960693359375], "score": 0.9999951124191284}, {"category_id": 1, "poly": [118.17451477050781, 252.63734436035156, 717.2734375, 252.63734436035156, 717.2734375, 582.23974609375, 118.17451477050781, 582.23974609375], "score": 0.999994158744812}, {"category_id": 1, "poly": [780.9387817382812, 518.9439697265625, 1381.2352294921875, 518.9439697265625, 1381.2352294921875, 1114.6259765625, 780.9387817382812, 1114.6259765625], "score": 0.9999930262565613}, {"category_id": 9, "poly": [1346.75439453125, 438.8963317871094, 1380.3604736328125, 438.8963317871094, 1380.3604736328125, 467.5118713378906, 1346.75439453125, 467.5118713378906], "score": 0.9999922513961792}, {"category_id": 1, "poly": [781.1512451171875, 1283.9832763671875, 1380.4686279296875, 1283.9832763671875, 1380.4686279296875, 1845.6868896484375, 781.1512451171875, 1845.6868896484375], "score": 0.9999905824661255}, {"category_id": 1, "poly": [118.1343994140625, 788.8043212890625, 716.4190673828125, 788.8043212890625, 716.4190673828125, 1282.203125, 118.1343994140625, 1282.203125], "score": 0.9999904632568359}, {"category_id": 2, "poly": [1346.32177734375, 194.7462615966797, 1381.36328125, 194.7462615966797, 1381.36328125, 216.9466552734375, 1346.32177734375, 216.9466552734375], "score": 0.9999903440475464}, {"category_id": 1, "poly": [117.631591796875, 1283.8558349609375, 716.6098022460938, 1283.8558349609375, 716.6098022460938, 1847.49853515625, 117.631591796875, 1847.49853515625], "score": 0.9999891519546509}, {"category_id": 8, "poly": [778.0137939453125, 1156.5975341796875, 1201.7086181640625, 1156.5975341796875, 1201.7086181640625, 1238.48828125, 778.0137939453125, 1238.48828125], "score": 0.9998936653137207}, {"category_id": 8, "poly": [779.0469360351562, 433.1261901855469, 996.4776000976562, 433.1261901855469, 996.4776000976562, 470.7110595703125, 779.0469360351562, 470.7110595703125], "score": 0.979882001876831}, {"category_id": 14, "poly": [777, 1156, 1200, 1156, 1200, 1237, 777, 1237], "score": 0.92, "latex": "Q_{\\mathcal{U}}=a+b(\\Delta P)+\\frac{Y}{1+\\exp\\!\\left(\\frac{T-T_{\\mathrm{half}}}{S}\\right)}"}, {"category_id": 13, "poly": [1150, 520, 1201, 520, 1201, 551, 1150, 551], "score": 0.9, "latex": "f(P)"}, {"category_id": 13, "poly": [1210, 1384, 1262, 1384, 1262, 1414, 1210, 1414], "score": 0.9, "latex": "T_{\\mathrm{half}}"}, {"category_id": 13, "poly": [856, 520, 897, 520, 897, 550, 856, 550], "score": 0.9, "latex": "Q_{\\mathcal{k}}"}, {"category_id": 13, "poly": [930, 552, 982, 552, 982, 584, 930, 584], "score": 0.89, "latex": "g(T)"}, {"category_id": 13, "poly": [857, 1285, 898, 1285, 898, 1315, 857, 1315], "score": 0.89, "latex": "Q_{\\mathcal{k}}"}, {"category_id": 13, "poly": [1196, 1649, 1278, 1649, 1278, 1678, 1196, 1678], "score": 0.89, "latex": "\\Delta P\\!=\\!0"}, {"category_id": 13, "poly": [1270, 1483, 1311, 1483, 1311, 1515, 1270, 1515], "score": 0.89, "latex": "Q_{\\mathrm{\\small{\\mathscr{k}}}}"}, {"category_id": 13, "poly": [1259, 1418, 1301, 1418, 1301, 1449, 1259, 1449], "score": 0.89, "latex": "Q_{\\mathbb{X}}"}, {"category_id": 13, "poly": [1075, 1682, 1140, 1682, 1140, 1711, 1075, 1711], "score": 0.88, "latex": "a+Y."}, {"category_id": 13, "poly": [895, 1483, 976, 1483, 976, 1512, 895, 1512], "score": 0.88, "latex": "\\Delta P\\!=\\!0"}, {"category_id": 13, "poly": [1206, 1285, 1252, 1285, 1252, 1315, 1206, 1315], "score": 0.88, "latex": "Q_{50}"}, {"category_id": 13, "poly": [779, 1682, 821, 1682, 821, 1714, 779, 1714], "score": 0.88, "latex": "Q_{\\mathrm{\\%}}"}, {"category_id": 13, "poly": [1313, 1649, 1374, 1649, 1374, 1678, 1313, 1678], "score": 0.87, "latex": "T{=}0"}, {"category_id": 14, "poly": [777, 432, 997, 432, 997, 470, 777, 470], "score": 0.83, "latex": "\\begin{array}{r}{Q_{\\%}=f(P)+g(T)}\\end{array}"}, {"category_id": 13, "poly": [963, 1350, 1002, 1350, 1002, 1378, 963, 1378], "score": 0.8, "latex": "\\Delta P"}, {"category_id": 13, "poly": [989, 1318, 1012, 1318, 1012, 1345, 989, 1345], "score": 0.64, "latex": "Y"}, {"category_id": 13, "poly": [1077, 1318, 1098, 1318, 1098, 1345, 1077, 1345], "score": 0.64, "latex": "S"}, {"category_id": 13, "poly": [1239, 1583, 1262, 1583, 1262, 1611, 1239, 1611], "score": 0.51, "latex": "S"}, {"category_id": 13, "poly": [989, 1488, 1008, 1488, 1008, 1511, 989, 1511], "score": 0.3, "latex": "a"}, {"category_id": 15, "poly": [112.0, 651.0, 256.0, 651.0, 256.0, 688.0, 112.0, 688.0], "score": 0.96, "text": "2. Methods"}, {"category_id": 15, "poly": [112.0, 716.0, 526.0, 720.0, 526.0, 757.0, 112.0, 752.0], "score": 0.99, "text": "2.1. Characterisation of fow regime"}, {"category_id": 15, "poly": [778.0, 249.0, 1383.0, 252.0, 1383.0, 288.0, 777.0, 286.0], "score": 0.99, "text": " closure, a time term is required to represent plantation"}, {"category_id": 15, "poly": [777.0, 288.0, 1385.0, 284.0, 1385.0, 320.0, 778.0, 325.0], "score": 0.99, "text": "growth. A simple model relating the time series of"}, {"category_id": 15, "poly": [778.0, 318.0, 1383.0, 323.0, 1383.0, 357.0, 777.0, 353.0], "score": 0.99, "text": "each decile with rainfall and vegetation characteristics"}, {"category_id": 15, "poly": [782.0, 357.0, 1018.0, 357.0, 1018.0, 387.0, 782.0, 387.0], "score": 0.99, "text": "can be expressed as:"}, {"category_id": 15, "poly": [466.0, 194.0, 1033.0, 194.0, 1033.0, 224.0, 466.0, 224.0], "score": 0.99, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [112.0, 249.0, 722.0, 252.0, 722.0, 288.0, 112.0, 286.0], "score": 0.99, "text": "were to (1) fit a model to the observed annual time"}, {"category_id": 15, "poly": [116.0, 290.0, 719.0, 290.0, 719.0, 320.0, 116.0, 320.0], "score": 0.98, "text": "series of FDC percentiles; i.e. 10th percentile for each"}, {"category_id": 15, "poly": [112.0, 320.0, 722.0, 320.0, 722.0, 357.0, 112.0, 357.0], "score": 0.99, "text": " year of record with annual rainfall and plantation age"}, {"category_id": 15, "poly": [116.0, 355.0, 719.0, 355.0, 719.0, 385.0, 116.0, 385.0], "score": 1.0, "text": "as parameters, (2) replace the annual rainfall variation"}, {"category_id": 15, "poly": [116.0, 389.0, 722.0, 389.0, 722.0, 419.0, 116.0, 419.0], "score": 0.98, "text": "with the long term mean to obtain climate adjusted"}, {"category_id": 15, "poly": [116.0, 421.0, 719.0, 421.0, 719.0, 452.0, 116.0, 452.0], "score": 0.99, "text": "FDCs, and (3) quantify changes in FDC percentiles as"}, {"category_id": 15, "poly": [116.0, 456.0, 717.0, 456.0, 717.0, 486.0, 116.0, 486.0], "score": 1.0, "text": "plantations age. If the climate signal, represented by"}, {"category_id": 15, "poly": [112.0, 482.0, 722.0, 486.0, 721.0, 523.0, 112.0, 518.0], "score": 0.98, "text": "rainfall, could be successfully removed, the resulting"}, {"category_id": 15, "poly": [116.0, 522.0, 719.0, 522.0, 719.0, 553.0, 116.0, 553.0], "score": 0.99, "text": "changes in the FDC would be solely attributable to the"}, {"category_id": 15, "poly": [114.0, 557.0, 243.0, 557.0, 243.0, 587.0, 114.0, 587.0], "score": 1.0, "text": "vegetation."}, {"category_id": 15, "poly": [780.0, 587.0, 1385.0, 587.0, 1385.0, 617.0, 780.0, 617.0], "score": 0.99, "text": "plantation. Annual rainfall was chosen as the rainfall"}, {"category_id": 15, "poly": [780.0, 621.0, 1385.0, 621.0, 1385.0, 649.0, 780.0, 649.0], "score": 0.99, "text": "statistic as it proved to be the most robust predictor of"}, {"category_id": 15, "poly": [780.0, 654.0, 1385.0, 654.0, 1385.0, 684.0, 780.0, 684.0], "score": 0.97, "text": "flow over the whole range of flow percentiles, as"}, {"category_id": 15, "poly": [777.0, 686.0, 1383.0, 686.0, 1383.0, 722.0, 777.0, 722.0], "score": 0.98, "text": " compared with rainfall percentiles; e.g. median rain-"}, {"category_id": 15, "poly": [777.0, 718.0, 1385.0, 718.0, 1385.0, 755.0, 777.0, 755.0], "score": 0.97, "text": "fall versus 10th flow percentile. The use of annual"}, {"category_id": 15, "poly": [775.0, 748.0, 1385.0, 750.0, 1385.0, 787.0, 775.0, 785.0], "score": 0.99, "text": "rainfall also minimises parameter complexity. The"}, {"category_id": 15, "poly": [782.0, 787.0, 1383.0, 787.0, 1383.0, 817.0, 782.0, 817.0], "score": 0.98, "text": "choice of model form is dependent on selecting a"}, {"category_id": 15, "poly": [780.0, 821.0, 1383.0, 821.0, 1383.0, 849.0, 780.0, 849.0], "score": 0.99, "text": "function that describes the relationship between forest"}, {"category_id": 15, "poly": [777.0, 854.0, 1383.0, 851.0, 1383.0, 881.0, 778.0, 884.0], "score": 0.98, "text": "age and ET. Scott and Smith (1997\uff09 demonstrated"}, {"category_id": 15, "poly": [780.0, 886.0, 1383.0, 886.0, 1383.0, 916.0, 780.0, 916.0], "score": 0.98, "text": "cumulative reductions in annual and low flows"}, {"category_id": 15, "poly": [780.0, 920.0, 1383.0, 920.0, 1383.0, 950.0, 780.0, 950.0], "score": 0.98, "text": "resulting from afforestation fitted a sigmoidal"}, {"category_id": 15, "poly": [777.0, 952.0, 1379.0, 952.0, 1379.0, 983.0, 777.0, 983.0], "score": 0.99, "text": "function, similar to forest growth functions. Conse-"}, {"category_id": 15, "poly": [775.0, 985.0, 1385.0, 983.0, 1385.0, 1019.0, 775.0, 1021.0], "score": 0.99, "text": " quently, we used a sigmoidal function to characterise"}, {"category_id": 15, "poly": [780.0, 1019.0, 1381.0, 1019.0, 1381.0, 1049.0, 780.0, 1049.0], "score": 0.99, "text": "the impact of plantation growth on each fow decile."}, {"category_id": 15, "poly": [780.0, 1054.0, 1383.0, 1054.0, 1383.0, 1084.0, 780.0, 1084.0], "score": 0.98, "text": "Fig. 2a is a schematic of the change in the FDC over"}, {"category_id": 15, "poly": [777.0, 1086.0, 1143.0, 1086.0, 1143.0, 1116.0, 777.0, 1116.0], "score": 0.99, "text": "time. The model took the form:"}, {"category_id": 15, "poly": [1202.0, 522.0, 1385.0, 522.0, 1385.0, 550.0, 1202.0, 550.0], "score": 0.99, "text": "is a function of"}, {"category_id": 15, "poly": [782.0, 522.0, 855.0, 522.0, 855.0, 550.0, 782.0, 550.0], "score": 1.0, "text": "where"}, {"category_id": 15, "poly": [898.0, 522.0, 1149.0, 522.0, 1149.0, 550.0, 898.0, 550.0], "score": 0.98, "text": "is the percentile flow,"}, {"category_id": 15, "poly": [780.0, 555.0, 929.0, 555.0, 929.0, 585.0, 780.0, 585.0], "score": 0.95, "text": "rainfall and"}, {"category_id": 15, "poly": [983.0, 555.0, 1383.0, 555.0, 1383.0, 585.0, 983.0, 585.0], "score": 0.98, "text": " is a function of the age of the"}, {"category_id": 15, "poly": [780.0, 1453.0, 1385.0, 1453.0, 1385.0, 1484.0, 780.0, 1484.0], "score": 1.0, "text": "afforestation has taken place. For the average climate"}, {"category_id": 15, "poly": [775.0, 1516.0, 1383.0, 1516.0, 1383.0, 1546.0, 775.0, 1546.0], "score": 0.98, "text": "the new equilibrium plantation water use under"}, {"category_id": 15, "poly": [777.0, 1552.0, 1385.0, 1552.0, 1385.0, 1582.0, 777.0, 1582.0], "score": 0.99, "text": " afforestation is reached. Y then gives the magnitude"}, {"category_id": 15, "poly": [780.0, 1619.0, 1385.0, 1619.0, 1385.0, 1649.0, 780.0, 1649.0], "score": 0.97, "text": "the shape of the response as shown in Fig. 2b. For"}, {"category_id": 15, "poly": [780.0, 1718.0, 1383.0, 1718.0, 1383.0, 1748.0, 780.0, 1748.0], "score": 0.98, "text": "afforestation condition would not require the time"}, {"category_id": 15, "poly": [780.0, 1752.0, 1383.0, 1752.0, 1383.0, 1782.0, 780.0, 1782.0], "score": 0.98, "text": "term. Details of the optimisation scheme and"}, {"category_id": 15, "poly": [780.0, 1784.0, 1383.0, 1784.0, 1383.0, 1815.0, 780.0, 1815.0], "score": 1.0, "text": "sensitivity tests on initial parameter values are given"}, {"category_id": 15, "poly": [780.0, 1817.0, 1020.0, 1817.0, 1020.0, 1847.0, 780.0, 1847.0], "score": 0.97, "text": "in Lane et al. (2003)."}, {"category_id": 15, "poly": [777.0, 1382.0, 1209.0, 1382.0, 1209.0, 1419.0, 777.0, 1419.0], "score": 0.98, "text": "from the period of record average, and"}, {"category_id": 15, "poly": [1263.0, 1382.0, 1385.0, 1382.0, 1385.0, 1419.0, 1263.0, 1419.0], "score": 0.99, "text": "is the time"}, {"category_id": 15, "poly": [782.0, 1286.0, 856.0, 1286.0, 856.0, 1316.0, 782.0, 1316.0], "score": 1.0, "text": "where"}, {"category_id": 15, "poly": [777.0, 1649.0, 1195.0, 1649.0, 1195.0, 1686.0, 777.0, 1686.0], "score": 1.0, "text": "the average pre-treatment condition"}, {"category_id": 15, "poly": [1312.0, 1486.0, 1385.0, 1486.0, 1385.0, 1516.0, 1312.0, 1516.0], "score": 1.0, "text": "when"}, {"category_id": 15, "poly": [780.0, 1419.0, 1258.0, 1419.0, 1258.0, 1449.0, 780.0, 1449.0], "score": 0.97, "text": "in years at which half of the reduction in"}, {"category_id": 15, "poly": [1302.0, 1419.0, 1385.0, 1419.0, 1385.0, 1449.0, 1302.0, 1449.0], "score": 1.0, "text": "due to"}, {"category_id": 15, "poly": [1141.0, 1686.0, 1379.0, 1686.0, 1379.0, 1716.0, 1141.0, 1716.0], "score": 0.95, "text": " Estimation of a pre-"}, {"category_id": 15, "poly": [780.0, 1486.0, 894.0, 1486.0, 894.0, 1516.0, 780.0, 1516.0], "score": 1.0, "text": "condition"}, {"category_id": 15, "poly": [899.0, 1286.0, 1205.0, 1286.0, 1205.0, 1316.0, 899.0, 1316.0], "score": 0.98, "text": "is the percentile flow (i.e."}, {"category_id": 15, "poly": [1253.0, 1286.0, 1383.0, 1286.0, 1383.0, 1316.0, 1253.0, 1316.0], "score": 1.0, "text": "is the 50th"}, {"category_id": 15, "poly": [822.0, 1686.0, 1074.0, 1686.0, 1074.0, 1716.0, 822.0, 1716.0], "score": 0.99, "text": " approximately equals"}, {"category_id": 15, "poly": [1279.0, 1649.0, 1312.0, 1649.0, 1312.0, 1686.0, 1279.0, 1686.0], "score": 1.0, "text": "at"}, {"category_id": 15, "poly": [777.0, 1352.0, 962.0, 1350.0, 962.0, 1380.0, 778.0, 1382.0], "score": 1.0, "text": "sigmoidal term,"}, {"category_id": 15, "poly": [1003.0, 1352.0, 1385.0, 1350.0, 1385.0, 1380.0, 1003.0, 1382.0], "score": 0.99, "text": "is the deviation of annual rainfall"}, {"category_id": 15, "poly": [775.0, 1316.0, 988.0, 1314.0, 988.0, 1350.0, 775.0, 1352.0], "score": 0.97, "text": "percentile flow),"}, {"category_id": 15, "poly": [1013.0, 1316.0, 1076.0, 1314.0, 1076.0, 1350.0, 1013.0, 1352.0], "score": 0.9, "text": " and"}, {"category_id": 15, "poly": [1099.0, 1316.0, 1385.0, 1314.0, 1385.0, 1350.0, 1099.0, 1352.0], "score": 0.98, "text": " are coefficients of the"}, {"category_id": 15, "poly": [780.0, 1587.0, 1238.0, 1587.0, 1238.0, 1617.0, 780.0, 1617.0], "score": 0.99, "text": "of change due to afforestation, and "}, {"category_id": 15, "poly": [1263.0, 1587.0, 1385.0, 1587.0, 1385.0, 1617.0, 1263.0, 1617.0], "score": 0.99, "text": " describes"}, {"category_id": 15, "poly": [1009.0, 1486.0, 1269.0, 1486.0, 1269.0, 1516.0, 1009.0, 1516.0], "score": 1.0, "text": "becomes the value of"}, {"category_id": 15, "poly": [144.0, 783.0, 720.0, 785.0, 719.0, 821.0, 144.0, 819.0], "score": 0.99, "text": "Flow duration curves display the relationship"}, {"category_id": 15, "poly": [116.0, 821.0, 719.0, 821.0, 719.0, 851.0, 116.0, 851.0], "score": 0.96, "text": "between streamflow and the percentage of time"}, {"category_id": 15, "poly": [116.0, 854.0, 717.0, 854.0, 717.0, 884.0, 116.0, 884.0], "score": 0.98, "text": "the streamflow is exceeded as a cumulative density"}, {"category_id": 15, "poly": [116.0, 888.0, 719.0, 888.0, 719.0, 918.0, 116.0, 918.0], "score": 1.0, "text": "function They can be constructed for any time period"}, {"category_id": 15, "poly": [116.0, 920.0, 715.0, 920.0, 715.0, 950.0, 116.0, 950.0], "score": 0.99, "text": "(daily, weekly, monthly, etc.) and provide a graphical"}, {"category_id": 15, "poly": [114.0, 952.0, 717.0, 955.0, 717.0, 985.0, 114.0, 983.0], "score": 0.99, "text": "and statistical view of historic streamflow variability"}, {"category_id": 15, "poly": [114.0, 987.0, 717.0, 987.0, 717.0, 1017.0, 114.0, 1017.0], "score": 0.99, "text": "in a single catchment or a comparison of inter-"}, {"category_id": 15, "poly": [112.0, 1017.0, 722.0, 1017.0, 722.0, 1054.0, 112.0, 1054.0], "score": 0.99, "text": "catchment flow regimes. Vogel and Fennessey (1994)"}, {"category_id": 15, "poly": [110.0, 1047.0, 722.0, 1049.0, 722.0, 1086.0, 109.0, 1084.0], "score": 0.99, "text": "and Smakhtin (1999, 2001) demonstrate the utility"}, {"category_id": 15, "poly": [114.0, 1088.0, 719.0, 1088.0, 719.0, 1118.0, 114.0, 1118.0], "score": 1.0, "text": "(and caveats) of FDCs in characterising, comparing"}, {"category_id": 15, "poly": [114.0, 1120.0, 722.0, 1120.0, 722.0, 1150.0, 114.0, 1150.0], "score": 0.97, "text": "and predicting flow regimes at varying temporal"}, {"category_id": 15, "poly": [112.0, 1150.0, 724.0, 1150.0, 724.0, 1187.0, 112.0, 1187.0], "score": 0.98, "text": "scales. Fig. 1 is an example of annual FDCs"}, {"category_id": 15, "poly": [114.0, 1187.0, 722.0, 1187.0, 722.0, 1217.0, 114.0, 1217.0], "score": 0.99, "text": "constructed from daily flows. For the consideration"}, {"category_id": 15, "poly": [110.0, 1215.0, 722.0, 1217.0, 722.0, 1253.0, 109.0, 1251.0], "score": 0.99, "text": " of annual flow regime, daily fows are an appropriate"}, {"category_id": 15, "poly": [114.0, 1253.0, 477.0, 1253.0, 477.0, 1284.0, 114.0, 1284.0], "score": 0.99, "text": "time step for FDC construction."}, {"category_id": 15, "poly": [1342.0, 189.0, 1387.0, 189.0, 1387.0, 234.0, 1342.0, 234.0], "score": 1.0, "text": "255"}, {"category_id": 15, "poly": [148.0, 1284.0, 715.0, 1284.0, 715.0, 1314.0, 148.0, 1314.0], "score": 0.99, "text": "FDCs were computed from the distribution of daily"}, {"category_id": 15, "poly": [112.0, 1316.0, 720.0, 1320.0, 719.0, 1350.0, 112.0, 1346.0], "score": 1.0, "text": "flows for each year of record based on the appropriate"}, {"category_id": 15, "poly": [116.0, 1352.0, 719.0, 1352.0, 719.0, 1382.0, 116.0, 1382.0], "score": 0.99, "text": "water years (May-April or November-October) for"}, {"category_id": 15, "poly": [112.0, 1380.0, 722.0, 1382.0, 722.0, 1419.0, 112.0, 1417.0], "score": 0.96, "text": "10 Southern Hemisphere catchments. Each 10th"}, {"category_id": 15, "poly": [114.0, 1419.0, 719.0, 1417.0, 720.0, 1447.0, 114.0, 1449.0], "score": 0.97, "text": "percentile (decile\uff09 was extracted from the annual"}, {"category_id": 15, "poly": [112.0, 1449.0, 720.0, 1451.0, 719.0, 1481.0, 112.0, 1479.0], "score": 0.99, "text": "FDCs of each catchment to form the data sets for"}, {"category_id": 15, "poly": [114.0, 1486.0, 719.0, 1486.0, 719.0, 1516.0, 114.0, 1516.0], "score": 0.99, "text": "analysis. For the purpose of characterising changes in"}, {"category_id": 15, "poly": [114.0, 1518.0, 719.0, 1518.0, 719.0, 1546.0, 114.0, 1546.0], "score": 1.0, "text": "each of the deciles, it is assumed that the time series is"}, {"category_id": 15, "poly": [114.0, 1550.0, 719.0, 1550.0, 719.0, 1580.0, 114.0, 1580.0], "score": 0.96, "text": "principally a function of climate and vegetation"}, {"category_id": 15, "poly": [114.0, 1585.0, 722.0, 1585.0, 722.0, 1615.0, 114.0, 1615.0], "score": 0.99, "text": "characteristics. Given rainfall is generally the most"}, {"category_id": 15, "poly": [114.0, 1619.0, 722.0, 1619.0, 722.0, 1649.0, 114.0, 1649.0], "score": 0.97, "text": "important factor affecting streamflow and the most"}, {"category_id": 15, "poly": [116.0, 1651.0, 719.0, 1651.0, 719.0, 1681.0, 116.0, 1681.0], "score": 0.98, "text": "easily accessed data, it is chosen to represent the"}, {"category_id": 15, "poly": [116.0, 1686.0, 719.0, 1686.0, 719.0, 1716.0, 116.0, 1716.0], "score": 1.0, "text": "climate. Catchment physical properties such as soil"}, {"category_id": 15, "poly": [114.0, 1716.0, 722.0, 1716.0, 722.0, 1752.0, 114.0, 1752.0], "score": 0.98, "text": "properties and topography are assumed to be time"}, {"category_id": 15, "poly": [116.0, 1752.0, 719.0, 1752.0, 719.0, 1782.0, 116.0, 1782.0], "score": 0.99, "text": "invariant and therefore their impact on runoff is"}, {"category_id": 15, "poly": [118.0, 1784.0, 719.0, 1784.0, 719.0, 1815.0, 118.0, 1815.0], "score": 1.0, "text": "considered constant throughout the analysis. As trees"}, {"category_id": 15, "poly": [116.0, 1819.0, 715.0, 1819.0, 715.0, 1849.0, 116.0, 1849.0], "score": 1.0, "text": "intercept and transpire at increasing rates until canopy"}], "page_info": {"page_no": 2, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 4, "poly": [129.72743225097656, 1201.7288818359375, 731.863037109375, 1201.7288818359375, 731.863037109375, 1256.5126953125, 129.72743225097656, 1256.5126953125], "score": 0.9999990463256836}, {"category_id": 1, "poly": [130.2001953125, 1783.3021240234375, 730.197509765625, 1783.3021240234375, 730.197509765625, 1846.7928466796875, 130.2001953125, 1846.7928466796875], "score": 0.9999982714653015}, {"category_id": 0, "poly": [797.18896484375, 501.0386047363281, 1060.7071533203125, 501.0386047363281, 1060.7071533203125, 529.1184692382812, 797.18896484375, 529.1184692382812], "score": 0.9999982714653015}, {"category_id": 2, "poly": [130.7757568359375, 195.0663299560547, 166.40858459472656, 195.0663299560547, 166.40858459472656, 215.67367553710938, 130.7757568359375, 215.67367553710938], "score": 0.9999974966049194}, {"category_id": 9, "poly": [1360.5223388671875, 807.8145751953125, 1393.251953125, 807.8145751953125, 1393.251953125, 835.9564819335938, 1360.5223388671875, 835.9564819335938], "score": 0.9999971389770508}, {"category_id": 3, "poly": [140.5875244140625, 256.1985778808594, 711.4976806640625, 256.1985778808594, 711.4976806640625, 1180.2288818359375, 140.5875244140625, 1180.2288818359375], "score": 0.999996542930603}, {"category_id": 1, "poly": [795.8214721679688, 1244.741455078125, 1393.836181640625, 1244.741455078125, 1393.836181640625, 1508.3616943359375, 795.8214721679688, 1508.3616943359375], "score": 0.9999949932098389}, {"category_id": 2, "poly": [480.60809326171875, 195.57171630859375, 1043.654296875, 195.57171630859375, 1043.654296875, 218.8836212158203, 480.60809326171875, 218.8836212158203], "score": 0.9999940395355225}, {"category_id": 1, "poly": [794.92333984375, 878.8724365234375, 1394.78515625, 878.8724365234375, 1394.78515625, 1241.811279296875, 794.92333984375, 1241.811279296875], "score": 0.9999939799308777}, {"category_id": 8, "poly": [792.0145263671875, 779.4395751953125, 1107.5592041015625, 779.4395751953125, 1107.5592041015625, 865.4520263671875, 792.0145263671875, 865.4520263671875], "score": 0.9999935030937195}, {"category_id": 1, "poly": [794.2274780273438, 567.8933715820312, 1393.5377197265625, 567.8933715820312, 1393.5377197265625, 762.2144775390625, 794.2274780273438, 762.2144775390625], "score": 0.9999918341636658}, {"category_id": 1, "poly": [795.5938110351562, 1715.463134765625, 1394.151611328125, 1715.463134765625, 1394.151611328125, 1845.3857421875, 795.5938110351562, 1845.3857421875], "score": 0.999987781047821}, {"category_id": 1, "poly": [794.4356689453125, 255.30477905273438, 1393.678466796875, 255.30477905273438, 1393.678466796875, 447.8646240234375, 794.4356689453125, 447.8646240234375], "score": 0.9999871253967285}, {"category_id": 1, "poly": [130.53660583496094, 1355.89013671875, 730.9114379882812, 1355.89013671875, 730.9114379882812, 1652.1812744140625, 130.53660583496094, 1652.1812744140625], "score": 0.999987006187439}, {"category_id": 9, "poly": [696.6166381835938, 1699.391845703125, 728.77880859375, 1699.391845703125, 728.77880859375, 1727.2147216796875, 696.6166381835938, 1727.2147216796875], "score": 0.999981164932251}, {"category_id": 9, "poly": [1360.9091796875, 1667.6871337890625, 1393.8095703125, 1667.6871337890625, 1393.8095703125, 1699.094482421875, 1360.9091796875, 1699.094482421875], "score": 0.9999788999557495}, {"category_id": 8, "poly": [790.2078857421875, 1522.67236328125, 1111.4049072265625, 1522.67236328125, 1111.4049072265625, 1604.606689453125, 790.2078857421875, 1604.606689453125], "score": 0.9999706149101257}, {"category_id": 9, "poly": [1361.0799560546875, 1545.7677001953125, 1393.7020263671875, 1545.7677001953125, 1393.7020263671875, 1573.452392578125, 1361.0799560546875, 1573.452392578125], "score": 0.9998459815979004}, {"category_id": 8, "poly": [127.09381866455078, 1678.0965576171875, 565.4200439453125, 1678.0965576171875, 565.4200439453125, 1756.1007080078125, 127.09381866455078, 1756.1007080078125], "score": 0.9997967481613159}, {"category_id": 8, "poly": [794.1704711914062, 1666.248779296875, 974.3306274414062, 1666.248779296875, 974.3306274414062, 1700.88720703125, 794.1704711914062, 1700.88720703125], "score": 0.9997556209564209}, {"category_id": 0, "poly": [131.9687042236328, 1288.984375, 435.8473205566406, 1288.984375, 435.8473205566406, 1316.791259765625, 131.9687042236328, 1316.791259765625], "score": 0.9995421767234802}, {"category_id": 1, "poly": [794.0263671875, 1622.5870361328125, 839.6729125976562, 1622.5870361328125, 839.6729125976562, 1647.691650390625, 794.0263671875, 1647.691650390625], "score": 0.9984337687492371}, {"category_id": 14, "poly": [790, 777, 1108, 777, 1108, 863, 790, 863], "score": 0.94, "latex": "E=1.0-\\frac{\\sum_{i=1}^{N}(O_{i}-P_{i})^{2}}{\\sum_{i=1}^{N}(O_{i}-\\bar{O})^{2}}"}, {"category_id": 14, "poly": [790, 1521, 1110, 1521, 1110, 1602, 790, 1602], "score": 0.94, "latex": "Q_{\\mathcal{Q}}=a+\\frac{Y}{1+\\exp\\left(\\frac{T-T_{\\mathrm{half}}}{S}\\right)}"}, {"category_id": 14, "poly": [125, 1674, 566, 1674, 566, 1756, 125, 1756], "score": 0.93, "latex": "N_{\\mathrm{zero}}=a+b(\\Delta P)+\\frac{Y}{1+\\exp\\left(\\frac{T-T_{\\mathrm{half}}}{S}\\right)}"}, {"category_id": 13, "poly": [1306, 319, 1388, 319, 1388, 349, 1306, 349], "score": 0.91, "latex": "\\Delta P\\!=\\!0"}, {"category_id": 13, "poly": [529, 1555, 589, 1555, 589, 1585, 529, 1585], "score": 0.9, "latex": "N_{\\mathrm{zero}}"}, {"category_id": 13, "poly": [1281, 1176, 1365, 1176, 1365, 1205, 1281, 1205], "score": 0.9, "latex": "E\\!>\\!0.7"}, {"category_id": 13, "poly": [880, 1173, 931, 1173, 931, 1206, 880, 1206], "score": 0.89, "latex": "<\\!r^{2}"}, {"category_id": 13, "poly": [873, 1409, 932, 1409, 932, 1438, 873, 1438], "score": 0.89, "latex": "b\\!=\\!0"}, {"category_id": 13, "poly": [597, 1522, 656, 1522, 656, 1552, 597, 1552], "score": 0.89, "latex": "N_{\\mathrm{zero}}"}, {"category_id": 13, "poly": [792, 353, 856, 353, 856, 382, 792, 382], "score": 0.88, "latex": "a+Y"}, {"category_id": 13, "poly": [649, 1782, 731, 1782, 731, 1810, 649, 1810], "score": 0.88, "latex": "\\Delta P\\!=\\!0"}, {"category_id": 14, "poly": [791, 1663, 976, 1663, 976, 1699, 791, 1699], "score": 0.88, "latex": "Q_{\\%}=a+b\\Delta P"}, {"category_id": 13, "poly": [1199, 1409, 1259, 1409, 1259, 1438, 1199, 1438], "score": 0.87, "latex": "Y{=}\\,0"}, {"category_id": 13, "poly": [513, 1487, 585, 1487, 585, 1519, 513, 1519], "score": 0.85, "latex": "(N_{\\mathrm{zero}})"}, {"category_id": 13, "poly": [1335, 1073, 1362, 1073, 1362, 1104, 1335, 1104], "score": 0.84, "latex": "r^{2}"}, {"category_id": 13, "poly": [845, 908, 869, 908, 869, 938, 845, 938], "score": 0.81, "latex": "\\bar{O}"}, {"category_id": 13, "poly": [1123, 880, 1146, 880, 1146, 905, 1123, 905], "score": 0.79, "latex": "P"}, {"category_id": 13, "poly": [1344, 1145, 1367, 1145, 1367, 1171, 1344, 1171], "score": 0.79, "latex": "E"}, {"category_id": 13, "poly": [872, 879, 896, 879, 896, 905, 872, 905], "score": 0.77, "latex": "o"}, {"category_id": 13, "poly": [713, 1521, 731, 1521, 731, 1548, 713, 1548], "score": 0.76, "latex": "b"}, {"category_id": 13, "poly": [1274, 912, 1298, 912, 1298, 938, 1274, 938], "score": 0.76, "latex": "E"}, {"category_id": 13, "poly": [1347, 699, 1369, 699, 1369, 726, 1347, 726], "score": 0.75, "latex": "E"}, {"category_id": 13, "poly": [263, 1815, 326, 1815, 326, 1847, 263, 1847], "score": 0.74, "latex": "N_{\\mathrm{zero}}"}, {"category_id": 13, "poly": [185, 1814, 245, 1814, 245, 1845, 185, 1845], "score": 0.73, "latex": "T\\!\\!=\\!\\!0"}, {"category_id": 13, "poly": [1010, 1819, 1023, 1819, 1023, 1842, 1010, 1842], "score": 0.7, "latex": "t"}, {"category_id": 13, "poly": [1207, 565, 1246, 565, 1246, 596, 1207, 596], "score": 0.67, "latex": "(E)"}, {"category_id": 13, "poly": [1310, 979, 1364, 979, 1364, 1007, 1310, 1007], "score": 0.64, "latex": "-\\infty"}, {"category_id": 13, "poly": [1031, 1754, 1044, 1754, 1044, 1776, 1031, 1776], "score": 0.57, "latex": "t\\cdot"}, {"category_id": 13, "poly": [1313, 1818, 1326, 1818, 1326, 1842, 1313, 1842], "score": 0.57, "latex": "t\\cdot"}, {"category_id": 13, "poly": [960, 1073, 1001, 1073, 1001, 1108, 960, 1108], "score": 0.55, "latex": "(r^{2})"}, {"category_id": 13, "poly": [175, 1555, 194, 1555, 194, 1582, 175, 1582], "score": 0.47, "latex": "S"}, {"category_id": 13, "poly": [1020, 287, 1043, 287, 1043, 315, 1020, 315], "score": 0.38, "latex": "S"}, {"category_id": 13, "poly": [1016, 1076, 1040, 1076, 1040, 1105, 1016, 1105], "score": 0.36, "latex": "E"}, {"category_id": 13, "poly": [599, 1815, 660, 1815, 660, 1845, 599, 1845], "score": 0.35, "latex": "a,~Y"}, {"category_id": 13, "poly": [637, 1816, 660, 1816, 660, 1843, 637, 1843], "score": 0.32, "latex": "Y"}, {"category_id": 13, "poly": [184, 1814, 324, 1814, 324, 1847, 184, 1847], "score": 0.27, "latex": "T\\!\\!=\\!0,\\ N_{\\mathrm{zero}}"}, {"category_id": 15, "poly": [131.0, 1204.0, 732.0, 1204.0, 732.0, 1232.0, 131.0, 1232.0], "score": 1.0, "text": "Fig. 2. (a) Schematic of the change in the FDC over time, and"}, {"category_id": 15, "poly": [129.0, 1227.0, 447.0, 1232.0, 446.0, 1260.0, 129.0, 1255.0], "score": 0.98, "text": "(b) definition of model parameters."}, {"category_id": 15, "poly": [159.0, 1778.0, 648.0, 1778.0, 648.0, 1821.0, 159.0, 1821.0], "score": 0.99, "text": "For the average pre-treatment condition "}, {"category_id": 15, "poly": [327.0, 1819.0, 598.0, 1819.0, 598.0, 1849.0, 327.0, 1849.0], "score": 0.98, "text": " approximately equals"}, {"category_id": 15, "poly": [661.0, 1819.0, 728.0, 1819.0, 728.0, 1849.0, 661.0, 1849.0], "score": 1.0, "text": "gives"}, {"category_id": 15, "poly": [129.0, 1819.0, 183.0, 1819.0, 183.0, 1849.0, 129.0, 1849.0], "score": 0.88, "text": "and "}, {"category_id": 15, "poly": [793.0, 499.0, 1065.0, 499.0, 1065.0, 535.0, 793.0, 535.0], "score": 0.98, "text": "2.3. Statistical analyses"}, {"category_id": 15, "poly": [127.0, 189.0, 172.0, 189.0, 172.0, 228.0, 127.0, 228.0], "score": 1.0, "text": "256"}, {"category_id": 15, "poly": [825.0, 1245.0, 1396.0, 1245.0, 1396.0, 1275.0, 825.0, 1275.0], "score": 0.98, "text": "It is important to assess the significance of the"}, {"category_id": 15, "poly": [790.0, 1279.0, 1396.0, 1279.0, 1396.0, 1309.0, 790.0, 1309.0], "score": 0.97, "text": "model parameters to check the model assumptions"}, {"category_id": 15, "poly": [788.0, 1307.0, 1400.0, 1309.0, 1400.0, 1346.0, 788.0, 1344.0], "score": 1.0, "text": "that rainfall and forest age are driving changes in the"}, {"category_id": 15, "poly": [790.0, 1346.0, 1396.0, 1346.0, 1396.0, 1376.0, 790.0, 1376.0], "score": 0.99, "text": "FDC. The model (2) was split into simplified forms,"}, {"category_id": 15, "poly": [793.0, 1378.0, 1396.0, 1378.0, 1396.0, 1408.0, 793.0, 1408.0], "score": 1.0, "text": "where only the rainfall or time terms were included by"}, {"category_id": 15, "poly": [793.0, 1445.0, 1398.0, 1445.0, 1398.0, 1475.0, 793.0, 1475.0], "score": 0.99, "text": "Eq. (6). The component models (5) and (6) were then"}, {"category_id": 15, "poly": [790.0, 1477.0, 1233.0, 1477.0, 1233.0, 1507.0, 790.0, 1507.0], "score": 1.0, "text": "tested against the complete model, (2)."}, {"category_id": 15, "poly": [790.0, 1408.0, 872.0, 1408.0, 872.0, 1445.0, 790.0, 1445.0], "score": 0.99, "text": "setting"}, {"category_id": 15, "poly": [933.0, 1408.0, 1198.0, 1408.0, 1198.0, 1445.0, 933.0, 1445.0], "score": 0.99, "text": ", as shown in Eq. (5), or"}, {"category_id": 15, "poly": [1260.0, 1408.0, 1400.0, 1408.0, 1400.0, 1445.0, 1260.0, 1445.0], "score": 0.97, "text": "as shown in"}, {"category_id": 15, "poly": [481.0, 194.0, 1046.0, 194.0, 1046.0, 224.0, 481.0, 224.0], "score": 0.97, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [790.0, 944.0, 1400.0, 944.0, 1400.0, 980.0, 790.0, 980.0], "score": 1.0, "text": "minus the ratio of the mean square error to the"}, {"category_id": 15, "poly": [790.0, 1008.0, 1400.0, 1011.0, 1400.0, 1047.0, 790.0, 1045.0], "score": 0.98, "text": "1.0. Higher values indicate greater agreement between"}, {"category_id": 15, "poly": [788.0, 1041.0, 1403.0, 1043.0, 1402.0, 1079.0, 788.0, 1077.0], "score": 0.97, "text": " observed and predicted data as per the coefficient of "}, {"category_id": 15, "poly": [793.0, 1112.0, 1400.0, 1112.0, 1400.0, 1142.0, 793.0, 1142.0], "score": 0.97, "text": "evaluating hydrologic modelling because it is a"}, {"category_id": 15, "poly": [790.0, 1213.0, 1121.0, 1213.0, 1121.0, 1241.0, 790.0, 1241.0], "score": 0.99, "text": "indicate adequate model fits."}, {"category_id": 15, "poly": [1366.0, 1178.0, 1398.0, 1178.0, 1398.0, 1208.0, 1366.0, 1208.0], "score": 1.0, "text": "to"}, {"category_id": 15, "poly": [793.0, 1178.0, 879.0, 1178.0, 879.0, 1208.0, 793.0, 1208.0], "score": 1.0, "text": "always"}, {"category_id": 15, "poly": [932.0, 1178.0, 1280.0, 1178.0, 1280.0, 1208.0, 932.0, 1208.0], "score": 1.0, "text": "we have arbitrarily considered"}, {"category_id": 15, "poly": [1363.0, 1075.0, 1402.0, 1075.0, 1402.0, 1112.0, 1363.0, 1112.0], "score": 1.0, "text": "in"}, {"category_id": 15, "poly": [788.0, 909.0, 844.0, 909.0, 844.0, 946.0, 788.0, 946.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [1147.0, 875.0, 1398.0, 877.0, 1398.0, 914.0, 1147.0, 912.0], "score": 0.97, "text": " are predicted values,"}, {"category_id": 15, "poly": [793.0, 1146.0, 1343.0, 1146.0, 1343.0, 1176.0, 793.0, 1176.0], "score": 1.0, "text": "measure of the deviation from the 1:1 line. As"}, {"category_id": 15, "poly": [1368.0, 1146.0, 1398.0, 1146.0, 1398.0, 1176.0, 1368.0, 1176.0], "score": 1.0, "text": "is"}, {"category_id": 15, "poly": [788.0, 875.0, 871.0, 877.0, 871.0, 914.0, 788.0, 912.0], "score": 1.0, "text": "where"}, {"category_id": 15, "poly": [897.0, 875.0, 1122.0, 877.0, 1122.0, 914.0, 897.0, 912.0], "score": 1.0, "text": "are observed data,"}, {"category_id": 15, "poly": [870.0, 909.0, 1273.0, 909.0, 1273.0, 946.0, 870.0, 946.0], "score": 0.97, "text": " is the mean for the entire period."}, {"category_id": 15, "poly": [1299.0, 909.0, 1398.0, 909.0, 1398.0, 946.0, 1299.0, 946.0], "score": 1.0, "text": "is unity"}, {"category_id": 15, "poly": [793.0, 980.0, 1309.0, 980.0, 1309.0, 1010.0, 793.0, 1010.0], "score": 1.0, "text": "variance in the observed data, and ranges from"}, {"category_id": 15, "poly": [1365.0, 980.0, 1398.0, 980.0, 1398.0, 1010.0, 1365.0, 1010.0], "score": 1.0, "text": "to"}, {"category_id": 15, "poly": [790.0, 1075.0, 959.0, 1075.0, 959.0, 1112.0, 790.0, 1112.0], "score": 1.0, "text": "determination"}, {"category_id": 15, "poly": [1041.0, 1075.0, 1334.0, 1075.0, 1334.0, 1112.0, 1041.0, 1112.0], "score": 0.98, "text": "is used in preference to"}, {"category_id": 15, "poly": [790.0, 596.0, 1398.0, 598.0, 1398.0, 634.0, 790.0, 632.0], "score": 1.0, "text": "Sutcliffe, 1970; Chiew and McMahon, 1993; Legates"}, {"category_id": 15, "poly": [788.0, 628.0, 1396.0, 632.0, 1396.0, 667.0, 788.0, 662.0], "score": 0.96, "text": " and McCabe, 1999) was used as the ^goodness of fit\u2019"}, {"category_id": 15, "poly": [793.0, 669.0, 1398.0, 669.0, 1398.0, 697.0, 793.0, 697.0], "score": 0.99, "text": "measure to evaluate the fit between observed and"}, {"category_id": 15, "poly": [790.0, 736.0, 905.0, 731.0, 907.0, 763.0, 791.0, 768.0], "score": 0.98, "text": "given by:"}, {"category_id": 15, "poly": [790.0, 701.0, 1346.0, 699.0, 1346.0, 729.0, 790.0, 731.0], "score": 0.99, "text": "predicted flow deciles (2) and zero flow days (3)."}, {"category_id": 15, "poly": [1370.0, 701.0, 1398.0, 699.0, 1398.0, 729.0, 1370.0, 731.0], "score": 1.0, "text": "is"}, {"category_id": 15, "poly": [827.0, 568.0, 1206.0, 568.0, 1206.0, 598.0, 827.0, 598.0], "score": 0.95, "text": "The coefficient of efficiency"}, {"category_id": 15, "poly": [1247.0, 568.0, 1398.0, 568.0, 1398.0, 598.0, 1247.0, 598.0], "score": 0.97, "text": "(Nash and"}, {"category_id": 15, "poly": [825.0, 1716.0, 1394.0, 1716.0, 1394.0, 1752.0, 825.0, 1752.0], "score": 0.99, "text": "For both the fow duration curve analysis and zero"}, {"category_id": 15, "poly": [795.0, 1784.0, 1392.0, 1784.0, 1392.0, 1815.0, 795.0, 1815.0], "score": 0.98, "text": "whether (5) and (6) were significantly different to (2)."}, {"category_id": 15, "poly": [790.0, 1812.0, 1009.0, 1815.0, 1009.0, 1851.0, 790.0, 1849.0], "score": 0.99, "text": "A critical value of"}, {"category_id": 15, "poly": [790.0, 1750.0, 1030.0, 1752.0, 1030.0, 1782.0, 790.0, 1780.0], "score": 1.0, "text": "flow days analysis, a"}, {"category_id": 15, "poly": [1045.0, 1750.0, 1394.0, 1752.0, 1394.0, 1782.0, 1045.0, 1780.0], "score": 0.98, "text": "-test was then performed to test"}, {"category_id": 15, "poly": [1024.0, 1812.0, 1312.0, 1815.0, 1312.0, 1851.0, 1024.0, 1849.0], "score": 1.0, "text": "exceeding the calculated"}, {"category_id": 15, "poly": [1327.0, 1812.0, 1396.0, 1815.0, 1396.0, 1851.0, 1327.0, 1849.0], "score": 1.0, "text": "value"}, {"category_id": 15, "poly": [795.0, 256.0, 1398.0, 256.0, 1398.0, 286.0, 795.0, 286.0], "score": 0.97, "text": "the magnitude of change in zero flow days due to"}, {"category_id": 15, "poly": [790.0, 389.0, 1398.0, 389.0, 1398.0, 419.0, 790.0, 419.0], "score": 0.96, "text": "new equilibrium condition under afforestation is"}, {"category_id": 15, "poly": [790.0, 421.0, 891.0, 421.0, 891.0, 452.0, 790.0, 452.0], "score": 1.0, "text": "reached."}, {"category_id": 15, "poly": [793.0, 322.0, 1305.0, 322.0, 1305.0, 353.0, 793.0, 353.0], "score": 1.0, "text": "response. For the average climate condition"}, {"category_id": 15, "poly": [857.0, 355.0, 1398.0, 355.0, 1398.0, 385.0, 857.0, 385.0], "score": 0.99, "text": "becomes the number of zero flow days when the"}, {"category_id": 15, "poly": [793.0, 290.0, 1019.0, 290.0, 1019.0, 320.0, 793.0, 320.0], "score": 0.98, "text": "afforestation, and"}, {"category_id": 15, "poly": [1044.0, 290.0, 1398.0, 290.0, 1398.0, 320.0, 1044.0, 320.0], "score": 0.95, "text": " describes the shape of the"}, {"category_id": 15, "poly": [157.0, 1350.0, 732.0, 1352.0, 732.0, 1389.0, 157.0, 1387.0], "score": 0.98, "text": " A notable feature of Fig. 1 is the increase in the"}, {"category_id": 15, "poly": [127.0, 1389.0, 735.0, 1389.0, 735.0, 1425.0, 127.0, 1425.0], "score": 0.99, "text": "number of zero fow days. A similar approach to"}, {"category_id": 15, "poly": [129.0, 1423.0, 735.0, 1423.0, 735.0, 1453.0, 129.0, 1453.0], "score": 0.98, "text": "Eq. (2), using an inverse sigmoidal function was"}, {"category_id": 15, "poly": [129.0, 1456.0, 732.0, 1456.0, 732.0, 1486.0, 129.0, 1486.0], "score": 0.98, "text": "employed to assess the impact of afforestation on the"}, {"category_id": 15, "poly": [129.0, 1589.0, 735.0, 1589.0, 735.0, 1619.0, 129.0, 1619.0], "score": 0.99, "text": "rainfall increases, and increases with plantation"}, {"category_id": 15, "poly": [126.0, 1624.0, 220.0, 1618.0, 222.0, 1651.0, 128.0, 1656.0], "score": 1.0, "text": "growth:"}, {"category_id": 15, "poly": [590.0, 1557.0, 732.0, 1557.0, 732.0, 1587.0, 590.0, 1587.0], "score": 1.0, "text": "decreases as"}, {"category_id": 15, "poly": [129.0, 1524.0, 596.0, 1524.0, 596.0, 1554.0, 129.0, 1554.0], "score": 0.98, "text": "the left hand side of Eq. (2) is replaced by"}, {"category_id": 15, "poly": [129.0, 1490.0, 512.0, 1490.0, 512.0, 1520.0, 129.0, 1520.0], "score": 0.99, "text": "number of zero flow days per year"}, {"category_id": 15, "poly": [586.0, 1490.0, 732.0, 1490.0, 732.0, 1520.0, 586.0, 1520.0], "score": 0.97, "text": ". In this case,"}, {"category_id": 15, "poly": [657.0, 1524.0, 712.0, 1524.0, 712.0, 1554.0, 657.0, 1554.0], "score": 0.97, "text": ", and"}, {"category_id": 15, "poly": [129.0, 1557.0, 174.0, 1557.0, 174.0, 1587.0, 129.0, 1587.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [195.0, 1557.0, 528.0, 1557.0, 528.0, 1587.0, 195.0, 1587.0], "score": 0.99, "text": "are constrained to negative as"}, {"category_id": 15, "poly": [129.0, 1288.0, 438.0, 1288.0, 438.0, 1324.0, 129.0, 1324.0], "score": 0.99, "text": "2.2. Zero fow day analysis"}, {"category_id": 15, "poly": [788.0, 1617.0, 844.0, 1617.0, 844.0, 1662.0, 788.0, 1662.0], "score": 1.0, "text": "and"}], "page_info": {"page_no": 3, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 1, "poly": [780.4981079101562, 951.0537109375, 1382.5201416015625, 951.0537109375, 1382.5201416015625, 1648.58154296875, 780.4981079101562, 1648.58154296875], "score": 0.9999959468841553}, {"category_id": 2, "poly": [466.9576110839844, 194.6658935546875, 1030.6968994140625, 194.6658935546875, 1030.6968994140625, 219.20504760742188, 466.9576110839844, 219.20504760742188], "score": 0.9999955892562866}, {"category_id": 0, "poly": [782.29931640625, 886.77197265625, 919.8917236328125, 886.77197265625, 919.8917236328125, 915.8782348632812, 782.29931640625, 915.8782348632812], "score": 0.9999911189079285}, {"category_id": 1, "poly": [782.0343017578125, 253.53207397460938, 1382.2440185546875, 253.53207397460938, 1382.2440185546875, 350.4256896972656, 782.0343017578125, 350.4256896972656], "score": 0.9999889731407166}, {"category_id": 1, "poly": [781.621826171875, 653.5359497070312, 1381.272705078125, 653.5359497070312, 1381.272705078125, 783.18798828125, 781.621826171875, 783.18798828125], "score": 0.9999889731407166}, {"category_id": 5, "poly": [182.05813598632812, 248.86912536621094, 650.3305053710938, 248.86912536621094, 650.3305053710938, 1845.613037109375, 182.05813598632812, 1845.613037109375], "score": 0.9999887347221375}, {"category_id": 1, "poly": [781.0881958007812, 1650.3038330078125, 1382.088134765625, 1650.3038330078125, 1382.088134765625, 1848.214111328125, 781.0881958007812, 1848.214111328125], "score": 0.9999865293502808}, {"category_id": 2, "poly": [1346.05322265625, 194.5203399658203, 1381.46875, 194.5203399658203, 1381.46875, 216.90557861328125, 1346.05322265625, 216.90557861328125], "score": 0.9999804496765137}, {"category_id": 8, "poly": [779.12451171875, 544.6279296875, 1165.58349609375, 544.6279296875, 1165.58349609375, 623.5341796875, 779.12451171875, 623.5341796875], "score": 0.9999717473983765}, {"category_id": 1, "poly": [781.6971435546875, 352.1080017089844, 1382.5953369140625, 352.1080017089844, 1382.5953369140625, 515.912109375, 781.6971435546875, 515.912109375], "score": 0.999969482421875}, {"category_id": 9, "poly": [1347.20849609375, 571.1251831054688, 1380.7503662109375, 571.1251831054688, 1380.7503662109375, 601.0969848632812, 1347.20849609375, 601.0969848632812], "score": 0.9999024868011475}, {"category_id": 7, "poly": [659.8250732421875, 882.5633544921875, 686.8219604492188, 882.5633544921875, 686.8219604492188, 1842.583251953125, 659.8250732421875, 1842.583251953125], "score": 0.9764553904533386}, {"category_id": 6, "poly": [112.29073333740234, 1497.288330078125, 169.8206329345703, 1497.288330078125, 169.8206329345703, 1843.9019775390625, 112.29073333740234, 1843.9019775390625], "score": 0.8885180950164795}, {"category_id": 14, "poly": [776, 546, 1164, 546, 1164, 622, 776, 622], "score": 0.91, "latex": "F=\\frac{[(\\mathrm{SSE_{s}-S S E_{c}})/(\\mathrm{df_{c}-d f_{s}})]}{\\mathrm{SSE_{c}/d f_{c}}}"}, {"category_id": 13, "poly": [1087, 415, 1135, 415, 1135, 447, 1087, 447], "score": 0.88, "latex": "F^{0.5}"}, {"category_id": 13, "poly": [1155, 1183, 1223, 1183, 1223, 1214, 1155, 1214], "score": 0.86, "latex": "100\\%"}, {"category_id": 13, "poly": [779, 1781, 820, 1781, 820, 1812, 779, 1812], "score": 0.82, "latex": "6\\%"}, {"category_id": 13, "poly": [831, 487, 852, 487, 852, 513, 831, 513], "score": 0.77, "latex": "F"}, {"category_id": 13, "poly": [1120, 390, 1133, 390, 1133, 413, 1120, 413], "score": 0.72, "latex": "t\\cdot"}, {"category_id": 13, "poly": [780, 423, 792, 423, 792, 446, 780, 446], "score": 0.49, "latex": "t\\cdot"}, {"category_id": 13, "poly": [1074, 1716, 1095, 1716, 1095, 1742, 1074, 1742], "score": 0.31, "latex": "P"}, {"category_id": 15, "poly": [814.0, 952.0, 1383.0, 952.0, 1383.0, 983.0, 814.0, 983.0], "score": 0.98, "text": "Daily streamflow data were obtained from 10"}, {"category_id": 15, "poly": [782.0, 987.0, 1383.0, 987.0, 1383.0, 1017.0, 782.0, 1017.0], "score": 0.99, "text": "catchment studies from southeastern Australia, New"}, {"category_id": 15, "poly": [780.0, 1019.0, 1383.0, 1019.0, 1383.0, 1049.0, 780.0, 1049.0], "score": 0.99, "text": "Zealand and South Africa. The initial criteria for"}, {"category_id": 15, "poly": [775.0, 1047.0, 1383.0, 1051.0, 1383.0, 1088.0, 775.0, 1084.0], "score": 0.99, "text": "selection of these catchments were a known veg-"}, {"category_id": 15, "poly": [780.0, 1088.0, 1385.0, 1088.0, 1385.0, 1118.0, 780.0, 1118.0], "score": 0.95, "text": "etation history and streamflow records of good"}, {"category_id": 15, "poly": [780.0, 1120.0, 1381.0, 1120.0, 1381.0, 1150.0, 780.0, 1150.0], "score": 0.99, "text": "quality. The ideal data sets were those with a lengthy"}, {"category_id": 15, "poly": [777.0, 1155.0, 1385.0, 1152.0, 1385.0, 1182.0, 778.0, 1185.0], "score": 0.97, "text": "pre- and post-treatment (plantation establishment)"}, {"category_id": 15, "poly": [775.0, 1215.0, 1387.0, 1217.0, 1387.0, 1253.0, 775.0, 1251.0], "score": 0.99, "text": " ment converted from grassland or a crop equivalent to"}, {"category_id": 15, "poly": [780.0, 1253.0, 1385.0, 1253.0, 1385.0, 1284.0, 780.0, 1284.0], "score": 0.99, "text": "plantation. In reality, all these criteria were not easy to"}, {"category_id": 15, "poly": [782.0, 1286.0, 1383.0, 1286.0, 1383.0, 1316.0, 782.0, 1316.0], "score": 0.99, "text": "satisfy. For example in Victoria, Australia, the best"}, {"category_id": 15, "poly": [780.0, 1320.0, 1385.0, 1320.0, 1385.0, 1348.0, 780.0, 1348.0], "score": 0.99, "text": "data is from Stewarts Creek, a set of decommissioned"}, {"category_id": 15, "poly": [780.0, 1352.0, 1385.0, 1352.0, 1385.0, 1382.0, 780.0, 1382.0], "score": 0.99, "text": "research catchments with 9 years of pre-treatment"}, {"category_id": 15, "poly": [780.0, 1387.0, 1383.0, 1387.0, 1383.0, 1417.0, 780.0, 1417.0], "score": 1.0, "text": "data and 25 years of post-treatment. Here, though, the"}, {"category_id": 15, "poly": [778.0, 1417.0, 1383.0, 1419.0, 1383.0, 1449.0, 777.0, 1447.0], "score": 0.98, "text": "treatment was a conversion from native eucalypt"}, {"category_id": 15, "poly": [780.0, 1453.0, 1385.0, 1453.0, 1385.0, 1484.0, 780.0, 1484.0], "score": 0.99, "text": "forest to pine. The assumption made for this data set is"}, {"category_id": 15, "poly": [780.0, 1486.0, 1383.0, 1486.0, 1383.0, 1516.0, 780.0, 1516.0], "score": 0.98, "text": "that the immediate post-treatment period may be"}, {"category_id": 15, "poly": [780.0, 1518.0, 1383.0, 1518.0, 1383.0, 1548.0, 780.0, 1548.0], "score": 0.99, "text": "viewed as a non-forested condition. This condition is"}, {"category_id": 15, "poly": [777.0, 1552.0, 1385.0, 1552.0, 1385.0, 1582.0, 777.0, 1582.0], "score": 0.99, "text": "likely to approximate the ET conditions of pasture or"}, {"category_id": 15, "poly": [780.0, 1587.0, 1385.0, 1587.0, 1385.0, 1617.0, 780.0, 1617.0], "score": 0.98, "text": "short crops for up to 3 years. Catchment details and"}, {"category_id": 15, "poly": [775.0, 1619.0, 1145.0, 1617.0, 1145.0, 1647.0, 775.0, 1649.0], "score": 1.0, "text": "treatments are given in Table 1."}, {"category_id": 15, "poly": [780.0, 1187.0, 1154.0, 1187.0, 1154.0, 1217.0, 780.0, 1217.0], "score": 0.98, "text": "flow record with approximately"}, {"category_id": 15, "poly": [1224.0, 1187.0, 1381.0, 1187.0, 1381.0, 1217.0, 1224.0, 1217.0], "score": 0.99, "text": "of the catch-"}, {"category_id": 15, "poly": [466.0, 194.0, 1033.0, 194.0, 1033.0, 224.0, 466.0, 224.0], "score": 0.99, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [776.0, 881.0, 924.0, 886.0, 923.0, 925.0, 775.0, 920.0], "score": 0.96, "text": " 3. Data sets"}, {"category_id": 15, "poly": [782.0, 254.0, 1383.0, 254.0, 1383.0, 290.0, 782.0, 290.0], "score": 0.99, "text": "when comparing (5) and (2) would indicate the time"}, {"category_id": 15, "poly": [782.0, 290.0, 1381.0, 290.0, 1381.0, 320.0, 782.0, 320.0], "score": 1.0, "text": "term in (6) was required to improve the complete"}, {"category_id": 15, "poly": [778.0, 318.0, 1347.0, 320.0, 1347.0, 357.0, 777.0, 355.0], "score": 1.0, "text": "model and is therefore significant, and vice versa."}, {"category_id": 15, "poly": [782.0, 656.0, 1385.0, 656.0, 1385.0, 686.0, 782.0, 686.0], "score": 1.0, "text": "where SSE is the residual sum of the squared errors, df"}, {"category_id": 15, "poly": [780.0, 686.0, 1383.0, 686.0, 1383.0, 722.0, 780.0, 722.0], "score": 0.99, "text": "is degrees of freedom, and the subscripts s and c refer"}, {"category_id": 15, "poly": [778.0, 720.0, 1379.0, 722.0, 1379.0, 753.0, 777.0, 750.0], "score": 0.98, "text": "to the simplified model and complete models,"}, {"category_id": 15, "poly": [777.0, 752.0, 926.0, 752.0, 926.0, 789.0, 777.0, 789.0], "score": 0.97, "text": "respectively."}, {"category_id": 15, "poly": [816.0, 1651.0, 1381.0, 1651.0, 1381.0, 1681.0, 816.0, 1681.0], "score": 0.99, "text": "All catchments, with the exception of Traralgon"}, {"category_id": 15, "poly": [782.0, 1686.0, 1379.0, 1686.0, 1379.0, 1716.0, 782.0, 1716.0], "score": 1.0, "text": "Creek, were afforested with pine species, predomi-"}, {"category_id": 15, "poly": [782.0, 1752.0, 1379.0, 1752.0, 1379.0, 1782.0, 782.0, 1782.0], "score": 1.0, "text": "Cathedral Peak catchments. Traralgon Creek has only"}, {"category_id": 15, "poly": [776.0, 1812.0, 1147.0, 1817.0, 1147.0, 1851.0, 775.0, 1847.0], "score": 0.99, "text": "of which is Eucalyptus regnans."}, {"category_id": 15, "poly": [821.0, 1784.0, 1381.0, 1784.0, 1381.0, 1815.0, 821.0, 1815.0], "score": 0.99, "text": " pine, with the remainder eucalypts species, most"}, {"category_id": 15, "poly": [780.0, 1718.0, 1073.0, 1718.0, 1073.0, 1748.0, 780.0, 1748.0], "score": 0.97, "text": "nantly Pinus radiata, with"}, {"category_id": 15, "poly": [1096.0, 1718.0, 1381.0, 1718.0, 1381.0, 1748.0, 1096.0, 1748.0], "score": 0.96, "text": "patula planted at the two"}, {"category_id": 15, "poly": [1340.0, 189.0, 1387.0, 189.0, 1387.0, 239.0, 1340.0, 239.0], "score": 1.0, "text": "257"}, {"category_id": 15, "poly": [814.0, 355.0, 1383.0, 355.0, 1383.0, 385.0, 814.0, 385.0], "score": 0.98, "text": "Due to the constraint that the rainfall and time term"}, {"category_id": 15, "poly": [780.0, 456.0, 1381.0, 456.0, 1381.0, 486.0, 780.0, 486.0], "score": 0.97, "text": "the critical value for significance at the 0.05 level."}, {"category_id": 15, "poly": [1136.0, 415.0, 1383.0, 417.0, 1383.0, 454.0, 1136.0, 451.0], "score": 0.98, "text": ", and compared with"}, {"category_id": 15, "poly": [780.0, 486.0, 830.0, 488.0, 830.0, 518.0, 780.0, 516.0], "score": 1.0, "text": "The"}, {"category_id": 15, "poly": [853.0, 486.0, 1160.0, 488.0, 1160.0, 518.0, 853.0, 516.0], "score": 0.99, "text": "-statistic was calculated as:"}, {"category_id": 15, "poly": [782.0, 389.0, 1119.0, 389.0, 1119.0, 419.0, 782.0, 419.0], "score": 0.99, "text": "must be positive, a one tailed"}, {"category_id": 15, "poly": [1134.0, 389.0, 1381.0, 389.0, 1381.0, 419.0, 1134.0, 419.0], "score": 0.98, "text": "-test was applied. The"}, {"category_id": 15, "poly": [793.0, 415.0, 1086.0, 417.0, 1086.0, 454.0, 793.0, 451.0], "score": 0.96, "text": "-value was calculated as"}], "page_info": {"page_no": 4, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 1, "poly": [795.8170166015625, 1284.819091796875, 1393.7825927734375, 1284.819091796875, 1393.7825927734375, 1348.0101318359375, 795.8170166015625, 1348.0101318359375], "score": 0.999998927116394}, {"category_id": 0, "poly": [796.8157348632812, 1217.8375244140625, 1043.37890625, 1217.8375244140625, 1043.37890625, 1247.9854736328125, 796.8157348632812, 1247.9854736328125], "score": 0.9999985694885254}, {"category_id": 2, "poly": [129.85670471191406, 196.5391082763672, 165.74688720703125, 196.5391082763672, 165.74688720703125, 216.1761932373047, 129.85670471191406, 216.1761932373047], "score": 0.9999985098838806}, {"category_id": 6, "poly": [129.43519592285156, 1376.390380859375, 374.6851806640625, 1376.390380859375, 374.6851806640625, 1428.6553955078125, 129.43519592285156, 1428.6553955078125], "score": 0.9999979734420776}, {"category_id": 0, "poly": [796.9744873046875, 1150.6444091796875, 911.8010864257812, 1150.6444091796875, 911.8010864257812, 1181.93017578125, 796.9744873046875, 1181.93017578125], "score": 0.9999944567680359}, {"category_id": 1, "poly": [793.93212890625, 785.8515625, 1394.5316162109375, 785.8515625, 1394.5316162109375, 1081.7857666015625, 793.93212890625, 1081.7857666015625], "score": 0.9999939203262329}, {"category_id": 5, "poly": [123.9719009399414, 1433.21337890625, 1400.553466796875, 1433.21337890625, 1400.553466796875, 1814.204345703125, 123.9719009399414, 1814.204345703125], "score": 0.9999938011169434}, {"category_id": 1, "poly": [130.5817108154297, 786.2269897460938, 730.632080078125, 786.2269897460938, 730.632080078125, 1349.01904296875, 130.5817108154297, 1349.01904296875], "score": 0.9999901652336121}, {"category_id": 6, "poly": [128.56288146972656, 253.8047637939453, 514.1275024414062, 253.8047637939453, 514.1275024414062, 308.0131530761719, 128.56288146972656, 308.0131530761719], "score": 0.9999885559082031}, {"category_id": 5, "poly": [126.36900329589844, 314.1026611328125, 1399.912109375, 314.1026611328125, 1399.912109375, 690.7048950195312, 126.36900329589844, 690.7048950195312], "score": 0.9999723434448242}, {"category_id": 2, "poly": [479.1275939941406, 195.43199157714844, 1044.5283203125, 195.43199157714844, 1044.5283203125, 218.68853759765625, 479.1275939941406, 218.68853759765625], "score": 0.9999346733093262}, {"category_id": 7, "poly": [128.99925231933594, 698.5426635742188, 1394.448486328125, 698.5426635742188, 1394.448486328125, 749.8440551757812, 128.99925231933594, 749.8440551757812], "score": 0.9987799525260925}, {"category_id": 7, "poly": [127.37924194335938, 1819.0853271484375, 1038.7354736328125, 1819.0853271484375, 1038.7354736328125, 1844.94091796875, 127.37924194335938, 1844.94091796875], "score": 0.9987504482269287}, {"category_id": 13, "poly": [626, 696, 660, 696, 660, 720, 626, 720], "score": 0.86, "latex": "5\\%"}, {"category_id": 13, "poly": [1190, 697, 1224, 697, 1224, 720, 1190, 720], "score": 0.86, "latex": "5\\%"}, {"category_id": 13, "poly": [299, 724, 342, 724, 342, 748, 299, 748], "score": 0.85, "latex": "10\\%"}, {"category_id": 13, "poly": [128, 698, 146, 698, 146, 719, 128, 719], "score": 0.69, "latex": "P"}, {"category_id": 13, "poly": [719, 697, 737, 697, 737, 719, 719, 719], "score": 0.44, "latex": "T"}, {"category_id": 13, "poly": [356, 1404, 375, 1404, 375, 1426, 356, 1426], "score": 0.33, "latex": "E"}, {"category_id": 15, "poly": [827.0, 1286.0, 1396.0, 1286.0, 1396.0, 1316.0, 827.0, 1316.0], "score": 0.95, "text": "The fit of the complete model, Eq. (2), to the"}, {"category_id": 15, "poly": [795.0, 1322.0, 1394.0, 1322.0, 1394.0, 1352.0, 795.0, 1352.0], "score": 0.98, "text": "observed data was generally good. Table 2 gives"}, {"category_id": 15, "poly": [795.0, 1221.0, 1046.0, 1221.0, 1046.0, 1251.0, 795.0, 1251.0], "score": 1.0, "text": "4.1. Model evaluation"}, {"category_id": 15, "poly": [127.0, 189.0, 172.0, 189.0, 172.0, 228.0, 127.0, 228.0], "score": 1.0, "text": "258"}, {"category_id": 15, "poly": [131.0, 1378.0, 204.0, 1378.0, 204.0, 1402.0, 131.0, 1402.0], "score": 0.93, "text": "Table 3"}, {"category_id": 15, "poly": [127.0, 1397.0, 355.0, 1400.0, 355.0, 1436.0, 127.0, 1434.0], "score": 0.97, "text": "Coefficient of efficiency,"}, {"category_id": 15, "poly": [790.0, 1150.0, 915.0, 1150.0, 915.0, 1189.0, 790.0, 1189.0], "score": 1.0, "text": "4. Results"}, {"category_id": 15, "poly": [793.0, 787.0, 1396.0, 787.0, 1396.0, 817.0, 793.0, 817.0], "score": 0.99, "text": "and Redhill the lower BFI is matched by the shallow"}, {"category_id": 15, "poly": [793.0, 821.0, 1398.0, 821.0, 1398.0, 849.0, 793.0, 849.0], "score": 0.99, "text": "soils. Pre-treatment data is not available for all"}, {"category_id": 15, "poly": [793.0, 854.0, 1398.0, 854.0, 1398.0, 884.0, 793.0, 884.0], "score": 0.98, "text": "catchment in the data set, so it was decided for the"}, {"category_id": 15, "poly": [793.0, 886.0, 1396.0, 886.0, 1396.0, 916.0, 793.0, 916.0], "score": 1.0, "text": "sake of consistency in the analysis to start each of the"}, {"category_id": 15, "poly": [795.0, 920.0, 1396.0, 920.0, 1396.0, 950.0, 795.0, 950.0], "score": 0.98, "text": "data sets in the year of treatment. The FDCs were"}, {"category_id": 15, "poly": [795.0, 955.0, 1396.0, 955.0, 1396.0, 985.0, 795.0, 985.0], "score": 0.99, "text": "constructed for water years of May-April for eight"}, {"category_id": 15, "poly": [793.0, 987.0, 1396.0, 987.0, 1396.0, 1017.0, 793.0, 1017.0], "score": 1.0, "text": "catchments. The 2 Cathedral Peak catchments were"}, {"category_id": 15, "poly": [790.0, 1019.0, 1398.0, 1019.0, 1398.0, 1049.0, 790.0, 1049.0], "score": 0.98, "text": "analysed for November-October because of the"}, {"category_id": 15, "poly": [790.0, 1054.0, 1192.0, 1054.0, 1192.0, 1084.0, 790.0, 1084.0], "score": 1.0, "text": "summer rainfall maxima (Table 2)."}, {"category_id": 15, "poly": [163.0, 785.0, 732.0, 785.0, 732.0, 815.0, 163.0, 815.0], "score": 0.98, "text": "Data on soil characteristics have been obtained"}, {"category_id": 15, "poly": [125.0, 815.0, 735.0, 817.0, 734.0, 854.0, 125.0, 851.0], "score": 1.0, "text": "from published reports and personal communication"}, {"category_id": 15, "poly": [125.0, 849.0, 732.0, 851.0, 732.0, 888.0, 125.0, 886.0], "score": 1.0, "text": "with researchers, but is far from uniform, particularly"}, {"category_id": 15, "poly": [124.0, 886.0, 734.0, 881.0, 735.0, 918.0, 125.0, 922.0], "score": 1.0, "text": "regarding porosity. Consequently only an indication"}, {"category_id": 15, "poly": [129.0, 920.0, 732.0, 920.0, 732.0, 950.0, 129.0, 950.0], "score": 0.99, "text": "of mean depth is reported here. However, this does"}, {"category_id": 15, "poly": [125.0, 950.0, 732.0, 952.0, 732.0, 989.0, 125.0, 987.0], "score": 0.99, "text": " give some indication of the likely relative storage"}, {"category_id": 15, "poly": [129.0, 987.0, 732.0, 987.0, 732.0, 1017.0, 129.0, 1017.0], "score": 0.99, "text": "capacities of the catchments. To obtain insights into"}, {"category_id": 15, "poly": [129.0, 1021.0, 732.0, 1021.0, 732.0, 1051.0, 129.0, 1051.0], "score": 0.97, "text": "the pre-afforestation hydrologic characteristics a"}, {"category_id": 15, "poly": [129.0, 1054.0, 732.0, 1054.0, 732.0, 1084.0, 129.0, 1084.0], "score": 0.99, "text": "baseflow separation was performed on the daily"}, {"category_id": 15, "poly": [129.0, 1088.0, 732.0, 1088.0, 732.0, 1118.0, 129.0, 1118.0], "score": 0.97, "text": "fows for the first 3 years following disturbance,"}, {"category_id": 15, "poly": [129.0, 1118.0, 730.0, 1118.0, 730.0, 1148.0, 129.0, 1148.0], "score": 0.98, "text": "using the digital filtering method of Lyne and Hollick"}, {"category_id": 15, "poly": [129.0, 1152.0, 732.0, 1152.0, 732.0, 1182.0, 129.0, 1182.0], "score": 0.98, "text": "(1979) with a filter coefficient of 0.925 and three"}, {"category_id": 15, "poly": [125.0, 1185.0, 734.0, 1182.0, 735.0, 1219.0, 125.0, 1221.0], "score": 0.99, "text": " passes. The resultant average basefow index (BFI),"}, {"category_id": 15, "poly": [129.0, 1221.0, 730.0, 1221.0, 730.0, 1249.0, 129.0, 1249.0], "score": 0.98, "text": "the ratio of baseflow to total flow, is given in Table 1."}, {"category_id": 15, "poly": [129.0, 1251.0, 730.0, 1251.0, 730.0, 1281.0, 129.0, 1281.0], "score": 0.97, "text": "The Australian catchments display a notably"}, {"category_id": 15, "poly": [129.0, 1288.0, 732.0, 1288.0, 732.0, 1316.0, 129.0, 1316.0], "score": 0.98, "text": "lower BFI than the South African and New Zealand"}, {"category_id": 15, "poly": [127.0, 1320.0, 734.0, 1318.0, 735.0, 1348.0, 127.0, 1350.0], "score": 0.96, "text": "catchments. For Stewarts Creek, Pine Creek"}, {"category_id": 15, "poly": [129.0, 252.0, 208.0, 252.0, 208.0, 282.0, 129.0, 282.0], "score": 0.98, "text": "Table 2"}, {"category_id": 15, "poly": [129.0, 282.0, 513.0, 282.0, 513.0, 312.0, 129.0, 312.0], "score": 0.99, "text": "Significance of the rainfall and time terms"}, {"category_id": 15, "poly": [481.0, 194.0, 1046.0, 194.0, 1046.0, 224.0, 481.0, 224.0], "score": 0.97, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [1225.0, 697.0, 1396.0, 697.0, 1396.0, 727.0, 1225.0, 727.0], "score": 0.98, "text": "level, * represents"}, {"category_id": 15, "poly": [129.0, 725.0, 298.0, 725.0, 298.0, 755.0, 129.0, 755.0], "score": 0.98, "text": "significance at the"}, {"category_id": 15, "poly": [343.0, 725.0, 941.0, 725.0, 941.0, 755.0, 343.0, 755.0], "score": 0.99, "text": "level, and na denotes too few data points for meaningful analysis."}, {"category_id": 15, "poly": [147.0, 697.0, 625.0, 697.0, 625.0, 727.0, 147.0, 727.0], "score": 0.98, "text": " indicates that the rainfall term was significant at the"}, {"category_id": 15, "poly": [661.0, 697.0, 718.0, 697.0, 718.0, 727.0, 661.0, 727.0], "score": 1.0, "text": "level,"}, {"category_id": 15, "poly": [738.0, 697.0, 1189.0, 697.0, 1189.0, 727.0, 738.0, 727.0], "score": 0.99, "text": "indicates that the time term was significant at the"}, {"category_id": 15, "poly": [129.0, 1821.0, 1037.0, 1821.0, 1037.0, 1849.0, 129.0, 1849.0], "score": 0.99, "text": "ns Indicates that no solution was found, and na denotes deciles with too few data points for analysis"}], "page_info": {"page_no": 5, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 2, "poly": [1345.084228515625, 193.99124145507812, 1383.04443359375, 193.99124145507812, 1383.04443359375, 217.28871154785156, 1345.084228515625, 217.28871154785156], "score": 0.9999984502792358}, {"category_id": 1, "poly": [778.7415161132812, 875.8572387695312, 1385.70263671875, 875.8572387695312, 1385.70263671875, 1045.03857421875, 778.7415161132812, 1045.03857421875], "score": 0.9999930262565613}, {"category_id": 1, "poly": [112.97018432617188, 850.864990234375, 721.0302124023438, 850.864990234375, 721.0302124023438, 1216.21875, 112.97018432617188, 1216.21875], "score": 0.9999922513961792}, {"category_id": 4, "poly": [777.7315673828125, 753.8668212890625, 1386.6640625, 753.8668212890625, 1386.6640625, 842.7579345703125, 777.7315673828125, 842.7579345703125], "score": 0.9999915957450867}, {"category_id": 1, "poly": [777.9397583007812, 1045.28857421875, 1386.9669189453125, 1045.28857421875, 1386.9669189453125, 1678.6064453125, 777.9397583007812, 1678.6064453125], "score": 0.9999915957450867}, {"category_id": 1, "poly": [112.64908599853516, 250.50961303710938, 720.302001953125, 250.50961303710938, 720.302001953125, 849.3114624023438, 112.64908599853516, 849.3114624023438], "score": 0.9999906420707703}, {"category_id": 1, "poly": [112.41944122314453, 1315.5491943359375, 721.3580932617188, 1315.5491943359375, 721.3580932617188, 1851.324462890625, 112.41944122314453, 1851.324462890625], "score": 0.9999880790710449}, {"category_id": 3, "poly": [776.4273681640625, 253.75418090820312, 1388.254638671875, 253.75418090820312, 1388.254638671875, 736.9627685546875, 776.4273681640625, 736.9627685546875], "score": 0.9999828338623047}, {"category_id": 2, "poly": [464.4588928222656, 193.45211791992188, 1032.725341796875, 193.45211791992188, 1032.725341796875, 219.19715881347656, 464.4588928222656, 219.19715881347656], "score": 0.9999587535858154}, {"category_id": 0, "poly": [115.3223876953125, 1251.6119384765625, 695.34326171875, 1251.6119384765625, 695.34326171875, 1287.6334228515625, 115.3223876953125, 1287.6334228515625], "score": 0.9989659786224365}, {"category_id": 1, "poly": [778.8644409179688, 1705.2630615234375, 1386.922119140625, 1705.2630615234375, 1386.922119140625, 1843.95654296875, 778.8644409179688, 1843.95654296875], "score": 0.99659264087677}, {"category_id": 13, "poly": [601, 1814, 711, 1814, 711, 1847, 601, 1847], "score": 0.9, "latex": "T{=}\\,2T_{\\mathrm{half}}"}, {"category_id": 13, "poly": [878, 1079, 975, 1079, 975, 1110, 878, 1110], "score": 0.9, "latex": "Y/(Y+a)"}, {"category_id": 13, "poly": [780, 880, 833, 880, 833, 911, 780, 911], "score": 0.89, "latex": "T_{\\mathrm{half}}"}, {"category_id": 13, "poly": [296, 319, 380, 319, 380, 349, 296, 349], "score": 0.89, "latex": "E\\!>\\!0.7"}, {"category_id": 13, "poly": [160, 1682, 231, 1682, 231, 1713, 160, 1713], "score": 0.88, "latex": "a+Y)"}, {"category_id": 13, "poly": [116, 320, 188, 320, 188, 351, 116, 351], "score": 0.88, "latex": "(77\\%)"}, {"category_id": 13, "poly": [268, 751, 324, 751, 324, 781, 268, 781], "score": 0.87, "latex": "80\\%"}, {"category_id": 13, "poly": [628, 585, 684, 585, 684, 615, 628, 615], "score": 0.87, "latex": "75\\%"}, {"category_id": 13, "poly": [602, 619, 644, 619, 644, 647, 602, 647], "score": 0.85, "latex": "9\\%"}, {"category_id": 13, "poly": [533, 784, 577, 784, 577, 814, 533, 814], "score": 0.83, "latex": "9\\%"}, {"category_id": 13, "poly": [323, 1384, 364, 1384, 364, 1412, 323, 1412], "score": 0.77, "latex": "\\Delta P"}, {"category_id": 13, "poly": [286, 852, 308, 852, 308, 879, 286, 879], "score": 0.75, "latex": "E"}, {"category_id": 13, "poly": [409, 885, 432, 885, 432, 912, 409, 912], "score": 0.71, "latex": "E"}, {"category_id": 13, "poly": [566, 1085, 590, 1085, 590, 1112, 566, 1112], "score": 0.7, "latex": "E"}, {"category_id": 13, "poly": [484, 254, 524, 254, 524, 284, 484, 284], "score": 0.7, "latex": "(E)"}, {"category_id": 13, "poly": [315, 919, 334, 919, 334, 946, 315, 946], "score": 0.66, "latex": "b"}, {"category_id": 13, "poly": [376, 587, 394, 587, 394, 614, 376, 614], "score": 0.62, "latex": "b"}, {"category_id": 13, "poly": [460, 1051, 478, 1051, 478, 1077, 460, 1077], "score": 0.59, "latex": "b"}, {"category_id": 13, "poly": [451, 319, 552, 319, 552, 350, 451, 350], "score": 0.46, "latex": "60\\%~0.8"}, {"category_id": 13, "poly": [498, 719, 522, 719, 522, 746, 498, 746], "score": 0.45, "latex": "Y"}, {"category_id": 15, "poly": [1342.0, 191.0, 1387.0, 191.0, 1387.0, 236.0, 1342.0, 236.0], "score": 1.0, "text": "259"}, {"category_id": 15, "poly": [780.0, 914.0, 1383.0, 914.0, 1383.0, 944.0, 780.0, 944.0], "score": 0.99, "text": "most deciles the adjusted FDCs are identical for 12"}, {"category_id": 15, "poly": [780.0, 948.0, 1381.0, 948.0, 1381.0, 978.0, 780.0, 978.0], "score": 0.98, "text": "and 20 years after treatment. This figure clearly"}, {"category_id": 15, "poly": [782.0, 983.0, 1381.0, 983.0, 1381.0, 1013.0, 782.0, 1013.0], "score": 0.98, "text": "demonstrates the necessity for FDC adjustment,"}, {"category_id": 15, "poly": [773.0, 1013.0, 1168.0, 1010.0, 1168.0, 1047.0, 773.0, 1049.0], "score": 0.99, "text": " particularly for the 20 years FDC."}, {"category_id": 15, "poly": [834.0, 882.0, 1383.0, 882.0, 1383.0, 912.0, 834.0, 912.0], "score": 0.99, "text": "values are given in Table 4. Fig. 3 shows that for"}, {"category_id": 15, "poly": [116.0, 955.0, 719.0, 955.0, 719.0, 985.0, 116.0, 985.0], "score": 0.98, "text": "general the model fits the higher flows (lower deciles)"}, {"category_id": 15, "poly": [116.0, 987.0, 719.0, 987.0, 719.0, 1017.0, 116.0, 1017.0], "score": 1.0, "text": "better, most of the poorer fits are in the 80-100"}, {"category_id": 15, "poly": [112.0, 1017.0, 722.0, 1015.0, 722.0, 1051.0, 112.0, 1054.0], "score": 0.97, "text": " percentile range. This can be expected given the results"}, {"category_id": 15, "poly": [116.0, 1120.0, 722.0, 1120.0, 722.0, 1150.0, 116.0, 1150.0], "score": 0.99, "text": "Glendhu 2 and for 10th and 20th percentiles from"}, {"category_id": 15, "poly": [114.0, 1150.0, 724.0, 1150.0, 724.0, 1187.0, 114.0, 1187.0], "score": 0.98, "text": "Cathedral Peak 3 may exaggerate the goodness of fit to"}, {"category_id": 15, "poly": [114.0, 1187.0, 646.0, 1187.0, 646.0, 1215.0, 114.0, 1215.0], "score": 0.98, "text": "the exact form of the model (Lane et al., 2003)."}, {"category_id": 15, "poly": [150.0, 854.0, 285.0, 854.0, 285.0, 884.0, 150.0, 884.0], "score": 1.0, "text": "The poorest"}, {"category_id": 15, "poly": [309.0, 854.0, 715.0, 854.0, 715.0, 884.0, 309.0, 884.0], "score": 0.99, "text": "values were those from Lambrechts-"}, {"category_id": 15, "poly": [116.0, 886.0, 408.0, 886.0, 408.0, 916.0, 116.0, 916.0], "score": 0.95, "text": "bos A and B. The high"}, {"category_id": 15, "poly": [433.0, 886.0, 719.0, 886.0, 719.0, 916.0, 433.0, 916.0], "score": 0.96, "text": "for 50-100th deciles at"}, {"category_id": 15, "poly": [114.0, 1088.0, 565.0, 1088.0, 565.0, 1118.0, 114.0, 1118.0], "score": 0.97, "text": "sensitivity analysis suggested that the"}, {"category_id": 15, "poly": [591.0, 1088.0, 722.0, 1088.0, 722.0, 1118.0, 591.0, 1118.0], "score": 0.97, "text": "values for"}, {"category_id": 15, "poly": [116.0, 920.0, 314.0, 920.0, 314.0, 950.0, 116.0, 950.0], "score": 1.0, "text": "Biesievlei, where"}, {"category_id": 15, "poly": [335.0, 920.0, 719.0, 920.0, 719.0, 950.0, 335.0, 950.0], "score": 0.99, "text": "was not significant are notable. In"}, {"category_id": 15, "poly": [114.0, 1054.0, 459.0, 1054.0, 459.0, 1084.0, 114.0, 1084.0], "score": 0.95, "text": "of the significance tests for "}, {"category_id": 15, "poly": [479.0, 1054.0, 719.0, 1054.0, 719.0, 1084.0, 479.0, 1084.0], "score": 0.96, "text": ". The results of the"}, {"category_id": 15, "poly": [780.0, 759.0, 1383.0, 759.0, 1383.0, 789.0, 780.0, 789.0], "score": 0.98, "text": "Fig. 3. Examples of observed and fow duration curves adjusted for"}, {"category_id": 15, "poly": [782.0, 787.0, 1381.0, 787.0, 1381.0, 815.0, 782.0, 815.0], "score": 0.97, "text": "average rainfall following afforestation for Stewarts Creek 5,"}, {"category_id": 15, "poly": [779.0, 810.0, 873.0, 815.0, 871.0, 845.0, 777.0, 840.0], "score": 1.0, "text": "Australia."}, {"category_id": 15, "poly": [810.0, 1043.0, 1385.0, 1045.0, 1385.0, 1081.0, 810.0, 1079.0], "score": 0.98, "text": "The relative net flow change due to afforestation is"}, {"category_id": 15, "poly": [775.0, 1109.0, 1387.0, 1112.0, 1387.0, 1148.0, 775.0, 1146.0], "score": 0.99, "text": " old equilibrium water use condition of pre-treatment"}, {"category_id": 15, "poly": [777.0, 1146.0, 1387.0, 1142.0, 1388.0, 1178.0, 778.0, 1183.0], "score": 1.0, "text": "vegetation to the new equilibrium condition at forest"}, {"category_id": 15, "poly": [777.0, 1178.0, 1385.0, 1176.0, 1385.0, 1213.0, 778.0, 1215.0], "score": 0.99, "text": "canopy closure. This quantity is plotted for all catchments"}, {"category_id": 15, "poly": [780.0, 1215.0, 1385.0, 1215.0, 1385.0, 1245.0, 780.0, 1245.0], "score": 0.98, "text": "in Fig. 4. Some deciles have been removed from the data"}, {"category_id": 15, "poly": [782.0, 1247.0, 1383.0, 1247.0, 1383.0, 1277.0, 782.0, 1277.0], "score": 0.98, "text": "set, the 10th and 50th percentile for Glendhu 2 and the"}, {"category_id": 15, "poly": [782.0, 1281.0, 1383.0, 1281.0, 1383.0, 1312.0, 782.0, 1312.0], "score": 1.0, "text": "10th and 20th percentiles from Cathedral Peak 3. The"}, {"category_id": 15, "poly": [780.0, 1314.0, 1383.0, 1314.0, 1383.0, 1344.0, 780.0, 1344.0], "score": 0.98, "text": "optimised value of a was zero or near zero for these cases,"}, {"category_id": 15, "poly": [780.0, 1348.0, 1383.0, 1348.0, 1383.0, 1378.0, 780.0, 1378.0], "score": 1.0, "text": "which is not consistent with the conceptual model. The"}, {"category_id": 15, "poly": [775.0, 1378.0, 1385.0, 1376.0, 1385.0, 1413.0, 775.0, 1415.0], "score": 0.98, "text": " changes shown in Fig. 4 are variable. However, there are"}, {"category_id": 15, "poly": [780.0, 1415.0, 1385.0, 1415.0, 1385.0, 1445.0, 780.0, 1445.0], "score": 1.0, "text": "some commonalities between catchment responses. Two"}, {"category_id": 15, "poly": [775.0, 1447.0, 1387.0, 1445.0, 1387.0, 1481.0, 775.0, 1484.0], "score": 0.99, "text": "types of responses (groups) were identified. Group 1"}, {"category_id": 15, "poly": [780.0, 1481.0, 1385.0, 1481.0, 1385.0, 1511.0, 780.0, 1511.0], "score": 1.0, "text": "catchments show a substantial increase in the number of"}, {"category_id": 15, "poly": [777.0, 1514.0, 1387.0, 1514.0, 1387.0, 1550.0, 777.0, 1550.0], "score": 0.96, "text": " zero flow days, with a greater proportional reduction in"}, {"category_id": 15, "poly": [782.0, 1548.0, 1385.0, 1548.0, 1385.0, 1578.0, 782.0, 1578.0], "score": 0.99, "text": "low flows than high fows. Group 2 catchments show a"}, {"category_id": 15, "poly": [780.0, 1582.0, 1383.0, 1582.0, 1383.0, 1612.0, 780.0, 1612.0], "score": 0.99, "text": "more uniform proportional reduction in fows across all"}, {"category_id": 15, "poly": [777.0, 1617.0, 1383.0, 1615.0, 1383.0, 1645.0, 778.0, 1647.0], "score": 1.0, "text": "percentiles, albeit with some variability. The catchments"}, {"category_id": 15, "poly": [776.0, 1644.0, 980.0, 1649.0, 979.0, 1686.0, 775.0, 1681.0], "score": 0.95, "text": " in each group are:"}, {"category_id": 15, "poly": [780.0, 1079.0, 877.0, 1079.0, 877.0, 1116.0, 780.0, 1116.0], "score": 1.0, "text": "givenby"}, {"category_id": 15, "poly": [976.0, 1079.0, 1385.0, 1079.0, 1385.0, 1116.0, 976.0, 1116.0], "score": 0.98, "text": ", which represents the change from the"}, {"category_id": 15, "poly": [116.0, 288.0, 717.0, 288.0, 717.0, 318.0, 116.0, 318.0], "score": 0.99, "text": "percentile at all the catchments. The majority of fits"}, {"category_id": 15, "poly": [116.0, 355.0, 719.0, 355.0, 719.0, 385.0, 116.0, 385.0], "score": 0.99, "text": "significance of the rainfall and time terms is given in"}, {"category_id": 15, "poly": [114.0, 387.0, 717.0, 387.0, 717.0, 417.0, 114.0, 417.0], "score": 1.0, "text": "Table 3 for all deciles, where solutions were found."}, {"category_id": 15, "poly": [112.0, 417.0, 720.0, 421.0, 719.0, 452.0, 112.0, 447.0], "score": 0.98, "text": "There were not enough data to fit the model in five"}, {"category_id": 15, "poly": [116.0, 456.0, 717.0, 456.0, 717.0, 484.0, 116.0, 484.0], "score": 0.98, "text": "instances because of extended periods of zero flows."}, {"category_id": 15, "poly": [116.0, 488.0, 719.0, 488.0, 719.0, 518.0, 116.0, 518.0], "score": 0.99, "text": "This problem is addressed to some extent in the zero"}, {"category_id": 15, "poly": [116.0, 522.0, 719.0, 522.0, 719.0, 550.0, 116.0, 550.0], "score": 1.0, "text": "fow analysis. If the rainfall signal is to be separated"}, {"category_id": 15, "poly": [114.0, 555.0, 719.0, 555.0, 719.0, 585.0, 114.0, 585.0], "score": 0.98, "text": "from the vegetation signal the rainfall terms must be"}, {"category_id": 15, "poly": [110.0, 649.0, 722.0, 651.0, 722.0, 688.0, 109.0, 686.0], "score": 0.99, "text": " 0.10 level. The incidence of significance was greatest"}, {"category_id": 15, "poly": [116.0, 688.0, 719.0, 688.0, 719.0, 718.0, 116.0, 718.0], "score": 0.99, "text": "for the 10-50th percentiles at 45 of the 50 data sets at"}, {"category_id": 15, "poly": [112.0, 817.0, 432.0, 815.0, 432.0, 851.0, 112.0, 854.0], "score": 0.98, "text": "significant at the 0.10 level."}, {"category_id": 15, "poly": [189.0, 320.0, 295.0, 320.0, 295.0, 350.0, 189.0, 350.0], "score": 1.0, "text": "returned"}, {"category_id": 15, "poly": [116.0, 755.0, 267.0, 755.0, 267.0, 785.0, 116.0, 785.0], "score": 1.0, "text": "results, with"}, {"category_id": 15, "poly": [325.0, 755.0, 719.0, 755.0, 719.0, 785.0, 325.0, 785.0], "score": 0.97, "text": " of the deciles significant at 0.05"}, {"category_id": 15, "poly": [685.0, 589.0, 722.0, 589.0, 722.0, 619.0, 685.0, 619.0], "score": 1.0, "text": "of"}, {"category_id": 15, "poly": [114.0, 621.0, 601.0, 621.0, 601.0, 649.0, 114.0, 649.0], "score": 0.98, "text": "the deciles at the 0.05 level, and a further"}, {"category_id": 15, "poly": [645.0, 621.0, 719.0, 621.0, 719.0, 649.0, 645.0, 649.0], "score": 0.99, "text": "at the"}, {"category_id": 15, "poly": [116.0, 787.0, 532.0, 787.0, 532.0, 815.0, 116.0, 815.0], "score": 0.96, "text": "level. There were an additional"}, {"category_id": 15, "poly": [578.0, 787.0, 719.0, 787.0, 719.0, 815.0, 578.0, 815.0], "score": 0.99, "text": "of deciles"}, {"category_id": 15, "poly": [110.0, 249.0, 483.0, 252.0, 483.0, 288.0, 109.0, 286.0], "score": 0.91, "text": "the coefficient of efficiency "}, {"category_id": 15, "poly": [525.0, 249.0, 720.0, 252.0, 719.0, 288.0, 525.0, 286.0], "score": 0.96, "text": "for each flow"}, {"category_id": 15, "poly": [116.0, 589.0, 375.0, 589.0, 375.0, 619.0, 116.0, 619.0], "score": 1.0, "text": "significant. This term,"}, {"category_id": 15, "poly": [395.0, 589.0, 627.0, 589.0, 627.0, 619.0, 395.0, 619.0], "score": 0.98, "text": ", was significant for"}, {"category_id": 15, "poly": [381.0, 320.0, 450.0, 320.0, 450.0, 350.0, 381.0, 350.0], "score": 0.9, "text": "\uff0cwith"}, {"category_id": 15, "poly": [553.0, 320.0, 719.0, 320.0, 719.0, 350.0, 553.0, 350.0], "score": 0.97, "text": "or better. The"}, {"category_id": 15, "poly": [116.0, 718.0, 497.0, 718.0, 497.0, 748.0, 116.0, 748.0], "score": 0.99, "text": "the 0.05 level. The time term,"}, {"category_id": 15, "poly": [523.0, 718.0, 717.0, 718.0, 717.0, 748.0, 523.0, 748.0], "score": 0.97, "text": "returned similar"}, {"category_id": 15, "poly": [148.0, 1318.0, 719.0, 1318.0, 719.0, 1348.0, 148.0, 1348.0], "score": 0.95, "text": "Following the successful fitting of (2) to the"}, {"category_id": 15, "poly": [114.0, 1352.0, 719.0, 1352.0, 719.0, 1382.0, 114.0, 1382.0], "score": 0.99, "text": "observed percentiles, the FDCs were adjusted for"}, {"category_id": 15, "poly": [114.0, 1419.0, 719.0, 1419.0, 719.0, 1447.0, 114.0, 1447.0], "score": 0.99, "text": "average annual rainfall. The climate adjusted FDCs"}, {"category_id": 15, "poly": [114.0, 1453.0, 719.0, 1453.0, 719.0, 1481.0, 114.0, 1481.0], "score": 0.96, "text": "produce an estimation of the change in flow"}, {"category_id": 15, "poly": [112.0, 1486.0, 722.0, 1483.0, 722.0, 1514.0, 112.0, 1516.0], "score": 0.98, "text": "percentiles over time for each catchment due to"}, {"category_id": 15, "poly": [116.0, 1518.0, 719.0, 1518.0, 719.0, 1548.0, 116.0, 1548.0], "score": 0.99, "text": "afforestation that may be viewed in two forms: new"}, {"category_id": 15, "poly": [114.0, 1552.0, 722.0, 1552.0, 722.0, 1580.0, 114.0, 1580.0], "score": 0.99, "text": "FDCs, adjusted for climate, as exemplified in Fig. 3"}, {"category_id": 15, "poly": [112.0, 1587.0, 721.0, 1582.0, 722.0, 1612.0, 112.0, 1617.0], "score": 0.99, "text": "for Stewarts Creek 5, and a comparison between all"}, {"category_id": 15, "poly": [114.0, 1619.0, 717.0, 1619.0, 717.0, 1649.0, 114.0, 1649.0], "score": 0.99, "text": "catchments of the maximum change in yield (given by"}, {"category_id": 15, "poly": [118.0, 1651.0, 722.0, 1651.0, 722.0, 1681.0, 118.0, 1681.0], "score": 0.99, "text": "Y) for each flow percentile from baseline flows (given"}, {"category_id": 15, "poly": [118.0, 1718.0, 715.0, 1718.0, 715.0, 1748.0, 118.0, 1748.0], "score": 0.98, "text": "equilibrium of maximum water use is reached, the"}, {"category_id": 15, "poly": [116.0, 1750.0, 719.0, 1750.0, 719.0, 1780.0, 116.0, 1780.0], "score": 0.99, "text": "adjusted FDCs for individual years should be identical"}, {"category_id": 15, "poly": [114.0, 1784.0, 719.0, 1784.0, 719.0, 1815.0, 114.0, 1815.0], "score": 0.98, "text": "if rainfall variability has been accounted for. The new"}, {"category_id": 15, "poly": [110.0, 1808.0, 600.0, 1813.0, 600.0, 1856.0, 109.0, 1851.0], "score": 0.96, "text": " equilibrium is approximately reached for "}, {"category_id": 15, "poly": [116.0, 1686.0, 159.0, 1686.0, 159.0, 1716.0, 116.0, 1716.0], "score": 1.0, "text": "by"}, {"category_id": 15, "poly": [232.0, 1686.0, 719.0, 1686.0, 719.0, 1716.0, 232.0, 1716.0], "score": 0.95, "text": " as shown in Fig. 4. Where the new"}, {"category_id": 15, "poly": [116.0, 1387.0, 322.0, 1387.0, 322.0, 1417.0, 116.0, 1417.0], "score": 1.0, "text": "climate by setting"}, {"category_id": 15, "poly": [365.0, 1387.0, 719.0, 1387.0, 719.0, 1417.0, 365.0, 1417.0], "score": 0.99, "text": "to zero, representing long term"}, {"category_id": 15, "poly": [466.0, 194.0, 1033.0, 194.0, 1033.0, 224.0, 466.0, 224.0], "score": 0.99, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [112.0, 1249.0, 694.0, 1251.0, 694.0, 1288.0, 112.0, 1286.0], "score": 0.99, "text": "4.2. Adjusted FDCs\u2014magnitude of fow reductions"}, {"category_id": 15, "poly": [782.0, 1709.0, 1325.0, 1709.0, 1325.0, 1739.0, 782.0, 1739.0], "score": 0.99, "text": "Group 1: Stewarts Creek, Pine Creek, and Redhill"}, {"category_id": 15, "poly": [782.0, 1744.0, 1381.0, 1744.0, 1381.0, 1774.0, 782.0, 1774.0], "score": 0.99, "text": "Group 2: Cathedral Peak 2 and 3, Lambrechtsbos A,"}, {"category_id": 15, "poly": [889.0, 1776.0, 1383.0, 1776.0, 1383.0, 1806.0, 889.0, 1806.0], "score": 1.0, "text": "Lambrechtsbos B, Glendhu 2, Biesievlei and"}, {"category_id": 15, "poly": [889.0, 1810.0, 1072.0, 1810.0, 1072.0, 1840.0, 889.0, 1840.0], "score": 1.0, "text": "Traralgon Creek"}], "page_info": {"page_no": 6, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 6, "poly": [130.38211059570312, 1373.58056640625, 408.3111877441406, 1373.58056640625, 408.3111877441406, 1427.8253173828125, 130.38211059570312, 1427.8253173828125], "score": 0.9999985694885254}, {"category_id": 2, "poly": [131.90994262695312, 195.1804962158203, 165.77700805664062, 195.1804962158203, 165.77700805664062, 215.41661071777344, 131.90994262695312, 215.41661071777344], "score": 0.9999985098838806}, {"category_id": 2, "poly": [481.0845642089844, 195.8048095703125, 1043.9552001953125, 195.8048095703125, 1043.9552001953125, 218.32778930664062, 481.0845642089844, 218.32778930664062], "score": 0.9999977350234985}, {"category_id": 5, "poly": [124.61016845703125, 1434.242919921875, 1399.2454833984375, 1434.242919921875, 1399.2454833984375, 1811.951171875, 124.61016845703125, 1811.951171875], "score": 0.9999969005584717}, {"category_id": 4, "poly": [510.5360107421875, 734.0053100585938, 1013.9042358398438, 734.0053100585938, 1013.9042358398438, 758.7108154296875, 510.5360107421875, 758.7108154296875], "score": 0.9999968409538269}, {"category_id": 1, "poly": [131.32168579101562, 838.9521484375, 730.0957641601562, 838.9521484375, 730.0957641601562, 1314.5084228515625, 131.32168579101562, 1314.5084228515625], "score": 0.9999938011169434}, {"category_id": 3, "poly": [306.1774597167969, 253.64524841308594, 1219.746337890625, 253.64524841308594, 1219.746337890625, 705.4325561523438, 306.1774597167969, 705.4325561523438], "score": 0.9999911785125732}, {"category_id": 1, "poly": [794.51171875, 907.3822631835938, 1395.8782958984375, 907.3822631835938, 1395.8782958984375, 1313.7686767578125, 794.51171875, 1313.7686767578125], "score": 0.9999873042106628}, {"category_id": 7, "poly": [127.02899169921875, 1816.2164306640625, 940.5137939453125, 1816.2164306640625, 940.5137939453125, 1842.17822265625, 127.02899169921875, 1842.17822265625], "score": 0.999592661857605}, {"category_id": 0, "poly": [794.436767578125, 838.79541015625, 1117.543701171875, 838.79541015625, 1117.543701171875, 867.4995727539062, 794.436767578125, 867.4995727539062], "score": 0.9990140795707703}, {"category_id": 13, "poly": [759, 733, 840, 733, 840, 759, 759, 759], "score": 0.9, "latex": "Y/(Y+a)"}, {"category_id": 13, "poly": [815, 1077, 867, 1077, 867, 1108, 815, 1108], "score": 0.89, "latex": "T_{\\mathrm{half}}"}, {"category_id": 13, "poly": [1088, 1179, 1140, 1179, 1140, 1211, 1088, 1211], "score": 0.89, "latex": "T_{\\mathrm{half}}"}, {"category_id": 13, "poly": [130, 1247, 196, 1247, 196, 1277, 130, 1277], "score": 0.84, "latex": "100\\%"}, {"category_id": 13, "poly": [209, 1042, 276, 1042, 276, 1072, 209, 1072], "score": 0.84, "latex": "100\\%"}, {"category_id": 13, "poly": [1174, 940, 1224, 940, 1224, 971, 1174, 971], "score": 0.84, "latex": "T_{\\mathrm{half}}"}, {"category_id": 13, "poly": [129, 1401, 172, 1401, 172, 1428, 129, 1428], "score": 0.7, "latex": "T_{\\mathrm{half}}"}, {"category_id": 15, "poly": [129.0, 1372.0, 208.0, 1372.0, 208.0, 1402.0, 129.0, 1402.0], "score": 0.93, "text": "Table 4"}, {"category_id": 15, "poly": [173.0, 1400.0, 408.0, 1397.0, 408.0, 1434.0, 173.0, 1436.0], "score": 1.0, "text": "(years) for all catchments"}, {"category_id": 15, "poly": [127.0, 189.0, 172.0, 189.0, 172.0, 228.0, 127.0, 228.0], "score": 1.0, "text": "260"}, {"category_id": 15, "poly": [481.0, 194.0, 1046.0, 194.0, 1046.0, 224.0, 481.0, 224.0], "score": 0.97, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [509.0, 733.0, 758.0, 733.0, 758.0, 763.0, 509.0, 763.0], "score": 0.98, "text": "Fig. 4. Net flow reductions"}, {"category_id": 15, "poly": [841.0, 733.0, 1012.0, 733.0, 1012.0, 763.0, 841.0, 763.0], "score": 1.0, "text": "for all catchments."}, {"category_id": 15, "poly": [157.0, 836.0, 737.0, 834.0, 737.0, 871.0, 157.0, 873.0], "score": 0.99, "text": "Group 1 exhibit both the highest reduction of"}, {"category_id": 15, "poly": [127.0, 871.0, 732.0, 871.0, 732.0, 907.0, 127.0, 907.0], "score": 0.98, "text": "flows overall, and show the largest proportional"}, {"category_id": 15, "poly": [129.0, 909.0, 732.0, 909.0, 732.0, 940.0, 129.0, 940.0], "score": 0.96, "text": "reduction at lower flows, leading to a complete"}, {"category_id": 15, "poly": [129.0, 944.0, 732.0, 944.0, 732.0, 974.0, 129.0, 974.0], "score": 0.99, "text": "cessation of fow. Comparison of flow reductions is"}, {"category_id": 15, "poly": [125.0, 972.0, 735.0, 974.0, 734.0, 1011.0, 125.0, 1008.0], "score": 0.99, "text": "hindered slightly by the range of afforestation at the"}, {"category_id": 15, "poly": [129.0, 1010.0, 735.0, 1010.0, 735.0, 1041.0, 129.0, 1041.0], "score": 0.99, "text": "catchments (Table 1). These results could be scaled"}, {"category_id": 15, "poly": [129.0, 1079.0, 730.0, 1079.0, 730.0, 1109.0, 129.0, 1109.0], "score": 0.98, "text": "linear relationship between the area planted and flow"}, {"category_id": 15, "poly": [129.0, 1114.0, 732.0, 1114.0, 732.0, 1144.0, 129.0, 1144.0], "score": 0.98, "text": "reductions. As there is no evidence that this is the"}, {"category_id": 15, "poly": [129.0, 1146.0, 728.0, 1146.0, 728.0, 1176.0, 129.0, 1176.0], "score": 0.98, "text": "case we have not presented scaled reductions here."}, {"category_id": 15, "poly": [125.0, 1178.0, 737.0, 1176.0, 737.0, 1213.0, 125.0, 1215.0], "score": 0.95, "text": "Linear scaling would shift the reduction curves"}, {"category_id": 15, "poly": [125.0, 1213.0, 737.0, 1210.0, 737.0, 1247.0, 125.0, 1249.0], "score": 0.96, "text": "upward for those catchments that are less than"}, {"category_id": 15, "poly": [125.0, 1281.0, 492.0, 1286.0, 492.0, 1320.0, 124.0, 1316.0], "score": 0.98, "text": " of the curves or our groupings."}, {"category_id": 15, "poly": [197.0, 1245.0, 735.0, 1247.0, 734.0, 1284.0, 197.0, 1281.0], "score": 0.98, "text": " afforested, but would not change the shape"}, {"category_id": 15, "poly": [129.0, 1045.0, 208.0, 1045.0, 208.0, 1075.0, 129.0, 1075.0], "score": 0.99, "text": "upto"}, {"category_id": 15, "poly": [277.0, 1045.0, 735.0, 1045.0, 735.0, 1075.0, 277.0, 1075.0], "score": 0.98, "text": " afforested if it is assumed there is a"}, {"category_id": 15, "poly": [825.0, 903.0, 1398.0, 905.0, 1398.0, 942.0, 825.0, 940.0], "score": 0.99, "text": "The speed of fow responses to afforestation can be"}, {"category_id": 15, "poly": [793.0, 976.0, 1398.0, 976.0, 1398.0, 1006.0, 793.0, 1006.0], "score": 0.99, "text": "is substantial variation in response times both over the"}, {"category_id": 15, "poly": [788.0, 1008.0, 1402.0, 1004.0, 1403.0, 1041.0, 788.0, 1045.0], "score": 0.99, "text": " percentile spread in some individual catchments, and"}, {"category_id": 15, "poly": [790.0, 1045.0, 1398.0, 1045.0, 1398.0, 1075.0, 790.0, 1075.0], "score": 0.98, "text": " between the catchments. The majority of responses have"}, {"category_id": 15, "poly": [793.0, 1114.0, 1398.0, 1114.0, 1398.0, 1142.0, 793.0, 1142.0], "score": 0.99, "text": "Stewarts Creek, Redhill and Lambrechtsbos A exhibit the"}, {"category_id": 15, "poly": [793.0, 1148.0, 1398.0, 1148.0, 1398.0, 1178.0, 793.0, 1178.0], "score": 0.99, "text": "fastest responses, with Biesievlei showing the most"}, {"category_id": 15, "poly": [793.0, 1215.0, 1398.0, 1215.0, 1398.0, 1245.0, 793.0, 1245.0], "score": 0.99, "text": "catchments display a good correspondence to published"}, {"category_id": 15, "poly": [793.0, 1249.0, 1394.0, 1249.0, 1394.0, 1279.0, 793.0, 1279.0], "score": 0.99, "text": "annual changes (Scott et al., 2000; Van Wyk, 1987),"}, {"category_id": 15, "poly": [793.0, 1284.0, 1398.0, 1284.0, 1398.0, 1314.0, 793.0, 1314.0], "score": 0.99, "text": "excepting the 10-20th deciles for both Cathedral Peak"}, {"category_id": 15, "poly": [790.0, 1079.0, 814.0, 1079.0, 814.0, 1109.0, 790.0, 1109.0], "score": 0.96, "text": "a"}, {"category_id": 15, "poly": [868.0, 1079.0, 1398.0, 1079.0, 1398.0, 1109.0, 868.0, 1109.0], "score": 0.99, "text": "value between 5 and 10 years. Pine Creek and"}, {"category_id": 15, "poly": [788.0, 1178.0, 1087.0, 1176.0, 1087.0, 1213.0, 788.0, 1215.0], "score": 1.0, "text": "uniformly slow response."}, {"category_id": 15, "poly": [1141.0, 1178.0, 1400.0, 1176.0, 1400.0, 1213.0, 1141.0, 1215.0], "score": 0.94, "text": "for the South African"}, {"category_id": 15, "poly": [793.0, 942.0, 1173.0, 942.0, 1173.0, 972.0, 793.0, 972.0], "score": 1.0, "text": "evaluated by examining the value of"}, {"category_id": 15, "poly": [1225.0, 942.0, 1398.0, 942.0, 1398.0, 972.0, 1225.0, 972.0], "score": 0.97, "text": "(Table 4). There"}, {"category_id": 15, "poly": [129.0, 1815.0, 939.0, 1817.0, 939.0, 1847.0, 129.0, 1845.0], "score": 0.98, "text": "Note that no solution could be found for the 50 percentile for Glendhu indicted by the ns."}, {"category_id": 15, "poly": [793.0, 838.0, 1123.0, 838.0, 1123.0, 875.0, 793.0, 875.0], "score": 1.0, "text": "4.3. Timing of fow reductions"}], "page_info": {"page_no": 7, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 0, "poly": [781.8721923828125, 1618.0399169921875, 928.7534790039062, 1618.0399169921875, 928.7534790039062, 1646.409912109375, 781.8721923828125, 1646.409912109375], "score": 0.9999984502792358}, {"category_id": 6, "poly": [113.6822738647461, 253.5222625732422, 1383.692626953125, 253.5222625732422, 1383.692626953125, 334.94287109375, 113.6822738647461, 334.94287109375], "score": 0.9999982714653015}, {"category_id": 2, "poly": [1345.8267822265625, 196.56283569335938, 1379.01416015625, 196.56283569335938, 1379.01416015625, 215.46395874023438, 1345.8267822265625, 215.46395874023438], "score": 0.999997615814209}, {"category_id": 2, "poly": [467.5944519042969, 195.73922729492188, 1030.1298828125, 195.73922729492188, 1030.1298828125, 218.0099639892578, 467.5944519042969, 218.0099639892578], "score": 0.9999966621398926}, {"category_id": 1, "poly": [117.23767852783203, 1243.1109619140625, 716.3004150390625, 1243.1109619140625, 716.3004150390625, 1847.4835205078125, 117.23767852783203, 1847.4835205078125], "score": 0.9999922513961792}, {"category_id": 1, "poly": [118.47014617919922, 994.3162841796875, 713.6297607421875, 994.3162841796875, 713.6297607421875, 1122.2752685546875, 118.47014617919922, 1122.2752685546875], "score": 0.9999918937683105}, {"category_id": 0, "poly": [119.10287475585938, 1178.6876220703125, 627.3995971679688, 1178.6876220703125, 627.3995971679688, 1206.4453125, 119.10287475585938, 1206.4453125], "score": 0.9999906420707703}, {"category_id": 1, "poly": [782.2766723632812, 1682.373291015625, 1380.46728515625, 1682.373291015625, 1380.46728515625, 1845.99609375, 782.2766723632812, 1845.99609375], "score": 0.9999901652336121}, {"category_id": 1, "poly": [781.3034057617188, 1060.36083984375, 1379.3385009765625, 1060.36083984375, 1379.3385009765625, 1521.511962890625, 781.3034057617188, 1521.511962890625], "score": 0.9999886751174927}, {"category_id": 5, "poly": [113.5753402709961, 341.08380126953125, 1386.5994873046875, 341.08380126953125, 1386.5994873046875, 689.2748413085938, 113.5753402709961, 689.2748413085938], "score": 0.9999498128890991}, {"category_id": 7, "poly": [118.46651458740234, 696.7362670898438, 1380.3681640625, 696.7362670898438, 1380.3681640625, 861.0716552734375, 118.46651458740234, 861.0716552734375], "score": 0.9997767210006714}, {"category_id": 0, "poly": [782.720458984375, 993.1400146484375, 988.5659790039062, 993.1400146484375, 988.5659790039062, 1020.3793334960938, 782.720458984375, 1020.3793334960938], "score": 0.9996650218963623}, {"category_id": 13, "poly": [458, 778, 601, 778, 601, 806, 458, 806], "score": 0.91, "latex": "\\sum Y/\\sum(a+Y)"}, {"category_id": 13, "poly": [169, 1025, 221, 1025, 221, 1056, 169, 1056], "score": 0.91, "latex": "T_{\\mathrm{half}}"}, {"category_id": 13, "poly": [464, 750, 607, 750, 607, 778, 464, 778], "score": 0.88, "latex": "\\sum Y/\\sum(a+Y)"}, {"category_id": 13, "poly": [1201, 1191, 1277, 1191, 1277, 1221, 1201, 1221], "score": 0.88, "latex": "\\Delta N_{\\mathrm{zero}}"}, {"category_id": 13, "poly": [1296, 1323, 1350, 1323, 1350, 1353, 1296, 1353], "score": 0.86, "latex": "50\\%"}, {"category_id": 13, "poly": [1078, 1159, 1101, 1159, 1101, 1185, 1078, 1185], "score": 0.77, "latex": "E"}, {"category_id": 13, "poly": [1113, 1192, 1133, 1192, 1133, 1219, 1113, 1219], "score": 0.69, "latex": "b"}, {"category_id": 13, "poly": [375, 811, 390, 811, 390, 830, 375, 830], "score": 0.67, "latex": "a"}, {"category_id": 13, "poly": [990, 1196, 1003, 1196, 1003, 1218, 990, 1218], "score": 0.61, "latex": "t\\cdot"}, {"category_id": 13, "poly": [1066, 812, 1080, 812, 1080, 830, 1066, 830], "score": 0.58, "latex": "a"}, {"category_id": 13, "poly": [431, 808, 448, 808, 448, 830, 431, 830], "score": 0.46, "latex": "Y"}, {"category_id": 13, "poly": [1246, 1357, 1283, 1357, 1283, 1386, 1246, 1386], "score": 0.43, "latex": "\\mathrm{Ck}"}, {"category_id": 13, "poly": [773, 779, 827, 779, 827, 804, 773, 804], "score": 0.42, "latex": "100\\mathrm{th}"}, {"category_id": 13, "poly": [1107, 1357, 1144, 1357, 1144, 1386, 1107, 1386], "score": 0.41, "latex": "\\mathrm{Ck}"}, {"category_id": 13, "poly": [640, 807, 684, 807, 684, 831, 640, 831], "score": 0.29, "latex": "20\\mathrm{th}"}, {"category_id": 15, "poly": [776.0, 1612.0, 935.0, 1617.0, 933.0, 1656.0, 775.0, 1651.0], "score": 0.97, "text": " 5. Discussion"}, {"category_id": 15, "poly": [112.0, 252.0, 195.0, 252.0, 195.0, 282.0, 112.0, 282.0], "score": 0.98, "text": "Table5"}, {"category_id": 15, "poly": [112.0, 279.0, 1383.0, 282.0, 1383.0, 312.0, 112.0, 310.0], "score": 0.99, "text": " Published fow reductions from paired catchment analyses, after Scott et al. (2000), Hickel (2001), Nandakumar and Mein (1993) and Fahey and"}, {"category_id": 15, "poly": [112.0, 307.0, 681.0, 310.0, 681.0, 340.0, 112.0, 338.0], "score": 0.97, "text": "Jackson (1997) compared to estimated reductions in this study"}, {"category_id": 15, "poly": [1330.0, 202.0, 1368.0, 177.0, 1393.0, 215.0, 1355.0, 240.0], "score": 0.99, "text": "261"}, {"category_id": 15, "poly": [466.0, 194.0, 1033.0, 194.0, 1033.0, 224.0, 466.0, 224.0], "score": 0.99, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [148.0, 1243.0, 720.0, 1245.0, 719.0, 1275.0, 148.0, 1273.0], "score": 0.98, "text": "A further check on the overall model performance is"}, {"category_id": 15, "poly": [112.0, 1279.0, 719.0, 1277.0, 720.0, 1307.0, 112.0, 1309.0], "score": 0.98, "text": " a comparison with published results of paired catchment"}, {"category_id": 15, "poly": [114.0, 1312.0, 719.0, 1312.0, 719.0, 1342.0, 114.0, 1342.0], "score": 1.0, "text": "studies. The data that can be compared with our results"}, {"category_id": 15, "poly": [114.0, 1346.0, 719.0, 1346.0, 719.0, 1376.0, 114.0, 1376.0], "score": 0.98, "text": "are presented in Table 5 and can be broadly compared"}, {"category_id": 15, "poly": [114.0, 1380.0, 719.0, 1380.0, 719.0, 1410.0, 114.0, 1410.0], "score": 0.99, "text": "with Fig. 4. These data are reductions in years with near"}, {"category_id": 15, "poly": [114.0, 1415.0, 722.0, 1415.0, 722.0, 1445.0, 114.0, 1445.0], "score": 0.99, "text": "average annual rainfall, and at a time after treatment "}, {"category_id": 15, "poly": [114.0, 1445.0, 717.0, 1445.0, 717.0, 1475.0, 114.0, 1475.0], "score": 0.99, "text": "when maximum changes in streamflow have occurred."}, {"category_id": 15, "poly": [114.0, 1481.0, 719.0, 1481.0, 719.0, 1509.0, 114.0, 1509.0], "score": 0.99, "text": "Table 5 also includes estimates on the total and low flow"}, {"category_id": 15, "poly": [114.0, 1511.0, 719.0, 1511.0, 719.0, 1542.0, 114.0, 1542.0], "score": 0.99, "text": "reductions calculated from this study. Results from Pine"}, {"category_id": 15, "poly": [114.0, 1548.0, 719.0, 1548.0, 719.0, 1578.0, 114.0, 1578.0], "score": 0.98, "text": "Creek and Traralgon Creek are not included in Table 5"}, {"category_id": 15, "poly": [114.0, 1582.0, 722.0, 1582.0, 722.0, 1612.0, 114.0, 1612.0], "score": 1.0, "text": "as these catchments are not paired. Exact comparisons"}, {"category_id": 15, "poly": [116.0, 1615.0, 719.0, 1615.0, 719.0, 1645.0, 116.0, 1645.0], "score": 0.99, "text": "are impossible because of the rainfall variability, and"}, {"category_id": 15, "poly": [116.0, 1649.0, 717.0, 1649.0, 717.0, 1679.0, 116.0, 1679.0], "score": 0.99, "text": "lack of calibration period for Redhill. Despite this,"}, {"category_id": 15, "poly": [116.0, 1681.0, 719.0, 1681.0, 719.0, 1711.0, 116.0, 1711.0], "score": 0.95, "text": "Table 5 shows that total and low flow reductions"}, {"category_id": 15, "poly": [116.0, 1716.0, 719.0, 1716.0, 719.0, 1746.0, 116.0, 1746.0], "score": 0.99, "text": "estimated from our study are comparable to the results"}, {"category_id": 15, "poly": [116.0, 1750.0, 719.0, 1750.0, 719.0, 1780.0, 116.0, 1780.0], "score": 0.99, "text": "from paired catchment studies, indicating that our"}, {"category_id": 15, "poly": [116.0, 1782.0, 719.0, 1782.0, 719.0, 1812.0, 116.0, 1812.0], "score": 0.99, "text": "simple model has successfully removed the rainfall"}, {"category_id": 15, "poly": [111.0, 1820.0, 190.0, 1814.0, 192.0, 1846.0, 113.0, 1852.0], "score": 0.94, "text": "signal."}, {"category_id": 15, "poly": [112.0, 989.0, 717.0, 987.0, 717.0, 1023.0, 112.0, 1026.0], "score": 1.0, "text": "catchments and the lower deciles at Lambrechtsbos B."}, {"category_id": 15, "poly": [116.0, 1062.0, 715.0, 1062.0, 715.0, 1092.0, 116.0, 1092.0], "score": 0.98, "text": "lower than other published data (Fahey and Jackson,"}, {"category_id": 15, "poly": [116.0, 1092.0, 189.0, 1092.0, 189.0, 1124.0, 116.0, 1124.0], "score": 0.96, "text": "1997)."}, {"category_id": 15, "poly": [116.0, 1028.0, 168.0, 1028.0, 168.0, 1058.0, 116.0, 1058.0], "score": 1.0, "text": "The"}, {"category_id": 15, "poly": [222.0, 1028.0, 715.0, 1028.0, 715.0, 1058.0, 222.0, 1058.0], "score": 1.0, "text": "from Glendhu 2 appears to be substantially"}, {"category_id": 15, "poly": [114.0, 1176.0, 631.0, 1176.0, 631.0, 1213.0, 114.0, 1213.0], "score": 0.99, "text": "4.4. Comparison with paired catchment studies"}, {"category_id": 15, "poly": [816.0, 1686.0, 1381.0, 1686.0, 1381.0, 1716.0, 816.0, 1716.0], "score": 0.98, "text": "The aims of the project have largely been met. The"}, {"category_id": 15, "poly": [782.0, 1720.0, 1383.0, 1720.0, 1383.0, 1750.0, 782.0, 1750.0], "score": 0.97, "text": "general characterisation of FDCs and adjustment for"}, {"category_id": 15, "poly": [782.0, 1750.0, 1385.0, 1750.0, 1385.0, 1787.0, 782.0, 1787.0], "score": 0.99, "text": "climate has been very encouraging given the task of"}, {"category_id": 15, "poly": [782.0, 1784.0, 1381.0, 1784.0, 1381.0, 1815.0, 782.0, 1815.0], "score": 0.98, "text": "fitting our model to 10 flow percentiles, for 10 different"}, {"category_id": 15, "poly": [778.0, 1812.0, 1383.0, 1815.0, 1383.0, 1851.0, 777.0, 1849.0], "score": 0.97, "text": "catchments (resulting in 100 model fits\uff09 with"}, {"category_id": 15, "poly": [816.0, 1060.0, 1381.0, 1060.0, 1381.0, 1090.0, 816.0, 1090.0], "score": 0.96, "text": "As this analysis could only be applied, where there"}, {"category_id": 15, "poly": [782.0, 1094.0, 1383.0, 1094.0, 1383.0, 1124.0, 782.0, 1124.0], "score": 1.0, "text": "was consistent drying up of streams, it was confined to"}, {"category_id": 15, "poly": [782.0, 1127.0, 1381.0, 1127.0, 1381.0, 1157.0, 782.0, 1157.0], "score": 0.99, "text": "Stewarts Creek, Pine Creek and Redhill catchments. The"}, {"category_id": 15, "poly": [780.0, 1228.0, 1383.0, 1228.0, 1383.0, 1256.0, 780.0, 1256.0], "score": 0.99, "text": "significant results at the 0.05 level for both parameters at"}, {"category_id": 15, "poly": [780.0, 1260.0, 1383.0, 1260.0, 1383.0, 1290.0, 780.0, 1290.0], "score": 0.97, "text": "all three catchments. The climate adjusted zero flow"}, {"category_id": 15, "poly": [780.0, 1292.0, 1383.0, 1292.0, 1383.0, 1322.0, 780.0, 1322.0], "score": 1.0, "text": "days are shown in Fig. 5. The increases in zero flow days"}, {"category_id": 15, "poly": [778.0, 1387.0, 1387.0, 1389.0, 1387.0, 1425.0, 777.0, 1423.0], "score": 0.97, "text": "11 at Redhill. The latter has changed from an almost "}, {"category_id": 15, "poly": [775.0, 1423.0, 1385.0, 1421.0, 1385.0, 1458.0, 775.0, 1460.0], "score": 0.97, "text": " permanent to a highly intermittent stream. The curves"}, {"category_id": 15, "poly": [775.0, 1453.0, 1385.0, 1456.0, 1385.0, 1492.0, 775.0, 1490.0], "score": 0.99, "text": " are also in sensible agreement with the flow reductions"}, {"category_id": 15, "poly": [777.0, 1492.0, 885.0, 1492.0, 885.0, 1522.0, 777.0, 1522.0], "score": 0.99, "text": "in Fig. 4."}, {"category_id": 15, "poly": [1278.0, 1193.0, 1383.0, 1193.0, 1383.0, 1223.0, 1278.0, 1223.0], "score": 0.98, "text": " returned"}, {"category_id": 15, "poly": [777.0, 1327.0, 1295.0, 1327.0, 1295.0, 1357.0, 777.0, 1357.0], "score": 0.98, "text": " are substantial with flows confined to less than"}, {"category_id": 15, "poly": [1351.0, 1327.0, 1385.0, 1327.0, 1385.0, 1357.0, 1351.0, 1357.0], "score": 1.0, "text": "of"}, {"category_id": 15, "poly": [780.0, 1161.0, 1077.0, 1161.0, 1077.0, 1189.0, 780.0, 1189.0], "score": 0.96, "text": "model returned values of"}, {"category_id": 15, "poly": [1102.0, 1161.0, 1381.0, 1161.0, 1381.0, 1189.0, 1102.0, 1189.0], "score": 0.98, "text": "of 0.95, 0.99 and 0.99,"}, {"category_id": 15, "poly": [1134.0, 1193.0, 1200.0, 1193.0, 1200.0, 1223.0, 1134.0, 1223.0], "score": 0.97, "text": " and"}, {"category_id": 15, "poly": [780.0, 1193.0, 989.0, 1193.0, 989.0, 1223.0, 780.0, 1223.0], "score": 0.98, "text": "respectively. The"}, {"category_id": 15, "poly": [1004.0, 1193.0, 1112.0, 1193.0, 1112.0, 1223.0, 1004.0, 1223.0], "score": 0.89, "text": "-testson"}, {"category_id": 15, "poly": [1284.0, 1354.0, 1385.0, 1357.0, 1385.0, 1393.0, 1284.0, 1391.0], "score": 1.0, "text": "and year"}, {"category_id": 15, "poly": [775.0, 1354.0, 1106.0, 1357.0, 1106.0, 1393.0, 775.0, 1391.0], "score": 0.98, "text": " the time by year 8 at Stewarts"}, {"category_id": 15, "poly": [1145.0, 1354.0, 1245.0, 1357.0, 1245.0, 1393.0, 1145.0, 1391.0], "score": 1.0, "text": "and Pine"}, {"category_id": 15, "poly": [125.0, 690.0, 1385.0, 694.0, 1385.0, 731.0, 125.0, 727.0], "score": 0.97, "text": "a Rainfall refers to the rainfall in the year used for comparison of results. The value in brackets refers to the deviation from the mean anual"}, {"category_id": 15, "poly": [114.0, 722.0, 408.0, 725.0, 408.0, 755.0, 114.0, 752.0], "score": 1.0, "text": "rainfall for the period of record."}, {"category_id": 15, "poly": [112.0, 832.0, 312.0, 834.0, 311.0, 864.0, 112.0, 862.0], "score": 0.99, "text": " 30-100th percentiles."}, {"category_id": 15, "poly": [125.0, 776.0, 457.0, 780.0, 457.0, 811.0, 125.0, 806.0], "score": 0.96, "text": "c Low flow reduction calculated by"}, {"category_id": 15, "poly": [122.0, 748.0, 463.0, 750.0, 463.0, 780.0, 122.0, 778.0], "score": 0.98, "text": "b Total flow reduction calculated by"}, {"category_id": 15, "poly": [608.0, 748.0, 743.0, 750.0, 743.0, 780.0, 608.0, 778.0], "score": 1.0, "text": "for all deciles."}, {"category_id": 15, "poly": [123.0, 800.0, 374.0, 806.0, 374.0, 843.0, 122.0, 836.0], "score": 0.98, "text": "d For Cathedral Peak 3 the"}, {"category_id": 15, "poly": [1081.0, 800.0, 1385.0, 806.0, 1385.0, 843.0, 1081.0, 836.0], "score": 0.99, "text": "were lower then the values of the"}, {"category_id": 15, "poly": [391.0, 800.0, 430.0, 806.0, 430.0, 843.0, 391.0, 836.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [602.0, 776.0, 772.0, 780.0, 772.0, 811.0, 602.0, 806.0], "score": 0.99, "text": "for 70, 80, 90 and"}, {"category_id": 15, "poly": [828.0, 776.0, 934.0, 780.0, 934.0, 811.0, 828.0, 806.0], "score": 1.0, "text": "percentiles."}, {"category_id": 15, "poly": [449.0, 800.0, 639.0, 806.0, 639.0, 843.0, 449.0, 836.0], "score": 0.98, "text": "values for the 10 and"}, {"category_id": 15, "poly": [685.0, 800.0, 1065.0, 806.0, 1065.0, 843.0, 685.0, 836.0], "score": 0.99, "text": "percentiles were excluded as the values of"}, {"category_id": 15, "poly": [778.0, 987.0, 993.0, 991.0, 992.0, 1030.0, 777.0, 1025.0], "score": 1.0, "text": "4.5. Zero fow days"}], "page_info": {"page_no": 8, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 4, "poly": [130.26629638671875, 1337.3250732421875, 732.2774047851562, 1337.3250732421875, 732.2774047851562, 1418.7119140625, 130.26629638671875, 1418.7119140625], "score": 0.9999995231628418}, {"category_id": 2, "poly": [131.43930053710938, 195.23593139648438, 165.80084228515625, 195.23593139648438, 165.80084228515625, 215.28358459472656, 131.43930053710938, 215.28358459472656], "score": 0.999997615814209}, {"category_id": 3, "poly": [131.99615478515625, 262.13848876953125, 732.1187744140625, 262.13848876953125, 732.1187744140625, 1316.8990478515625, 131.99615478515625, 1316.8990478515625], "score": 0.9999966621398926}, {"category_id": 2, "poly": [480.581787109375, 195.6566162109375, 1043.8951416015625, 195.6566162109375, 1043.8951416015625, 218.63613891601562, 480.581787109375, 218.63613891601562], "score": 0.9999943971633911}, {"category_id": 1, "poly": [794.3954467773438, 1085.8665771484375, 1394.706298828125, 1085.8665771484375, 1394.706298828125, 1847.09423828125, 794.3954467773438, 1847.09423828125], "score": 0.9999863505363464}, {"category_id": 1, "poly": [795.3126831054688, 256.7186279296875, 1395.0584716796875, 256.7186279296875, 1395.0584716796875, 1079.958251953125, 795.3126831054688, 1079.958251953125], "score": 0.9999836683273315}, {"category_id": 1, "poly": [130.74447631835938, 1445.3975830078125, 731.3636474609375, 1445.3975830078125, 731.3636474609375, 1846.5950927734375, 130.74447631835938, 1846.5950927734375], "score": 0.9999815225601196}, {"category_id": 13, "poly": [1045, 452, 1098, 452, 1098, 482, 1045, 482], "score": 0.87, "latex": "27\\%"}, {"category_id": 15, "poly": [129.0, 1339.0, 732.0, 1339.0, 732.0, 1367.0, 129.0, 1367.0], "score": 0.98, "text": "Fig. 5. Number of zero fow days for average rainfall following"}, {"category_id": 15, "poly": [131.0, 1365.0, 730.0, 1365.0, 730.0, 1393.0, 131.0, 1393.0], "score": 0.98, "text": "afforestation for Stewarts Creek 5, Redhill and Pine Creek,"}, {"category_id": 15, "poly": [133.0, 1398.0, 219.0, 1398.0, 219.0, 1421.0, 133.0, 1421.0], "score": 1.0, "text": "Australia."}, {"category_id": 15, "poly": [127.0, 189.0, 172.0, 189.0, 172.0, 228.0, 127.0, 228.0], "score": 0.97, "text": "262"}, {"category_id": 15, "poly": [481.0, 194.0, 1046.0, 194.0, 1046.0, 224.0, 481.0, 224.0], "score": 0.97, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [827.0, 1086.0, 1398.0, 1086.0, 1398.0, 1116.0, 827.0, 1116.0], "score": 0.99, "text": "The model fits show we have quantified the net"}, {"category_id": 15, "poly": [793.0, 1120.0, 1396.0, 1120.0, 1396.0, 1150.0, 793.0, 1150.0], "score": 0.98, "text": "impact of afforestation for the majority of the flow"}, {"category_id": 15, "poly": [786.0, 1150.0, 1398.0, 1146.0, 1398.0, 1182.0, 786.0, 1187.0], "score": 0.99, "text": " percentiles in the 10 catchments. Results for the 10-50th"}, {"category_id": 15, "poly": [788.0, 1185.0, 1400.0, 1180.0, 1400.0, 1217.0, 788.0, 1221.0], "score": 0.98, "text": " percentiles were particularly encouraging. It is not"}, {"category_id": 15, "poly": [793.0, 1219.0, 1396.0, 1219.0, 1396.0, 1249.0, 793.0, 1249.0], "score": 0.99, "text": "surprising that the relationship between rainfall and flow"}, {"category_id": 15, "poly": [793.0, 1251.0, 1396.0, 1251.0, 1396.0, 1281.0, 793.0, 1281.0], "score": 0.97, "text": "diminishes at lower fows (60-100th percentile), where"}, {"category_id": 15, "poly": [793.0, 1286.0, 1396.0, 1286.0, 1396.0, 1316.0, 793.0, 1316.0], "score": 0.98, "text": "seasonal storage effects and rainfall distribution become"}, {"category_id": 15, "poly": [788.0, 1318.0, 1396.0, 1318.0, 1396.0, 1348.0, 788.0, 1348.0], "score": 0.97, "text": " more important drivers for runoff generation. The"}, {"category_id": 15, "poly": [790.0, 1352.0, 1398.0, 1352.0, 1398.0, 1382.0, 790.0, 1382.0], "score": 0.99, "text": "poorest model fits were gained for Lambrechtsbos A"}, {"category_id": 15, "poly": [788.0, 1382.0, 1396.0, 1382.0, 1396.0, 1413.0, 788.0, 1413.0], "score": 0.98, "text": " and B. The likely reason at Lambrechtsbos A is an"}, {"category_id": 15, "poly": [793.0, 1419.0, 1398.0, 1419.0, 1398.0, 1447.0, 793.0, 1447.0], "score": 0.98, "text": "observed annual decrease in stand water use after 12"}, {"category_id": 15, "poly": [793.0, 1451.0, 1398.0, 1451.0, 1398.0, 1481.0, 793.0, 1481.0], "score": 0.99, "text": "years (Scott et al., 2000) which does not conform to the"}, {"category_id": 15, "poly": [793.0, 1486.0, 1398.0, 1486.0, 1398.0, 1516.0, 793.0, 1516.0], "score": 0.99, "text": "sigmoidal form of our model over the full 19 years of"}, {"category_id": 15, "poly": [793.0, 1518.0, 1398.0, 1518.0, 1398.0, 1548.0, 793.0, 1548.0], "score": 0.99, "text": "record. The failure of the model to fit the lower flows at"}, {"category_id": 15, "poly": [786.0, 1546.0, 1400.0, 1548.0, 1400.0, 1585.0, 786.0, 1582.0], "score": 0.98, "text": " Lambrechtsbos B is not as explicable. A decrease in"}, {"category_id": 15, "poly": [790.0, 1587.0, 1398.0, 1587.0, 1398.0, 1615.0, 790.0, 1615.0], "score": 1.0, "text": "stand water use in this catchment is observed as the"}, {"category_id": 15, "poly": [793.0, 1619.0, 1400.0, 1619.0, 1400.0, 1649.0, 793.0, 1649.0], "score": 0.99, "text": "plantation ages, but does not occur during the first 20"}, {"category_id": 15, "poly": [793.0, 1651.0, 1398.0, 1651.0, 1398.0, 1681.0, 793.0, 1681.0], "score": 0.99, "text": "years after treatment (Scott et al., 2000). Other data from"}, {"category_id": 15, "poly": [788.0, 1679.0, 1398.0, 1681.0, 1398.0, 1718.0, 788.0, 1716.0], "score": 0.98, "text": " South Africa (Scott et al., 2000) indicate there are"}, {"category_id": 15, "poly": [791.0, 1711.0, 1398.0, 1716.0, 1398.0, 1752.0, 790.0, 1748.0], "score": 0.99, "text": " diminished flow reductions as plantations age, but again,"}, {"category_id": 15, "poly": [795.0, 1752.0, 1396.0, 1752.0, 1396.0, 1782.0, 795.0, 1782.0], "score": 0.99, "text": "generally after 20 years. Our use of an asymptotic curve"}, {"category_id": 15, "poly": [790.0, 1785.0, 1398.0, 1782.0, 1398.0, 1812.0, 790.0, 1815.0], "score": 0.98, "text": "assumes a new equilibrium of stand water use is"}, {"category_id": 15, "poly": [790.0, 1815.0, 1394.0, 1817.0, 1394.0, 1847.0, 790.0, 1845.0], "score": 0.99, "text": "reached. The results of the model fitting generally justify"}, {"category_id": 15, "poly": [788.0, 249.0, 1398.0, 252.0, 1398.0, 288.0, 788.0, 286.0], "score": 0.97, "text": " Lambrechtsbos B appear to be over-estimated by our"}, {"category_id": 15, "poly": [788.0, 284.0, 1398.0, 288.0, 1398.0, 325.0, 788.0, 320.0], "score": 0.99, "text": " model, which is unsurprising as the model fit was poor."}, {"category_id": 15, "poly": [793.0, 322.0, 1398.0, 322.0, 1398.0, 353.0, 793.0, 353.0], "score": 0.98, "text": "The remaining four South African catchments, and also"}, {"category_id": 15, "poly": [793.0, 355.0, 1398.0, 355.0, 1398.0, 385.0, 793.0, 385.0], "score": 0.99, "text": "Redhill and Stewarts Creek are in good agreement with"}, {"category_id": 15, "poly": [793.0, 389.0, 1400.0, 389.0, 1400.0, 417.0, 793.0, 417.0], "score": 1.0, "text": "the published values, particularly when the deviation of"}, {"category_id": 15, "poly": [793.0, 421.0, 1398.0, 421.0, 1398.0, 452.0, 793.0, 452.0], "score": 0.99, "text": "average rainfall is considered. Glendhu 2 reductions are"}, {"category_id": 15, "poly": [788.0, 488.0, 1396.0, 488.0, 1396.0, 518.0, 788.0, 518.0], "score": 0.99, "text": " a heavier impact on the lower flows. Overall, it appears"}, {"category_id": 15, "poly": [788.0, 518.0, 1400.0, 518.0, 1400.0, 555.0, 788.0, 555.0], "score": 0.99, "text": " there are no significant discrepancies with the published"}, {"category_id": 15, "poly": [793.0, 555.0, 1398.0, 555.0, 1398.0, 585.0, 793.0, 585.0], "score": 0.99, "text": "paired catchment analyses. We suggest our technique"}, {"category_id": 15, "poly": [790.0, 589.0, 1398.0, 589.0, 1398.0, 619.0, 790.0, 619.0], "score": 0.99, "text": " represents an alternative to the paired-catchment method"}, {"category_id": 15, "poly": [788.0, 617.0, 1398.0, 619.0, 1398.0, 656.0, 788.0, 654.0], "score": 0.98, "text": "for assessing hydrologic response to vegetation treat-"}, {"category_id": 15, "poly": [788.0, 651.0, 1400.0, 649.0, 1400.0, 686.0, 788.0, 688.0], "score": 1.0, "text": " ment, where paired data are unavailable. The method"}, {"category_id": 15, "poly": [793.0, 688.0, 1396.0, 688.0, 1396.0, 718.0, 793.0, 718.0], "score": 0.99, "text": "has not yet resulted in a predictive model, but has"}, {"category_id": 15, "poly": [795.0, 722.0, 1394.0, 722.0, 1394.0, 752.0, 795.0, 752.0], "score": 1.0, "text": "increased our knowledge of afforestation impacts. This"}, {"category_id": 15, "poly": [793.0, 755.0, 1398.0, 755.0, 1398.0, 785.0, 793.0, 785.0], "score": 0.96, "text": "is a valuable outcome given the contentious issue of"}, {"category_id": 15, "poly": [793.0, 787.0, 1398.0, 787.0, 1398.0, 817.0, 793.0, 817.0], "score": 0.98, "text": "afforestation in Australia and other countries, and a"}, {"category_id": 15, "poly": [792.0, 821.0, 1398.0, 819.0, 1398.0, 849.0, 793.0, 851.0], "score": 0.99, "text": "current paucity of data on inter-annual flows. It should"}, {"category_id": 15, "poly": [788.0, 849.0, 1396.0, 851.0, 1396.0, 888.0, 788.0, 886.0], "score": 0.99, "text": " be noted that nine of the 10 catchment were pine species."}, {"category_id": 15, "poly": [793.0, 888.0, 1398.0, 888.0, 1398.0, 918.0, 793.0, 918.0], "score": 0.98, "text": "More data is required to compare the impact of"}, {"category_id": 15, "poly": [790.0, 920.0, 1390.0, 920.0, 1390.0, 950.0, 790.0, 950.0], "score": 0.99, "text": "hardwood species, particularly eucalypts, on the FDC."}, {"category_id": 15, "poly": [793.0, 950.0, 1396.0, 955.0, 1396.0, 985.0, 792.0, 980.0], "score": 0.98, "text": "Unfortunately these data are currently scarce. There are"}, {"category_id": 15, "poly": [791.0, 980.0, 1398.0, 985.0, 1398.0, 1021.0, 790.0, 1017.0], "score": 1.0, "text": "substantial data on the physiological controls of eucalypt"}, {"category_id": 15, "poly": [793.0, 1019.0, 1396.0, 1019.0, 1396.0, 1049.0, 793.0, 1049.0], "score": 0.99, "text": "water use (see Whitehead and Beadle, 2004), but not at"}, {"category_id": 15, "poly": [790.0, 1054.0, 1016.0, 1054.0, 1016.0, 1084.0, 790.0, 1084.0], "score": 0.98, "text": "the catchment scale."}, {"category_id": 15, "poly": [788.0, 452.0, 1044.0, 452.0, 1044.0, 488.0, 788.0, 488.0], "score": 0.91, "text": " close to the reported "}, {"category_id": 15, "poly": [1099.0, 452.0, 1398.0, 452.0, 1398.0, 488.0, 1099.0, 488.0], "score": 0.97, "text": ", but our model produces"}, {"category_id": 15, "poly": [129.0, 1443.0, 732.0, 1443.0, 732.0, 1479.0, 129.0, 1479.0], "score": 0.99, "text": "substantially varying spatial scales, soils and geology,"}, {"category_id": 15, "poly": [129.0, 1479.0, 732.0, 1479.0, 732.0, 1509.0, 129.0, 1509.0], "score": 0.99, "text": "species planted and climatic environments. Although"}, {"category_id": 15, "poly": [127.0, 1511.0, 735.0, 1511.0, 735.0, 1548.0, 127.0, 1548.0], "score": 0.98, "text": "there were poor results for individual deciles, the FDCs "}, {"category_id": 15, "poly": [129.0, 1548.0, 732.0, 1548.0, 732.0, 1578.0, 129.0, 1578.0], "score": 0.99, "text": "at eight of the 10 catchments were adequately described"}, {"category_id": 15, "poly": [127.0, 1580.0, 730.0, 1578.0, 730.0, 1608.0, 127.0, 1610.0], "score": 0.99, "text": "by Eq. (2). The results of the statistical tests in which the"}, {"category_id": 15, "poly": [129.0, 1612.0, 726.0, 1612.0, 726.0, 1643.0, 129.0, 1643.0], "score": 0.99, "text": "rainfall term was significant for most deciles demon-"}, {"category_id": 15, "poly": [127.0, 1647.0, 735.0, 1647.0, 735.0, 1683.0, 127.0, 1683.0], "score": 0.99, "text": "strated the model structure was appropriate for adjusting"}, {"category_id": 15, "poly": [129.0, 1683.0, 730.0, 1683.0, 730.0, 1711.0, 129.0, 1711.0], "score": 0.96, "text": "the FDCs for climatic (rainfall) variability. The"}, {"category_id": 15, "poly": [129.0, 1716.0, 732.0, 1716.0, 732.0, 1746.0, 129.0, 1746.0], "score": 0.95, "text": "comparisons of our results with published paired"}, {"category_id": 15, "poly": [129.0, 1750.0, 732.0, 1750.0, 732.0, 1780.0, 129.0, 1780.0], "score": 0.98, "text": "catchment analyses are satisfactory, although the"}, {"category_id": 15, "poly": [129.0, 1784.0, 735.0, 1784.0, 735.0, 1812.0, 129.0, 1812.0], "score": 0.98, "text": "different methodologies make direct comparisons of"}, {"category_id": 15, "poly": [127.0, 1815.0, 737.0, 1817.0, 737.0, 1847.0, 127.0, 1845.0], "score": 0.98, "text": "deciles with total fow uncertain. Low flows at"}], "page_info": {"page_no": 9, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 2, "poly": [466.4325256347656, 194.8888397216797, 1031.1922607421875, 194.8888397216797, 1031.1922607421875, 219.64439392089844, 466.4325256347656, 219.64439392089844], "score": 0.9999977350234985}, {"category_id": 0, "poly": [781.4110107421875, 1350.9322509765625, 1112.086181640625, 1350.9322509765625, 1112.086181640625, 1380.4071044921875, 781.4110107421875, 1380.4071044921875], "score": 0.9999973773956299}, {"category_id": 1, "poly": [118.7479248046875, 587.0300903320312, 715.7766723632812, 587.0300903320312, 715.7766723632812, 883.0694580078125, 118.7479248046875, 883.0694580078125], "score": 0.9999968409538269}, {"category_id": 1, "poly": [118.48811340332031, 252.823486328125, 715.749267578125, 252.823486328125, 715.749267578125, 583.28515625, 118.48811340332031, 583.28515625], "score": 0.9999964237213135}, {"category_id": 1, "poly": [117.62772369384766, 885.8139038085938, 717.3323974609375, 885.8139038085938, 717.3323974609375, 1415.2767333984375, 117.62772369384766, 1415.2767333984375], "score": 0.9999961853027344}, {"category_id": 1, "poly": [782.490234375, 254.01434326171875, 1380.5517578125, 254.01434326171875, 1380.5517578125, 748.8712768554688, 782.490234375, 748.8712768554688], "score": 0.9999944567680359}, {"category_id": 1, "poly": [117.28860473632812, 1415.5831298828125, 716.8341064453125, 1415.5831298828125, 716.8341064453125, 1847.5146484375, 117.28860473632812, 1847.5146484375], "score": 0.9999933242797852}, {"category_id": 1, "poly": [781.5156860351562, 752.15576171875, 1380.3497314453125, 752.15576171875, 1380.3497314453125, 1279.9158935546875, 781.5156860351562, 1279.9158935546875], "score": 0.9999922513961792}, {"category_id": 1, "poly": [781.4845581054688, 1417.2979736328125, 1380.813232421875, 1417.2979736328125, 1380.813232421875, 1845.5704345703125, 781.4845581054688, 1845.5704345703125], "score": 0.9999920725822449}, {"category_id": 2, "poly": [1346.2413330078125, 196.15005493164062, 1380.82568359375, 196.15005493164062, 1380.82568359375, 216.4473876953125, 1346.2413330078125, 216.4473876953125], "score": 0.9999884366989136}, {"category_id": 13, "poly": [510, 1017, 563, 1017, 563, 1047, 510, 1047], "score": 0.89, "latex": "85\\%"}, {"category_id": 13, "poly": [1121, 321, 1143, 321, 1143, 347, 1121, 347], "score": 0.55, "latex": "E"}, {"category_id": 13, "poly": [433, 354, 456, 354, 456, 380, 433, 380], "score": 0.47, "latex": "E."}, {"category_id": 13, "poly": [578, 1018, 683, 1018, 683, 1048, 578, 1048], "score": 0.39, "latex": "1260\\,\\mathrm{mm}"}, {"category_id": 15, "poly": [466.0, 194.0, 1033.0, 194.0, 1033.0, 224.0, 466.0, 224.0], "score": 0.99, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [780.0, 1350.0, 1117.0, 1350.0, 1117.0, 1387.0, 780.0, 1387.0], "score": 0.99, "text": "6. Summary and conclusions"}, {"category_id": 15, "poly": [150.0, 585.0, 717.0, 585.0, 717.0, 615.0, 150.0, 615.0], "score": 0.98, "text": "The small Australian catchments converted to pine in"}, {"category_id": 15, "poly": [109.0, 619.0, 724.0, 617.0, 724.0, 654.0, 110.0, 656.0], "score": 1.0, "text": "response group 1 (Stewarts Creek 5, Pine Creek and"}, {"category_id": 15, "poly": [112.0, 649.0, 722.0, 651.0, 722.0, 688.0, 112.0, 686.0], "score": 0.99, "text": "Redhill) have similar shallow soils, potential evapo-"}, {"category_id": 15, "poly": [116.0, 688.0, 717.0, 688.0, 717.0, 718.0, 116.0, 718.0], "score": 0.99, "text": "transpiration and rainfall distribution (relatively uni-"}, {"category_id": 15, "poly": [116.0, 722.0, 717.0, 722.0, 717.0, 752.0, 116.0, 752.0], "score": 1.0, "text": "form) although Stewarts Creek is significantly wetter."}, {"category_id": 15, "poly": [116.0, 755.0, 719.0, 755.0, 719.0, 785.0, 116.0, 785.0], "score": 0.98, "text": "The combination of small catchment area and the"}, {"category_id": 15, "poly": [116.0, 787.0, 717.0, 787.0, 717.0, 817.0, 116.0, 817.0], "score": 0.99, "text": "increased transpirative demand that exceeds summer"}, {"category_id": 15, "poly": [114.0, 819.0, 720.0, 821.0, 719.0, 851.0, 114.0, 849.0], "score": 1.0, "text": "and autumn rainfall and stored water results in the large"}, {"category_id": 15, "poly": [116.0, 856.0, 638.0, 856.0, 638.0, 884.0, 116.0, 884.0], "score": 0.98, "text": "impact on lower flows, compared to high flows."}, {"category_id": 15, "poly": [114.0, 252.0, 722.0, 252.0, 722.0, 288.0, 114.0, 288.0], "score": 0.98, "text": "this assumption for the length of commercial plantation"}, {"category_id": 15, "poly": [114.0, 286.0, 719.0, 286.0, 719.0, 322.0, 114.0, 322.0], "score": 0.99, "text": "growth (up to 20 years) considered here. The physio-"}, {"category_id": 15, "poly": [116.0, 322.0, 719.0, 322.0, 719.0, 353.0, 116.0, 353.0], "score": 0.99, "text": "logical relationship between stand age and water use for"}, {"category_id": 15, "poly": [114.0, 385.0, 719.0, 385.0, 719.0, 421.0, 114.0, 421.0], "score": 1.0, "text": "thoroughly investigated, although Cornish and Vertessy"}, {"category_id": 15, "poly": [112.0, 417.0, 722.0, 419.0, 722.0, 456.0, 112.0, 454.0], "score": 0.99, "text": "(2001) and Roberts et al. (2001) have shown young"}, {"category_id": 15, "poly": [116.0, 456.0, 719.0, 456.0, 719.0, 486.0, 116.0, 486.0], "score": 1.0, "text": "mixed species eucalypt forests may use more water than"}, {"category_id": 15, "poly": [112.0, 484.0, 722.0, 486.0, 722.0, 522.0, 112.0, 520.0], "score": 0.99, "text": " mature stands, and Putahena and Cordery (2000) suggest "}, {"category_id": 15, "poly": [116.0, 522.0, 719.0, 522.0, 719.0, 553.0, 116.0, 553.0], "score": 0.99, "text": "maximum Pinus radiata water use may have been"}, {"category_id": 15, "poly": [114.0, 553.0, 655.0, 553.0, 655.0, 583.0, 114.0, 583.0], "score": 0.99, "text": "reached after 12 years, with a subsequent decline."}, {"category_id": 15, "poly": [116.0, 355.0, 432.0, 355.0, 432.0, 385.0, 116.0, 385.0], "score": 1.0, "text": "plantation species other than"}, {"category_id": 15, "poly": [457.0, 355.0, 719.0, 355.0, 719.0, 385.0, 457.0, 385.0], "score": 0.96, "text": "regnans have not been"}, {"category_id": 15, "poly": [146.0, 881.0, 720.0, 884.0, 719.0, 920.0, 146.0, 918.0], "score": 0.98, "text": " The magnitude of the response within Group 2 varies"}, {"category_id": 15, "poly": [116.0, 920.0, 717.0, 920.0, 717.0, 950.0, 116.0, 950.0], "score": 1.0, "text": "considerably, with greater reduction in flows in the two"}, {"category_id": 15, "poly": [116.0, 952.0, 717.0, 952.0, 717.0, 983.0, 116.0, 983.0], "score": 0.98, "text": "Cathedral Peak catchments, and Lambrechtsbos B."}, {"category_id": 15, "poly": [114.0, 987.0, 719.0, 987.0, 719.0, 1017.0, 114.0, 1017.0], "score": 0.99, "text": "Potential evaporation is in phase with rainfall at the"}, {"category_id": 15, "poly": [114.0, 1054.0, 722.0, 1054.0, 722.0, 1084.0, 114.0, 1084.0], "score": 0.98, "text": "average) of their rainfall in summer. The conjunction of"}, {"category_id": 15, "poly": [116.0, 1088.0, 722.0, 1088.0, 722.0, 1118.0, 116.0, 1118.0], "score": 0.99, "text": "peak demand and plant water availability may explain"}, {"category_id": 15, "poly": [114.0, 1118.0, 722.0, 1120.0, 722.0, 1150.0, 114.0, 1148.0], "score": 0.98, "text": "the high reductions relative to the remaining catchments "}, {"category_id": 15, "poly": [116.0, 1155.0, 722.0, 1155.0, 722.0, 1185.0, 116.0, 1185.0], "score": 0.98, "text": "in Group 2. In addition, the stocking density was"}, {"category_id": 15, "poly": [116.0, 1187.0, 717.0, 1187.0, 717.0, 1215.0, 116.0, 1215.0], "score": 0.97, "text": "described as \u2018abnormally dense\u2019 by Scott et al. (2000)."}, {"category_id": 15, "poly": [116.0, 1219.0, 719.0, 1219.0, 719.0, 1249.0, 116.0, 1249.0], "score": 1.0, "text": "Growth at Glendhu 2 was notably slow (Fahey and"}, {"category_id": 15, "poly": [112.0, 1247.0, 722.0, 1249.0, 722.0, 1286.0, 112.0, 1284.0], "score": 0.98, "text": " Jackson, 1997) and Lambrechtsbos A and Biesievlei are"}, {"category_id": 15, "poly": [116.0, 1286.0, 719.0, 1286.0, 719.0, 1316.0, 116.0, 1316.0], "score": 1.0, "text": "described as being within sub optimal growth zones"}, {"category_id": 15, "poly": [116.0, 1318.0, 719.0, 1318.0, 719.0, 1348.0, 116.0, 1348.0], "score": 0.99, "text": "(Scott and Smith, 1997) characterised by these authors"}, {"category_id": 15, "poly": [114.0, 1352.0, 719.0, 1352.0, 719.0, 1382.0, 114.0, 1382.0], "score": 0.99, "text": "as having relatively slow response times and lesser"}, {"category_id": 15, "poly": [109.0, 1383.0, 586.0, 1380.0, 586.0, 1417.0, 110.0, 1419.0], "score": 0.96, "text": " reductions that those at more optimal sites."}, {"category_id": 15, "poly": [112.0, 1017.0, 509.0, 1017.0, 509.0, 1054.0, 112.0, 1054.0], "score": 0.98, "text": " Cathedral Peak sites as they receive"}, {"category_id": 15, "poly": [684.0, 1017.0, 719.0, 1017.0, 719.0, 1054.0, 684.0, 1054.0], "score": 0.93, "text": "on"}, {"category_id": 15, "poly": [810.0, 249.0, 1383.0, 252.0, 1383.0, 288.0, 810.0, 286.0], "score": 1.0, "text": "Traralgon Creek would be expected to have both the"}, {"category_id": 15, "poly": [780.0, 286.0, 1385.0, 286.0, 1385.0, 322.0, 780.0, 322.0], "score": 0.98, "text": "most subdued flow reductions and longer response time"}, {"category_id": 15, "poly": [780.0, 355.0, 1385.0, 355.0, 1385.0, 385.0, 780.0, 385.0], "score": 0.97, "text": "uncertain vegetation record. Peak stand water use of a"}, {"category_id": 15, "poly": [777.0, 389.0, 1381.0, 389.0, 1381.0, 419.0, 777.0, 419.0], "score": 0.99, "text": "natural stand of this species is around 30 years."}, {"category_id": 15, "poly": [782.0, 421.0, 1383.0, 421.0, 1383.0, 452.0, 782.0, 452.0], "score": 0.98, "text": "Additionally in this large, \u2018real world\u2019 catchment,"}, {"category_id": 15, "poly": [780.0, 456.0, 1385.0, 456.0, 1385.0, 486.0, 780.0, 486.0], "score": 0.99, "text": "there is a continuous cycle of forest management"}, {"category_id": 15, "poly": [782.0, 488.0, 1385.0, 488.0, 1385.0, 518.0, 782.0, 518.0], "score": 0.98, "text": "which includes harvesting. A mixture of pasture and"}, {"category_id": 15, "poly": [784.0, 522.0, 1383.0, 522.0, 1383.0, 553.0, 784.0, 553.0], "score": 0.99, "text": "'scrub', which could represent significant understorey"}, {"category_id": 15, "poly": [780.0, 555.0, 1381.0, 555.0, 1381.0, 585.0, 780.0, 585.0], "score": 0.99, "text": "stands, were replaced by plantation species. Conse-"}, {"category_id": 15, "poly": [780.0, 589.0, 1385.0, 589.0, 1385.0, 619.0, 780.0, 619.0], "score": 0.99, "text": "quently the difference between pre and post treatment"}, {"category_id": 15, "poly": [777.0, 619.0, 1383.0, 619.0, 1383.0, 649.0, 777.0, 649.0], "score": 0.98, "text": "ET may be less than at other catchments. Reductions of"}, {"category_id": 15, "poly": [777.0, 651.0, 1385.0, 651.0, 1385.0, 688.0, 777.0, 688.0], "score": 1.0, "text": "this magnitude could be more readily expected in larger,"}, {"category_id": 15, "poly": [780.0, 688.0, 1383.0, 688.0, 1383.0, 718.0, 780.0, 718.0], "score": 0.99, "text": "multi land use catchments than the very high impacts"}, {"category_id": 15, "poly": [782.0, 720.0, 1293.0, 720.0, 1293.0, 750.0, 782.0, 750.0], "score": 0.98, "text": "estimated at the smaller Australian catchments."}, {"category_id": 15, "poly": [780.0, 322.0, 1120.0, 322.0, 1120.0, 353.0, 780.0, 353.0], "score": 0.93, "text": "because of the large area of "}, {"category_id": 15, "poly": [1144.0, 322.0, 1385.0, 322.0, 1385.0, 353.0, 1144.0, 353.0], "score": 0.99, "text": "regnans forest, and"}, {"category_id": 15, "poly": [146.0, 1412.0, 720.0, 1415.0, 719.0, 1451.0, 146.0, 1449.0], "score": 0.98, "text": " The response groups may be in part explained by the"}, {"category_id": 15, "poly": [109.0, 1449.0, 722.0, 1447.0, 722.0, 1483.0, 110.0, 1486.0], "score": 0.96, "text": "storage characteristics of the catchments. Accurate"}, {"category_id": 15, "poly": [114.0, 1486.0, 717.0, 1486.0, 717.0, 1516.0, 114.0, 1516.0], "score": 0.99, "text": "measures of storage are not available from the literature,"}, {"category_id": 15, "poly": [114.0, 1518.0, 719.0, 1518.0, 719.0, 1546.0, 114.0, 1546.0], "score": 0.98, "text": "but the soil depths and the baseflow index (Table 1) both"}, {"category_id": 15, "poly": [114.0, 1552.0, 722.0, 1552.0, 722.0, 1580.0, 114.0, 1580.0], "score": 0.97, "text": "show the three south eastern Australian catchments with"}, {"category_id": 15, "poly": [114.0, 1587.0, 722.0, 1587.0, 722.0, 1617.0, 114.0, 1617.0], "score": 0.98, "text": "the greatest reduction are likely to have the lowest"}, {"category_id": 15, "poly": [109.0, 1617.0, 722.0, 1615.0, 722.0, 1651.0, 110.0, 1653.0], "score": 0.99, "text": " storage capacity. The greater flow reductions, particu-"}, {"category_id": 15, "poly": [116.0, 1651.0, 717.0, 1651.0, 717.0, 1681.0, 116.0, 1681.0], "score": 0.97, "text": "larly for low flows, could be expected under these"}, {"category_id": 15, "poly": [116.0, 1686.0, 719.0, 1686.0, 719.0, 1716.0, 116.0, 1716.0], "score": 0.99, "text": "conditions. Inclusion of a storage term in the model is an"}, {"category_id": 15, "poly": [116.0, 1718.0, 719.0, 1718.0, 719.0, 1748.0, 116.0, 1748.0], "score": 0.99, "text": "obvious option for improving the analysis. However the"}, {"category_id": 15, "poly": [116.0, 1752.0, 719.0, 1752.0, 719.0, 1782.0, 116.0, 1782.0], "score": 0.98, "text": "addition of extra parameters would be at the cost of"}, {"category_id": 15, "poly": [116.0, 1784.0, 717.0, 1784.0, 717.0, 1815.0, 116.0, 1815.0], "score": 0.99, "text": "maintaining model simplicity, particularly as character-"}, {"category_id": 15, "poly": [116.0, 1817.0, 518.0, 1817.0, 518.0, 1847.0, 116.0, 1847.0], "score": 1.0, "text": "ising a transient storage is not trivial."}, {"category_id": 15, "poly": [816.0, 755.0, 1381.0, 755.0, 1381.0, 785.0, 816.0, 785.0], "score": 0.97, "text": "The analysis of zero flow days was successful,"}, {"category_id": 15, "poly": [782.0, 787.0, 1383.0, 787.0, 1383.0, 817.0, 782.0, 817.0], "score": 0.99, "text": "demonstrating that the impact on flow intermittence can"}, {"category_id": 15, "poly": [780.0, 819.0, 1383.0, 819.0, 1383.0, 849.0, 780.0, 849.0], "score": 1.0, "text": "be evaluated without of the entire FDC. This was helpful"}, {"category_id": 15, "poly": [777.0, 854.0, 1381.0, 854.0, 1381.0, 884.0, 777.0, 884.0], "score": 0.98, "text": " as the change in the higher percentiles (low flows) could"}, {"category_id": 15, "poly": [782.0, 886.0, 1381.0, 886.0, 1381.0, 916.0, 782.0, 916.0], "score": 0.97, "text": "not always be modelled. The results for the three"}, {"category_id": 15, "poly": [782.0, 920.0, 1381.0, 920.0, 1381.0, 950.0, 782.0, 950.0], "score": 0.98, "text": "catchments analysed are a rather stark indication of the"}, {"category_id": 15, "poly": [782.0, 955.0, 1383.0, 955.0, 1383.0, 985.0, 782.0, 985.0], "score": 0.99, "text": "potential for highly increased zero flow periods in small"}, {"category_id": 15, "poly": [782.0, 987.0, 1381.0, 987.0, 1381.0, 1017.0, 782.0, 1017.0], "score": 0.99, "text": "catchments, at least in south-eastern Australia. However,"}, {"category_id": 15, "poly": [778.0, 1015.0, 1383.0, 1019.0, 1383.0, 1054.0, 777.0, 1049.0], "score": 0.99, "text": "it should be noted these curves probably represent a"}, {"category_id": 15, "poly": [777.0, 1054.0, 1383.0, 1054.0, 1383.0, 1084.0, 777.0, 1084.0], "score": 0.97, "text": " maximum response as they are all derived from small"}, {"category_id": 15, "poly": [777.0, 1088.0, 1381.0, 1088.0, 1381.0, 1118.0, 777.0, 1118.0], "score": 0.97, "text": "catchments with small storage capacities and large"}, {"category_id": 15, "poly": [780.0, 1120.0, 1385.0, 1120.0, 1385.0, 1150.0, 780.0, 1150.0], "score": 0.99, "text": "percentages of afforestation. This method could be used"}, {"category_id": 15, "poly": [777.0, 1150.0, 1381.0, 1150.0, 1381.0, 1180.0, 777.0, 1180.0], "score": 1.0, "text": "to determine change in the occurrence of any given flow"}, {"category_id": 15, "poly": [780.0, 1187.0, 1383.0, 1187.0, 1383.0, 1217.0, 780.0, 1217.0], "score": 0.98, "text": "in response to afforestation; e.g. to determine the"}, {"category_id": 15, "poly": [775.0, 1215.0, 1387.0, 1217.0, 1387.0, 1253.0, 775.0, 1251.0], "score": 0.96, "text": "likelihood of maintaining a reservoir storage or an"}, {"category_id": 15, "poly": [782.0, 1253.0, 1381.0, 1253.0, 1381.0, 1284.0, 782.0, 1284.0], "score": 1.0, "text": "environmental fow that requires an average critical flow."}, {"category_id": 15, "poly": [810.0, 1412.0, 1385.0, 1417.0, 1385.0, 1453.0, 810.0, 1449.0], "score": 0.98, "text": "This project sought to (i) develop a method to remove"}, {"category_id": 15, "poly": [780.0, 1453.0, 1383.0, 1453.0, 1383.0, 1481.0, 780.0, 1481.0], "score": 1.0, "text": "the climate signal from streamflow records to identify"}, {"category_id": 15, "poly": [780.0, 1486.0, 1383.0, 1486.0, 1383.0, 1516.0, 780.0, 1516.0], "score": 0.98, "text": "the impact of vegetation on flow from afforested"}, {"category_id": 15, "poly": [780.0, 1518.0, 1385.0, 1518.0, 1385.0, 1548.0, 780.0, 1548.0], "score": 1.0, "text": "catchments, and (ii) quantify this impact on the flow"}, {"category_id": 15, "poly": [777.0, 1550.0, 1383.0, 1550.0, 1383.0, 1580.0, 777.0, 1580.0], "score": 0.99, "text": "duration curve. A simple model was proposed that"}, {"category_id": 15, "poly": [775.0, 1582.0, 1387.0, 1582.0, 1387.0, 1619.0, 775.0, 1619.0], "score": 0.98, "text": " considered the age of plantation and the annual rainfall"}, {"category_id": 15, "poly": [777.0, 1619.0, 1385.0, 1619.0, 1385.0, 1649.0, 777.0, 1649.0], "score": 0.98, "text": "to be the principal drivers for evapotranspiration. This"}, {"category_id": 15, "poly": [780.0, 1651.0, 1385.0, 1651.0, 1385.0, 1679.0, 780.0, 1679.0], "score": 0.99, "text": "model was fitted to the observed deciles of the FDC, and"}, {"category_id": 15, "poly": [778.0, 1681.0, 1381.0, 1686.0, 1381.0, 1716.0, 777.0, 1711.0], "score": 0.97, "text": "the climate signal was then removed from the stream-"}, {"category_id": 15, "poly": [780.0, 1716.0, 1387.0, 1716.0, 1387.0, 1752.0, 780.0, 1752.0], "score": 0.99, "text": "flow records by adjusting the FDC for average rainfall"}, {"category_id": 15, "poly": [777.0, 1748.0, 1385.0, 1746.0, 1385.0, 1782.0, 778.0, 1785.0], "score": 0.98, "text": "over the period of record. The model was tested and"}, {"category_id": 15, "poly": [777.0, 1780.0, 1381.0, 1780.0, 1381.0, 1817.0, 777.0, 1817.0], "score": 0.99, "text": "applied to 10 afforested catchments. We successfully"}, {"category_id": 15, "poly": [778.0, 1810.0, 1385.0, 1815.0, 1385.0, 1851.0, 777.0, 1847.0], "score": 1.0, "text": "fitted our model to catchments with varying spatial"}, {"category_id": 15, "poly": [1342.0, 189.0, 1387.0, 189.0, 1387.0, 234.0, 1342.0, 234.0], "score": 1.0, "text": "263"}], "page_info": {"page_no": 10, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 0, "poly": [132.2023162841797, 944.2422485351562, 352.39361572265625, 944.2422485351562, 352.39361572265625, 973.2088623046875, 132.2023162841797, 973.2088623046875], "score": 0.9999986886978149}, {"category_id": 2, "poly": [480.25787353515625, 196.37384033203125, 1044.1737060546875, 196.37384033203125, 1044.1737060546875, 218.59146118164062, 480.25787353515625, 218.59146118164062], "score": 0.9999973177909851}, {"category_id": 1, "poly": [131.0494842529297, 255.921875, 730.36865234375, 255.921875, 730.36865234375, 848.8026123046875, 131.0494842529297, 848.8026123046875], "score": 0.9999949336051941}, {"category_id": 1, "poly": [130.6344757080078, 1010.9166870117188, 730.247314453125, 1010.9166870117188, 730.247314453125, 1437.8150634765625, 130.6344757080078, 1437.8150634765625], "score": 0.9999939203262329}, {"category_id": 2, "poly": [130.68336486816406, 196.22927856445312, 164.99691772460938, 196.22927856445312, 164.99691772460938, 215.17306518554688, 130.68336486816406, 215.17306518554688], "score": 0.9999921321868896}, {"category_id": 1, "poly": [131.60971069335938, 1597.386962890625, 732.5863647460938, 1597.386962890625, 732.5863647460938, 1846.581787109375, 131.60971069335938, 1846.581787109375], "score": 0.9999908208847046}, {"category_id": 1, "poly": [791.6022338867188, 251.6699676513672, 1397.9674072265625, 251.6699676513672, 1397.9674072265625, 1848.8499755859375, 791.6022338867188, 1848.8499755859375], "score": 0.9999874830245972}, {"category_id": 0, "poly": [131.00613403320312, 1534.647705078125, 256.1180725097656, 1534.647705078125, 256.1180725097656, 1561.1875, 131.00613403320312, 1561.1875], "score": 0.9999844431877136}, {"category_id": 13, "poly": [1067, 1022, 1120, 1022, 1120, 1049, 1067, 1049], "score": 0.57, "latex": "219{\\mathrm{~p~}}"}, {"category_id": 15, "poly": [129.0, 939.0, 357.0, 944.0, 356.0, 983.0, 129.0, 978.0], "score": 1.0, "text": "Acknowledgements"}, {"category_id": 15, "poly": [481.0, 194.0, 1046.0, 194.0, 1046.0, 224.0, 481.0, 224.0], "score": 0.97, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [127.0, 252.0, 734.0, 249.0, 735.0, 286.0, 127.0, 288.0], "score": 0.99, "text": "scales, species and environments, and have shown that it"}, {"category_id": 15, "poly": [129.0, 290.0, 732.0, 290.0, 732.0, 320.0, 129.0, 320.0], "score": 0.99, "text": "provides a means of separating the influence of climate"}, {"category_id": 15, "poly": [129.0, 322.0, 732.0, 322.0, 732.0, 353.0, 129.0, 353.0], "score": 0.99, "text": "and vegetation on the FDCs. The modelled results"}, {"category_id": 15, "poly": [129.0, 353.0, 730.0, 353.0, 730.0, 383.0, 129.0, 383.0], "score": 0.97, "text": "showed the greatest proportional impacts were for"}, {"category_id": 15, "poly": [129.0, 387.0, 732.0, 387.0, 732.0, 417.0, 129.0, 417.0], "score": 0.99, "text": "median and lower flows. The flow reductions from the"}, {"category_id": 15, "poly": [129.0, 421.0, 732.0, 421.0, 732.0, 449.0, 129.0, 449.0], "score": 0.98, "text": "three small catchments SE Australian were the highest"}, {"category_id": 15, "poly": [129.0, 456.0, 735.0, 456.0, 735.0, 486.0, 129.0, 486.0], "score": 0.99, "text": "and may reflect lower storages. The characterisation of"}, {"category_id": 15, "poly": [129.0, 488.0, 732.0, 488.0, 732.0, 518.0, 129.0, 518.0], "score": 0.99, "text": "the number of zero flow days was also successful for"}, {"category_id": 15, "poly": [129.0, 522.0, 735.0, 522.0, 735.0, 553.0, 129.0, 553.0], "score": 0.98, "text": "these catchments in indicating a significant increase in"}, {"category_id": 15, "poly": [129.0, 555.0, 730.0, 555.0, 730.0, 585.0, 129.0, 585.0], "score": 0.99, "text": "zero flows. The flow reductions identified here probably"}, {"category_id": 15, "poly": [127.0, 589.0, 732.0, 589.0, 732.0, 619.0, 127.0, 619.0], "score": 0.97, "text": "represent a maximum effect given the size of the"}, {"category_id": 15, "poly": [129.0, 619.0, 728.0, 619.0, 728.0, 649.0, 129.0, 649.0], "score": 0.99, "text": "catchments, level of afforestation and the shallow soils."}, {"category_id": 15, "poly": [129.0, 654.0, 732.0, 654.0, 732.0, 684.0, 129.0, 684.0], "score": 0.98, "text": "These results have yielded useful new insights on the"}, {"category_id": 15, "poly": [129.0, 688.0, 735.0, 688.0, 735.0, 718.0, 129.0, 718.0], "score": 0.99, "text": "contentious issue of the hydrological impact of"}, {"category_id": 15, "poly": [129.0, 720.0, 732.0, 720.0, 732.0, 750.0, 129.0, 750.0], "score": 0.99, "text": "afforestation. This research has led to the development"}, {"category_id": 15, "poly": [129.0, 755.0, 732.0, 755.0, 732.0, 785.0, 129.0, 785.0], "score": 0.99, "text": "of a method to assess the net impact of afforestation on"}, {"category_id": 15, "poly": [129.0, 787.0, 730.0, 787.0, 730.0, 817.0, 129.0, 817.0], "score": 0.99, "text": "the fow duration curve which does not require paired-"}, {"category_id": 15, "poly": [127.0, 819.0, 591.0, 821.0, 591.0, 851.0, 127.0, 849.0], "score": 0.98, "text": "catchments to remove climatic variability."}, {"category_id": 15, "poly": [163.0, 1010.0, 730.0, 1010.0, 730.0, 1041.0, 163.0, 1041.0], "score": 0.98, "text": "The authors would like to thank Rory Nathan,"}, {"category_id": 15, "poly": [127.0, 1041.0, 735.0, 1041.0, 735.0, 1077.0, 127.0, 1077.0], "score": 1.0, "text": "Narendra Tuteja, Tom McMahon, Geoff Podger, Rob"}, {"category_id": 15, "poly": [131.0, 1077.0, 728.0, 1077.0, 728.0, 1107.0, 131.0, 1107.0], "score": 0.99, "text": "Vertessy, Glen Walker and Peter Hairsine for particu-"}, {"category_id": 15, "poly": [129.0, 1109.0, 732.0, 1109.0, 732.0, 1140.0, 129.0, 1140.0], "score": 0.99, "text": "larly helpful discussions on methodologies and reviews,"}, {"category_id": 15, "poly": [127.0, 1142.0, 732.0, 1144.0, 732.0, 1174.0, 127.0, 1172.0], "score": 1.0, "text": "Richard Morton for valuable statistical advice, Dave"}, {"category_id": 15, "poly": [129.0, 1178.0, 730.0, 1178.0, 730.0, 1208.0, 129.0, 1208.0], "score": 1.0, "text": "Scott for supplying the South African data, Barry Fahey"}, {"category_id": 15, "poly": [127.0, 1208.0, 732.0, 1210.0, 732.0, 1241.0, 127.0, 1238.0], "score": 0.99, "text": "for the New Zealand data, and Hancocks Victorian"}, {"category_id": 15, "poly": [127.0, 1241.0, 730.0, 1243.0, 730.0, 1273.0, 127.0, 1271.0], "score": 0.99, "text": "Plantations for vegetation data. The study was funded by"}, {"category_id": 15, "poly": [129.0, 1277.0, 735.0, 1277.0, 735.0, 1307.0, 129.0, 1307.0], "score": 0.97, "text": "the Victorian Department of Natural Resources and"}, {"category_id": 15, "poly": [129.0, 1312.0, 732.0, 1312.0, 732.0, 1339.0, 129.0, 1339.0], "score": 0.98, "text": "Environment Private Forestry Unit, the CRC for"}, {"category_id": 15, "poly": [129.0, 1344.0, 735.0, 1344.0, 735.0, 1374.0, 129.0, 1374.0], "score": 1.0, "text": "Catchment Hydrology, and the MDBC funded project"}, {"category_id": 15, "poly": [127.0, 1372.0, 735.0, 1374.0, 734.0, 1410.0, 127.0, 1408.0], "score": 0.99, "text": "\u201cIntegrated assessment of the effects of land use changes"}, {"category_id": 15, "poly": [127.0, 1410.0, 558.0, 1408.0, 558.0, 1438.0, 127.0, 1441.0], "score": 0.98, "text": "on water yield and salt loads\u2019 (D2013)."}, {"category_id": 15, "poly": [127.0, 189.0, 170.0, 189.0, 170.0, 228.0, 127.0, 228.0], "score": 1.0, "text": "264"}, {"category_id": 15, "poly": [127.0, 1593.0, 732.0, 1598.0, 732.0, 1632.0, 127.0, 1627.0], "score": 0.97, "text": "Bosch, J.M., 1979. Treatment effects on annual and dry period"}, {"category_id": 15, "poly": [157.0, 1625.0, 732.0, 1623.0, 732.0, 1653.0, 157.0, 1656.0], "score": 0.99, "text": " streamflow at Cathedral Peak. South African Forestry Journal 108,"}, {"category_id": 15, "poly": [161.0, 1651.0, 230.0, 1651.0, 230.0, 1681.0, 161.0, 1681.0], "score": 0.99, "text": "29-37."}, {"category_id": 15, "poly": [127.0, 1681.0, 732.0, 1681.0, 732.0, 1709.0, 127.0, 1709.0], "score": 0.97, "text": "Bosch, J.M., Von Gadow, K., 1990. Regulating afforestation for water"}, {"category_id": 15, "poly": [159.0, 1709.0, 730.0, 1707.0, 730.0, 1737.0, 159.0, 1739.0], "score": 0.98, "text": " conservation in South Africa. Suid-Afrikaanse Bosboutydskrif 153,"}, {"category_id": 15, "poly": [163.0, 1739.0, 228.0, 1739.0, 228.0, 1763.0, 163.0, 1763.0], "score": 1.0, "text": "41-54."}, {"category_id": 15, "poly": [127.0, 1763.0, 735.0, 1765.0, 734.0, 1795.0, 127.0, 1793.0], "score": 0.97, "text": "Chiew, F.H.S., McMahon, T.A., 1993. Assessing the adequacy of"}, {"category_id": 15, "poly": [161.0, 1793.0, 735.0, 1793.0, 735.0, 1821.0, 161.0, 1821.0], "score": 0.97, "text": "catchment streamflow yield estimates. Australian Journal of Soil"}, {"category_id": 15, "poly": [163.0, 1819.0, 365.0, 1819.0, 365.0, 1847.0, 163.0, 1847.0], "score": 1.0, "text": "Research 31, 665-680."}, {"category_id": 15, "poly": [791.0, 251.0, 1398.0, 256.0, 1398.0, 286.0, 790.0, 282.0], "score": 0.99, "text": "Cornish, P.M., Vertessy, R.A., 2001. Forest age-induced changes in"}, {"category_id": 15, "poly": [823.0, 284.0, 1398.0, 282.0, 1398.0, 312.0, 823.0, 314.0], "score": 0.98, "text": " evapotranspiration and water yield in a eucalypt forest. Journal of"}, {"category_id": 15, "poly": [825.0, 312.0, 1033.0, 312.0, 1033.0, 342.0, 825.0, 342.0], "score": 1.0, "text": "Hydrology 242, 43-63."}, {"category_id": 15, "poly": [788.0, 338.0, 1398.0, 340.0, 1398.0, 370.0, 788.0, 368.0], "score": 1.0, "text": "Fahey, B., Jackson, R., 1997. Hydrological impacts of converting"}, {"category_id": 15, "poly": [820.0, 366.0, 1398.0, 363.0, 1398.0, 400.0, 821.0, 402.0], "score": 0.97, "text": "native forests and grasslands to pine plantations, South"}, {"category_id": 15, "poly": [821.0, 393.0, 1396.0, 396.0, 1396.0, 428.0, 820.0, 426.0], "score": 0.98, "text": " Island, New Zealand. Agricultural and Forest Meteorology 84,"}, {"category_id": 15, "poly": [825.0, 424.0, 889.0, 424.0, 889.0, 454.0, 825.0, 454.0], "score": 1.0, "text": "69-82."}, {"category_id": 15, "poly": [788.0, 451.0, 1396.0, 454.0, 1396.0, 484.0, 788.0, 482.0], "score": 0.99, "text": "Hickel, K., 2001. The effect of pine afforestation on flow regime in"}, {"category_id": 15, "poly": [823.0, 479.0, 1398.0, 484.0, 1398.0, 512.0, 822.0, 507.0], "score": 0.97, "text": "small upland catchments. Masters Thesis, University of Stuttgart,"}, {"category_id": 15, "poly": [820.0, 510.0, 889.0, 505.0, 892.0, 537.0, 822.0, 543.0], "score": 0.94, "text": "p. 134."}, {"category_id": 15, "poly": [790.0, 540.0, 1396.0, 540.0, 1396.0, 568.0, 790.0, 568.0], "score": 1.0, "text": "Holmes, J.W., Sinclair, J.A., 1986. Water yield from some afforested"}, {"category_id": 15, "poly": [825.0, 570.0, 1398.0, 570.0, 1398.0, 598.0, 825.0, 598.0], "score": 0.98, "text": "catchments in Victoria. In Hydrology and Water Resources"}, {"category_id": 15, "poly": [825.0, 596.0, 1398.0, 596.0, 1398.0, 626.0, 825.0, 626.0], "score": 0.99, "text": "Symposium, Griffth University, Brisbane 25-27 November 1986,"}, {"category_id": 15, "poly": [820.0, 626.0, 939.0, 619.0, 941.0, 649.0, 822.0, 656.0], "score": 0.95, "text": "pp. 214-218."}, {"category_id": 15, "poly": [790.0, 654.0, 1398.0, 654.0, 1398.0, 682.0, 790.0, 682.0], "score": 0.99, "text": "Lane, P.N.J., Best, A.E., Hickel, K., Zhang, L., 2003. The effect"}, {"category_id": 15, "poly": [825.0, 682.0, 1398.0, 682.0, 1398.0, 710.0, 825.0, 710.0], "score": 0.99, "text": "of afforestation on flow duration curves. Cooperative Research"}, {"category_id": 15, "poly": [825.0, 710.0, 1396.0, 710.0, 1396.0, 740.0, 825.0, 740.0], "score": 0.97, "text": "Centre for Catchment Hydrology Technical Report O3/13,"}, {"category_id": 15, "poly": [820.0, 745.0, 884.0, 739.0, 886.0, 763.0, 822.0, 768.0], "score": 0.96, "text": "p.25."}, {"category_id": 15, "poly": [790.0, 768.0, 1396.0, 768.0, 1396.0, 798.0, 790.0, 798.0], "score": 0.98, "text": "Legates, D.R., McCabe, G.J., 1999. Evaluating the use of 'goodness-"}, {"category_id": 15, "poly": [825.0, 796.0, 1396.0, 796.0, 1396.0, 823.0, 825.0, 823.0], "score": 0.98, "text": "of-fit\u2019 measures in hydrologic and hydroclimatic model validation."}, {"category_id": 15, "poly": [825.0, 823.0, 1181.0, 823.0, 1181.0, 851.0, 825.0, 851.0], "score": 1.0, "text": "Water Resources Research 35, 233-241."}, {"category_id": 15, "poly": [790.0, 851.0, 1398.0, 851.0, 1398.0, 882.0, 790.0, 882.0], "score": 0.98, "text": "Lyne, V.D., Hollick, M., 1979. Stochastic time-varying rainfall-runoff"}, {"category_id": 15, "poly": [825.0, 882.0, 1398.0, 882.0, 1398.0, 912.0, 825.0, 912.0], "score": 1.0, "text": "modelling. Hydrology and Water Resources Symposium, Perth."}, {"category_id": 15, "poly": [825.0, 909.0, 1224.0, 909.0, 1224.0, 940.0, 825.0, 940.0], "score": 0.98, "text": "Institution of Engineers, Australia, pp. 89-92."}, {"category_id": 15, "poly": [788.0, 935.0, 1398.0, 937.0, 1398.0, 968.0, 788.0, 965.0], "score": 0.98, "text": "Nandakumar, N., Mein, R.G., 1993. Analysis of paired catchment data"}, {"category_id": 15, "poly": [825.0, 965.0, 1398.0, 965.0, 1398.0, 995.0, 825.0, 995.0], "score": 1.0, "text": "to determine the hydrologic effects of changes in vegetative cover"}, {"category_id": 15, "poly": [827.0, 995.0, 1396.0, 995.0, 1396.0, 1026.0, 827.0, 1026.0], "score": 0.99, "text": "on yield. Technical Report for Project UM010, Monash University"}, {"category_id": 15, "poly": [788.0, 1049.0, 1398.0, 1051.0, 1398.0, 1081.0, 788.0, 1079.0], "score": 0.98, "text": "Nash, J.E., Sutcliffe, J.V., 1970. River fow forecasting through"}, {"category_id": 15, "poly": [825.0, 1079.0, 1400.0, 1079.0, 1400.0, 1109.0, 825.0, 1109.0], "score": 0.97, "text": "conceptual models, I, A discussion of principals. Journal of"}, {"category_id": 15, "poly": [825.0, 1109.0, 1042.0, 1109.0, 1042.0, 1137.0, 825.0, 1137.0], "score": 1.0, "text": "Hydrology 10, 282-290."}, {"category_id": 15, "poly": [790.0, 1137.0, 1398.0, 1137.0, 1398.0, 1165.0, 790.0, 1165.0], "score": 0.98, "text": "Putahena, W.M., Cordery, I., 2000. Some hydrological effects of"}, {"category_id": 15, "poly": [827.0, 1165.0, 1398.0, 1165.0, 1398.0, 1195.0, 827.0, 1195.0], "score": 0.99, "text": "changing forest cover from eucalyptus to Pinus radiata. Agricul-"}, {"category_id": 15, "poly": [825.0, 1193.0, 1192.0, 1193.0, 1192.0, 1223.0, 825.0, 1223.0], "score": 0.99, "text": "tural and Forest Meteorology 100, 59-72."}, {"category_id": 15, "poly": [790.0, 1223.0, 1398.0, 1223.0, 1398.0, 1253.0, 790.0, 1253.0], "score": 0.99, "text": "Roberts, S., Vertessy, R.A., Grayson, R.G., 2001. Transpiration from"}, {"category_id": 15, "poly": [825.0, 1251.0, 1400.0, 1251.0, 1400.0, 1281.0, 825.0, 1281.0], "score": 0.99, "text": "Eucalyptus sieberi (L. Johnson) forests of different age. Forest "}, {"category_id": 15, "poly": [825.0, 1279.0, 1183.0, 1279.0, 1183.0, 1309.0, 825.0, 1309.0], "score": 1.0, "text": "Ecology and Management 143, 153-161."}, {"category_id": 15, "poly": [788.0, 1305.0, 1398.0, 1307.0, 1398.0, 1337.0, 788.0, 1335.0], "score": 0.99, "text": "Scott, D.F., Smith, R.E., 1997. Preliminary empirical models to predict"}, {"category_id": 15, "poly": [823.0, 1333.0, 1398.0, 1335.0, 1398.0, 1365.0, 823.0, 1363.0], "score": 0.98, "text": "reductions in total and low flows resulting from afforestation."}, {"category_id": 15, "poly": [825.0, 1363.0, 1046.0, 1363.0, 1046.0, 1393.0, 825.0, 1393.0], "score": 0.99, "text": "Water S.A. 23, 135-140."}, {"category_id": 15, "poly": [790.0, 1393.0, 1398.0, 1393.0, 1398.0, 1421.0, 790.0, 1421.0], "score": 0.97, "text": "Scott, D.F., Prinsloo, F.W., Moses, G., Mehlomakulu, M.,"}, {"category_id": 15, "poly": [825.0, 1421.0, 1398.0, 1421.0, 1398.0, 1449.0, 825.0, 1449.0], "score": 0.97, "text": "Simmers, A.D.A., 2000. Area-analysis of the South African"}, {"category_id": 15, "poly": [825.0, 1449.0, 1398.0, 1449.0, 1398.0, 1479.0, 825.0, 1479.0], "score": 0.96, "text": "catchment afforestation experimental data. WRC Report"}, {"category_id": 15, "poly": [825.0, 1481.0, 954.0, 1481.0, 954.0, 1505.0, 825.0, 1505.0], "score": 0.98, "text": "No. 810/1/00."}, {"category_id": 15, "poly": [790.0, 1507.0, 1396.0, 1507.0, 1396.0, 1535.0, 790.0, 1535.0], "score": 0.98, "text": "Sikka, A.K., Samra, JS., Sharda, V.N., Samraj, P., Lakshmanan, V.,"}, {"category_id": 15, "poly": [825.0, 1535.0, 1400.0, 1535.0, 1400.0, 1565.0, 825.0, 1565.0], "score": 0.98, "text": "2003. Low fow and high responses to converting natural grassland"}, {"category_id": 15, "poly": [827.0, 1561.0, 1400.0, 1561.0, 1400.0, 1591.0, 827.0, 1591.0], "score": 0.99, "text": "into bluegum (Eucalyptus globulus) in Ningiris watersheds of"}, {"category_id": 15, "poly": [825.0, 1591.0, 1235.0, 1591.0, 1235.0, 1621.0, 825.0, 1621.0], "score": 0.99, "text": "South India. Journal of Hydrology 270, 12-26."}, {"category_id": 15, "poly": [790.0, 1621.0, 1398.0, 1621.0, 1398.0, 1651.0, 790.0, 1651.0], "score": 0.98, "text": " Smakhtin, V.U., 1999. A concept of pragmatic hydrological time series "}, {"category_id": 15, "poly": [825.0, 1649.0, 1398.0, 1649.0, 1398.0, 1679.0, 825.0, 1679.0], "score": 0.99, "text": "modelling and its application in South African context. In Ninth"}, {"category_id": 15, "poly": [823.0, 1675.0, 1398.0, 1677.0, 1398.0, 1707.0, 823.0, 1705.0], "score": 0.98, "text": " South African National Hydrology Symposium, 29-30 November"}, {"category_id": 15, "poly": [825.0, 1703.0, 971.0, 1703.0, 971.0, 1739.0, 825.0, 1739.0], "score": 0.99, "text": "1999, pp. 1-11."}, {"category_id": 15, "poly": [790.0, 1735.0, 1398.0, 1735.0, 1398.0, 1765.0, 790.0, 1765.0], "score": 0.98, "text": " Smakhtin, V.U., 2001. Low flow hydrology: a review. Journal of"}, {"category_id": 15, "poly": [825.0, 1763.0, 1052.0, 1763.0, 1052.0, 1793.0, 825.0, 1793.0], "score": 1.0, "text": "Hydrology 240, 147-186."}, {"category_id": 15, "poly": [793.0, 1791.0, 1398.0, 1791.0, 1398.0, 1821.0, 793.0, 1821.0], "score": 0.99, "text": "Van Lill, W.S., Kruger, F.J., Van Wyk, D.B., 1980. The effect of"}, {"category_id": 15, "poly": [827.0, 1819.0, 1398.0, 1819.0, 1398.0, 1849.0, 827.0, 1849.0], "score": 0.98, "text": "afforestation with Eucalyptus grandis Hill ex Maiden and Pinus"}, {"category_id": 15, "poly": [823.0, 1021.0, 1066.0, 1023.0, 1066.0, 1054.0, 822.0, 1051.0], "score": 0.98, "text": " Dept. of Civil Engineering,"}, {"category_id": 15, "poly": [126.0, 1528.0, 260.0, 1533.0, 259.0, 1572.0, 124.0, 1567.0], "score": 1.0, "text": "References"}], "page_info": {"page_no": 11, "height": 2064, "width": 1512}}, {"layout_dets": [{"category_id": 2, "poly": [465.48040771484375, 195.6739959716797, 1032.2401123046875, 195.6739959716797, 1032.2401123046875, 218.9838104248047, 465.48040771484375, 218.9838104248047], "score": 0.9999986886978149}, {"category_id": 1, "poly": [776.9209594726562, 255.59912109375, 1385.6478271484375, 255.59912109375, 1385.6478271484375, 614.4959716796875, 776.9209594726562, 614.4959716796875], "score": 0.9999933242797852}, {"category_id": 2, "poly": [1346.0157470703125, 195.03271484375, 1382.0159912109375, 195.03271484375, 1382.0159912109375, 217.2877960205078, 1346.0157470703125, 217.2877960205078], "score": 0.9999925494194031}, {"category_id": 1, "poly": [116.54571533203125, 257.5740966796875, 716.8768920898438, 257.5740966796875, 716.8768920898438, 615.0397338867188, 116.54571533203125, 615.0397338867188], "score": 0.9999920725822449}, {"category_id": 15, "poly": [466.0, 194.0, 1033.0, 194.0, 1033.0, 224.0, 466.0, 224.0], "score": 0.99, "text": "P.N.J. Lane et al. / Journal of Hydrology 310 (2005) 253-265"}, {"category_id": 15, "poly": [780.0, 254.0, 1383.0, 254.0, 1383.0, 284.0, 780.0, 284.0], "score": 0.99, "text": "Vogel, R.M., Fennessey, N.M., 1994. Flow duration curves. 1. New"}, {"category_id": 15, "poly": [810.0, 279.0, 1385.0, 282.0, 1385.0, 312.0, 810.0, 310.0], "score": 0.98, "text": " interpretation and confidence intervals. Journal of Water Planning"}, {"category_id": 15, "poly": [814.0, 310.0, 1128.0, 310.0, 1128.0, 340.0, 814.0, 340.0], "score": 0.99, "text": "and Management 120 (4), 485-504."}, {"category_id": 15, "poly": [780.0, 338.0, 1387.0, 338.0, 1387.0, 366.0, 780.0, 366.0], "score": 0.98, "text": "Whitehead, D., Beadle C.L., 2004. Physiological regulation of"}, {"category_id": 15, "poly": [808.0, 361.0, 1387.0, 363.0, 1387.0, 400.0, 807.0, 398.0], "score": 0.98, "text": " productivity and water use in Eucalyptus: a review. Forest Ecology"}, {"category_id": 15, "poly": [812.0, 393.0, 1104.0, 393.0, 1104.0, 424.0, 812.0, 424.0], "score": 1.0, "text": "and Management, 193, 113-140."}, {"category_id": 15, "poly": [777.0, 421.0, 1385.0, 421.0, 1385.0, 449.0, 777.0, 449.0], "score": 0.98, "text": "Zhang, L., Dawes, W.R., Walker, G.R., 1999. Predicting the effect of"}, {"category_id": 15, "poly": [814.0, 449.0, 1383.0, 449.0, 1383.0, 479.0, 814.0, 479.0], "score": 0.99, "text": "vegetation changes on catchment average water balance. Coop-"}, {"category_id": 15, "poly": [812.0, 475.0, 1385.0, 475.0, 1385.0, 505.0, 812.0, 505.0], "score": 0.99, "text": "erative Research Centre for Catchment Hydrology Technical"}, {"category_id": 15, "poly": [810.0, 503.0, 994.0, 503.0, 994.0, 533.0, 810.0, 533.0], "score": 0.99, "text": "Report 99/12, p. 35."}, {"category_id": 15, "poly": [777.0, 531.0, 1385.0, 531.0, 1385.0, 561.0, 777.0, 561.0], "score": 0.97, "text": "Zhang, L., Dawes, W.R., Walker, G.R., 2001. Response of mean"}, {"category_id": 15, "poly": [810.0, 557.0, 1385.0, 559.0, 1385.0, 589.0, 810.0, 587.0], "score": 0.98, "text": " annual evapotranspiration to vegetation changes at catchment"}, {"category_id": 15, "poly": [812.0, 587.0, 1222.0, 587.0, 1222.0, 615.0, 812.0, 615.0], "score": 1.0, "text": "scale. Water Resources Research 37, 701-708."}, {"category_id": 15, "poly": [1342.0, 189.0, 1387.0, 189.0, 1387.0, 234.0, 1342.0, 234.0], "score": 1.0, "text": "265"}, {"category_id": 15, "poly": [148.0, 254.0, 719.0, 254.0, 719.0, 284.0, 148.0, 284.0], "score": 1.0, "text": "patula Schlect. et Cham. on streamflow from experimental"}, {"category_id": 15, "poly": [146.0, 279.0, 720.0, 282.0, 719.0, 312.0, 146.0, 310.0], "score": 0.99, "text": "catchments at Mokubulaan, Transval. Journal of Hydrology 48,"}, {"category_id": 15, "poly": [150.0, 312.0, 234.0, 312.0, 234.0, 335.0, 150.0, 335.0], "score": 1.0, "text": "107-118."}, {"category_id": 15, "poly": [114.0, 338.0, 719.0, 338.0, 719.0, 366.0, 114.0, 366.0], "score": 0.97, "text": "Van Wyk, D.B., 1987. Some effects of afforestation on streamflow"}, {"category_id": 15, "poly": [144.0, 366.0, 719.0, 366.0, 719.0, 396.0, 144.0, 396.0], "score": 0.98, "text": "in the Western Cape Province, South Africa. Water S.A. 13,"}, {"category_id": 15, "poly": [148.0, 396.0, 210.0, 396.0, 210.0, 419.0, 148.0, 419.0], "score": 1.0, "text": "31-36."}, {"category_id": 15, "poly": [114.0, 421.0, 719.0, 421.0, 719.0, 452.0, 114.0, 452.0], "score": 0.98, "text": "Vertessy, R.A., Bessard, Y., 1999. Anticipating the negative"}, {"category_id": 15, "poly": [146.0, 449.0, 722.0, 449.0, 722.0, 479.0, 146.0, 479.0], "score": 0.98, "text": "hydrologic effects of plantation expansion: results from a"}, {"category_id": 15, "poly": [148.0, 475.0, 717.0, 475.0, 717.0, 503.0, 148.0, 503.0], "score": 0.98, "text": "GIS-based analysis on the Murrumbidgee Basin, in: Croke, J.,"}, {"category_id": 15, "poly": [146.0, 503.0, 722.0, 503.0, 722.0, 533.0, 146.0, 533.0], "score": 0.99, "text": "Lane, P.N.J. (Eds.), Forest Management for Water Quality and"}, {"category_id": 15, "poly": [144.0, 527.0, 722.0, 529.0, 722.0, 565.0, 144.0, 563.0], "score": 0.99, "text": "Quantity: Proceedings of the 2nd Erosion in Forests Meeting"}, {"category_id": 15, "poly": [146.0, 557.0, 722.0, 559.0, 722.0, 589.0, 146.0, 587.0], "score": 0.97, "text": " Cooperative Research Centre for Catchment Hydrology, Report "}, {"category_id": 15, "poly": [146.0, 587.0, 301.0, 587.0, 301.0, 617.0, 146.0, 617.0], "score": 0.93, "text": "99/6, Pp. 69-73."}], "page_info": {"page_no": 12, "height": 2064, "width": 1512}}] \ No newline at end of file +[{"layout_dets":[{"category_id":2,"poly":[118.60904693603516,198.658447265625,267.4607238769531,198.658447265625,267.4607238769531,363.1365051269531,118.60904693603516,363.1365051269531],"score":0.9999977350234985},{"category_id":2,"poly":[1082.398681640625,196.80702209472656,1380.78076171875,196.80702209472656,1380.78076171875,394.2945251464844,1082.398681640625,394.2945251464844],"score":0.9999670386314392},{"category_id":2,"poly":[117.83782196044922,1687.9595947265625,1381.0823974609375,1687.9595947265625,1381.0823974609375,1765.1331787109375,117.83782196044922,1765.1331787109375],"score":0.9999469518661499},{"category_id":1,"poly":[212.48236083984375,622.4976806640625,1290.4111328125,622.4976806640625,1290.4111328125,731.6911010742188,212.48236083984375,731.6911010742188],"score":0.9999340772628784},{"category_id":0,"poly":[244.64344787597656,473.26116943359375,1256.7320556640625,473.26116943359375,1256.7320556640625,519.3690795898438,244.64344787597656,519.3690795898438],"score":0.9999324083328247},{"category_id":1,"poly":[391.20367431640625,752.973876953125,1106.601318359375,752.973876953125,1106.601318359375,773.8132934570312,391.20367431640625,773.8132934570312],"score":0.9996592998504639},{"category_id":1,"poly":[116.6956787109375,912.6824951171875,1383.01123046875,912.6824951171875,1383.01123046875,1526.517333984375,116.6956787109375,1526.517333984375],"score":0.9996498823165894},{"category_id":2,"poly":[556.8466796875,344.65460205078125,942.1731567382812,344.65460205078125,942.1731567382812,368.5528259277344,556.8466796875,368.5528259277344],"score":0.9996122121810913},{"category_id":0,"poly":[118.25810241699219,864.171630859375,210.0784912109375,864.171630859375,210.0784912109375,889.3429565429688,118.25810241699219,889.3429565429688],"score":0.9993438124656677},{"category_id":1,"poly":[241.031005859375,551.4158935546875,1255.766845703125,551.4158935546875,1255.766845703125,595.4819946289062,241.031005859375,595.4819946289062],"score":0.9993419647216797},{"category_id":2,"poly":[117.89794921875,1794.328857421875,772.79150390625,1794.328857421875,772.79150390625,1842.429443359375,117.89794921875,1842.429443359375],"score":0.9991052150726318},{"category_id":2,"poly":[515.6590576171875,193.61697387695312,985.971923828125,193.61697387695312,985.971923828125,291.9561767578125,515.6590576171875,291.9561767578125],"score":0.9970659017562866},{"category_id":1,"poly":[117.52765655517578,1570.80859375,865.2591552734375,1570.80859375,865.2591552734375,1593.1827392578125,117.52765655517578,1593.1827392578125],"score":0.9883286356925964},{"category_id":1,"poly":[119.4822998046875,1508.914794921875,539.9891967773438,1508.914794921875,539.9891967773438,1534.099853515625,119.4822998046875,1534.099853515625],"score":0.813662052154541},{"category_id":2,"poly":[1083.8271484375,374.8357849121094,1380.783447265625,374.8357849121094,1380.783447265625,395.99237060546875,1083.8271484375,395.99237060546875],"score":0.3611226975917816},{"category_id":2,"poly":[515.6152954101562,196.63433837890625,984.0325927734375,196.63433837890625,984.0325927734375,221.70187377929688,515.6152954101562,221.70187377929688],"score":0.33333390951156616},{"category_id":13,"poly":[714,1383,767,1383,767,1411,714,1411],"score":0.89,"latex":"N_{\\mathrm{zero}}"},{"category_id":13,"poly":[571,1351,636,1351,636,1380,571,1380],"score":0.87,"latex":"(N_{\\mathrm{zero}})"},{"category_id":13,"poly":[398,1793,419,1793,419,1815,398,1815],"score":0.75,"latex":"\\circledcirc"},{"category_id":13,"poly":[116,1509,140,1509,140,1533,116,1533],"score":0.73,"latex":"\\copyright"},{"category_id":13,"poly":[315,1713,479,1713,479,1739,315,1739],"score":0.36,"latex":"+61\\ 3\\ 9450\\ 8719"},{"category_id":13,"poly":[148,1743,166,1743,166,1765,148,1765],"score":0.35,"latex":"E"},{"category_id":13,"poly":[369,1743,387,1743,387,1764,369,1764],"score":0.26,"latex":"@"},{"category_id":15,"poly":[122,341,265,341,265,367,122,367],"score":1,"text":""},{"category_id":15,"poly":[1165,215,1286,215,1286,253,1165,253],"score":1,"text":""},{"category_id":15,"poly":[1171,257,1209,257,1209,290,1171,290],"score":1,"text":""},{"category_id":15,"poly":[1160,292,1380,292,1380,350,1160,350],"score":1,"text":""},{"category_id":15,"poly":[1082,374,1382,374,1382,396,1082,396],"score":1,"text":""},{"category_id":15,"poly":[131,1686,1381,1686,1381,1719,131,1719],"score":1,"text":""},{"category_id":15,"poly":[115,1715,314,1715,314,1745,115,1745],"score":1,"text":""},{"category_id":15,"poly":[480,1715,705,1715,705,1745,480,1745],"score":1,"text":""},{"category_id":15,"poly":[167,1745,368,1745,368,1772,167,1772],"score":1,"text":""},{"category_id":15,"poly":[388,1745,659,1745,659,1772,388,1772],"score":1,"text":""},{"category_id":15,"poly":[209,620,1288,620,1288,657,209,657],"score":1,"text":""},{"category_id":15,"poly":[454,645,1042,645,1042,684,454,684],"score":1,"text":""},{"category_id":15,"poly":[366,674,1131,674,1131,713,366,713],"score":1,"text":""},{"category_id":15,"poly":[301,701,1201,701,1201,743,301,743],"score":1,"text":""},{"category_id":15,"poly":[244,472,1256,472,1256,522,244,522],"score":1,"text":""},{"category_id":15,"poly":[387,752,1110,752,1110,778,387,778],"score":1,"text":""},{"category_id":15,"poly":[137,909,1386,909,1386,950,137,950],"score":1,"text":""},{"category_id":15,"poly":[117,946,1382,946,1382,976,117,976],"score":1,"text":""},{"category_id":15,"poly":[117,976,1383,976,1383,1007,117,1007],"score":1,"text":""},{"category_id":15,"poly":[114,1007,1383,1007,1383,1042,114,1042],"score":1,"text":""},{"category_id":15,"poly":[116,1039,1382,1039,1382,1070,116,1070],"score":1,"text":""},{"category_id":15,"poly":[116,1071,1383,1071,1383,1102,116,1102],"score":1,"text":""},{"category_id":15,"poly":[116,1103,1382,1103,1382,1134,116,1134],"score":1,"text":""},{"category_id":15,"poly":[116,1134,1383,1134,1383,1165,116,1165],"score":1,"text":""},{"category_id":15,"poly":[114,1162,1383,1162,1383,1198,114,1198],"score":1,"text":""},{"category_id":15,"poly":[117,1197,1383,1197,1383,1227,117,1227],"score":1,"text":""},{"category_id":15,"poly":[116,1227,1380,1227,1380,1258,116,1258],"score":1,"text":""},{"category_id":15,"poly":[116,1259,1383,1259,1383,1290,116,1290],"score":1,"text":""},{"category_id":15,"poly":[116,1292,1385,1292,1385,1322,116,1322],"score":1,"text":""},{"category_id":15,"poly":[116,1321,1386,1321,1386,1354,116,1354],"score":1,"text":""},{"category_id":15,"poly":[114,1351,570,1351,570,1386,114,1386],"score":1,"text":""},{"category_id":15,"poly":[637,1351,1385,1351,1385,1386,637,1386],"score":1,"text":""},{"category_id":15,"poly":[113,1382,713,1382,713,1418,113,1418],"score":1,"text":""},{"category_id":15,"poly":[768,1382,1383,1382,1383,1418,768,1418],"score":1,"text":""},{"category_id":15,"poly":[114,1417,1383,1417,1383,1448,114,1448],"score":1,"text":""},{"category_id":15,"poly":[116,1449,1383,1449,1383,1480,116,1480],"score":1,"text":""},{"category_id":15,"poly":[116,1480,1380,1480,1380,1510,116,1510],"score":1,"text":""},{"category_id":15,"poly":[141,1509,539,1509,539,1536,141,1536],"score":1,"text":""},{"category_id":15,"poly":[557,344,941,344,941,372,557,372],"score":1,"text":""},{"category_id":15,"poly":[115,862,216,862,216,891,115,891],"score":1,"text":""},{"category_id":15,"poly":[231,542,1255,542,1255,614,231,614],"score":1,"text":""},{"category_id":15,"poly":[115,1792,397,1792,397,1820,115,1820],"score":1,"text":""},{"category_id":15,"poly":[420,1792,773,1792,773,1820,420,1820],"score":1,"text":""},{"category_id":15,"poly":[117,1822,425,1822,425,1845,117,1845],"score":1,"text":""},{"category_id":15,"poly":[515,191,987,191,987,223,515,223],"score":1,"text":""},{"category_id":15,"poly":[599,246,726,246,726,272,599,272],"score":1,"text":""},{"category_id":15,"poly":[781,246,900,246,900,270,781,270],"score":1,"text":""},{"category_id":15,"poly":[116,1570,868,1570,868,1598,116,1598],"score":1,"text":""},{"category_id":15,"poly":[141,1510,540,1510,540,1538,141,1538],"score":1,"text":""},{"category_id":15,"poly":[1082,372,1383,372,1383,399,1082,399],"score":1,"text":""},{"category_id":15,"poly":[517,196,984,196,984,223,517,223],"score":1,"text":""}],"page_info":{"page_no":0,"height":2064,"width":1512}},{"layout_dets":[{"category_id":4,"poly":[793.3244018554688,764.6006469726562,1394.983642578125,764.6006469726562,1394.983642578125,817.2587280273438,793.3244018554688,817.2587280273438],"score":0.9999980926513672},{"category_id":1,"poly":[794.8435668945312,847.7531127929688,1396.7874755859375,847.7531127929688,1396.7874755859375,1280.2684326171875,794.8435668945312,1280.2684326171875],"score":0.9999949336051941},{"category_id":1,"poly":[794.4087524414062,1281.124267578125,1397.728515625,1281.124267578125,1397.728515625,1847.8619384765625,794.4087524414062,1847.8619384765625],"score":0.9999914169311523},{"category_id":3,"poly":[800.347412109375,254.3444061279297,1385.8560791015625,254.3444061279297,1385.8560791015625,741.2387084960938,800.347412109375,741.2387084960938],"score":0.9999874830245972},{"category_id":1,"poly":[131.33218383789062,1017.2642211914062,731.544189453125,1017.2642211914062,731.544189453125,1848.0390625,131.33218383789062,1848.0390625],"score":0.9999839663505554},{"category_id":1,"poly":[132.01708984375,317.6095275878906,731.1542358398438,317.6095275878906,731.1542358398438,1015.9436645507812,132.01708984375,1015.9436645507812],"score":0.9999791979789734},{"category_id":0,"poly":[130.9233856201172,250.8262939453125,312.4487609863281,250.8262939453125,312.4487609863281,284.9200744628906,130.9233856201172,284.9200744628906],"score":0.9999522566795349},{"category_id":2,"poly":[130.04396057128906,194.71759033203125,166.79241943359375,194.71759033203125,166.79241943359375,215.29742431640625,130.04396057128906,215.29742431640625],"score":0.9999291300773621},{"category_id":2,"poly":[480.5656433105469,194.78237915039062,1045.4454345703125,194.78237915039062,1045.4454345703125,218.79754638671875,480.5656433105469,218.79754638671875],"score":0.9998185038566589},{"category_id":13,"poly":[984,1180,1065,1180,1065,1211,984,1211],"score":0.88,"latex":"<\\!20\\%"},{"category_id":13,"poly":[128,1415,183,1415,183,1445,128,1445],"score":0.86,"latex":"95\\%"},{"category_id":13,"poly":[573,618,723,618,723,649,573,649],"score":0.67,"latex":"400{-}500\\ \\mathrm{mm}"},{"category_id":15,"poly":[794,766,1393,766,1393,792,794,792],"score":1,"text":""},{"category_id":15,"poly":[794,794,996,794,996,818,794,818],"score":1,"text":""},{"category_id":15,"poly":[794,851,1395,851,1395,880,794,880],"score":1,"text":""},{"category_id":15,"poly":[794,883,1395,883,1395,916,794,916],"score":1,"text":""},{"category_id":15,"poly":[793,918,1395,918,1395,948,793,948],"score":1,"text":""},{"category_id":15,"poly":[791,949,1397,949,1397,982,791,982],"score":1,"text":""},{"category_id":15,"poly":[793,984,1397,984,1397,1015,793,1015],"score":1,"text":""},{"category_id":15,"poly":[794,1018,1396,1018,1396,1049,794,1049],"score":1,"text":""},{"category_id":15,"poly":[794,1050,1395,1050,1395,1081,794,1081],"score":1,"text":""},{"category_id":15,"poly":[795,1084,1394,1084,1394,1112,795,1112],"score":1,"text":""},{"category_id":15,"poly":[793,1117,1394,1117,1394,1149,793,1149],"score":1,"text":""},{"category_id":15,"poly":[794,1153,1394,1153,1394,1178,794,1178],"score":1,"text":""},{"category_id":15,"poly":[795,1184,983,1184,983,1214,795,1214],"score":1,"text":""},{"category_id":15,"poly":[1066,1184,1395,1184,1395,1214,1066,1214],"score":1,"text":""},{"category_id":15,"poly":[796,1219,1392,1219,1392,1247,796,1247],"score":1,"text":""},{"category_id":15,"poly":[792,1247,944,1247,944,1285,792,1285],"score":1,"text":""},{"category_id":15,"poly":[829,1284,1397,1284,1397,1314,829,1314],"score":1,"text":""},{"category_id":15,"poly":[795,1318,1398,1318,1398,1349,795,1349],"score":1,"text":""},{"category_id":15,"poly":[792,1350,1397,1350,1397,1384,792,1384],"score":1,"text":""},{"category_id":15,"poly":[795,1387,1395,1387,1395,1414,795,1414],"score":1,"text":""},{"category_id":15,"poly":[795,1417,1396,1417,1396,1447,795,1447],"score":1,"text":""},{"category_id":15,"poly":[793,1450,1395,1450,1395,1483,793,1483],"score":1,"text":""},{"category_id":15,"poly":[793,1484,1398,1484,1398,1517,793,1517],"score":1,"text":""},{"category_id":15,"poly":[796,1518,1397,1518,1397,1549,796,1549],"score":1,"text":""},{"category_id":15,"poly":[796,1552,1396,1552,1396,1580,796,1580],"score":1,"text":""},{"category_id":15,"poly":[794,1584,1396,1584,1396,1615,794,1615],"score":1,"text":""},{"category_id":15,"poly":[794,1618,1396,1618,1396,1648,794,1648],"score":1,"text":""},{"category_id":15,"poly":[794,1652,1394,1652,1394,1680,794,1680],"score":1,"text":""},{"category_id":15,"poly":[792,1685,1395,1685,1395,1715,792,1715],"score":1,"text":""},{"category_id":15,"poly":[794,1720,1394,1720,1394,1747,794,1747],"score":1,"text":""},{"category_id":15,"poly":[794,1750,1393,1750,1393,1780,794,1780],"score":1,"text":""},{"category_id":15,"poly":[794,1784,1395,1784,1395,1815,794,1815],"score":1,"text":""},{"category_id":15,"poly":[795,1819,1395,1819,1395,1849,795,1849],"score":1,"text":""},{"category_id":15,"poly":[163,1019,732,1019,732,1051,163,1051],"score":1,"text":""},{"category_id":15,"poly":[130,1054,732,1054,732,1085,130,1085],"score":1,"text":""},{"category_id":15,"poly":[129,1086,732,1086,732,1117,129,1117],"score":1,"text":""},{"category_id":15,"poly":[130,1119,730,1119,730,1150,130,1150],"score":1,"text":""},{"category_id":15,"poly":[131,1156,730,1156,730,1184,131,1184],"score":1,"text":""},{"category_id":15,"poly":[129,1187,730,1187,730,1217,129,1217],"score":1,"text":""},{"category_id":15,"poly":[131,1218,731,1218,731,1250,131,1250],"score":1,"text":""},{"category_id":15,"poly":[130,1254,731,1254,731,1282,130,1282],"score":1,"text":""},{"category_id":15,"poly":[130,1286,729,1286,729,1316,130,1316],"score":1,"text":""},{"category_id":15,"poly":[128,1318,733,1318,733,1350,128,1350],"score":1,"text":""},{"category_id":15,"poly":[130,1352,731,1352,731,1383,130,1383],"score":1,"text":""},{"category_id":15,"poly":[128,1384,733,1384,733,1418,128,1418],"score":1,"text":""},{"category_id":15,"poly":[184,1418,731,1418,731,1450,184,1450],"score":1,"text":""},{"category_id":15,"poly":[129,1451,733,1451,733,1484,129,1484],"score":1,"text":""},{"category_id":15,"poly":[128,1485,733,1485,733,1519,128,1519],"score":1,"text":""},{"category_id":15,"poly":[131,1520,732,1520,732,1548,131,1548],"score":1,"text":""},{"category_id":15,"poly":[133,1554,731,1554,731,1579,133,1579],"score":1,"text":""},{"category_id":15,"poly":[129,1587,733,1587,733,1614,129,1614],"score":1,"text":""},{"category_id":15,"poly":[131,1620,731,1620,731,1648,131,1648],"score":1,"text":""},{"category_id":15,"poly":[129,1650,730,1650,730,1682,129,1682],"score":1,"text":""},{"category_id":15,"poly":[131,1685,730,1685,730,1713,131,1713],"score":1,"text":""},{"category_id":15,"poly":[131,1718,731,1718,731,1747,131,1747],"score":1,"text":""},{"category_id":15,"poly":[130,1753,731,1753,731,1781,130,1781],"score":1,"text":""},{"category_id":15,"poly":[129,1783,730,1783,730,1816,129,1816],"score":1,"text":""},{"category_id":15,"poly":[131,1820,731,1820,731,1848,131,1848],"score":1,"text":""},{"category_id":15,"poly":[164,320,731,320,731,353,164,353],"score":1,"text":""},{"category_id":15,"poly":[127,353,729,353,729,387,127,387],"score":1,"text":""},{"category_id":15,"poly":[131,389,729,389,729,419,131,419],"score":1,"text":""},{"category_id":15,"poly":[131,424,731,424,731,452,131,452],"score":1,"text":""},{"category_id":15,"poly":[131,456,731,456,731,483,131,483],"score":1,"text":""},{"category_id":15,"poly":[130,487,732,487,732,517,130,517],"score":1,"text":""},{"category_id":15,"poly":[131,522,732,522,732,549,131,549],"score":1,"text":""},{"category_id":15,"poly":[127,555,731,555,731,582,127,582],"score":1,"text":""},{"category_id":15,"poly":[129,586,730,586,730,619,129,619],"score":1,"text":""},{"category_id":15,"poly":[129,619,572,619,572,652,129,652],"score":1,"text":""},{"category_id":15,"poly":[724,619,732,619,732,652,724,652],"score":1,"text":""},{"category_id":15,"poly":[129,654,732,654,732,685,129,685],"score":1,"text":""},{"category_id":15,"poly":[128,688,732,688,732,717,128,717],"score":1,"text":""},{"category_id":15,"poly":[130,721,732,721,732,752,130,752],"score":1,"text":""},{"category_id":15,"poly":[131,756,732,756,732,784,131,784],"score":1,"text":""},{"category_id":15,"poly":[130,789,731,789,731,816,130,816],"score":1,"text":""},{"category_id":15,"poly":[132,822,732,822,732,850,132,850],"score":1,"text":""},{"category_id":15,"poly":[130,854,730,854,730,883,130,883],"score":1,"text":""},{"category_id":15,"poly":[131,889,731,889,731,917,131,917],"score":1,"text":""},{"category_id":15,"poly":[131,920,732,920,732,951,131,951],"score":1,"text":""},{"category_id":15,"poly":[130,954,731,954,731,984,130,984],"score":1,"text":""},{"category_id":15,"poly":[128,985,235,985,235,1016,128,1016],"score":1,"text":""},{"category_id":15,"poly":[127,250,315,250,315,286,127,286],"score":1,"text":""},{"category_id":15,"poly":[127,193,170,193,170,222,127,222],"score":1,"text":""},{"category_id":15,"poly":[480,195,1043,195,1043,222,480,222],"score":1,"text":""}],"page_info":{"page_no":1,"height":2064,"width":1512}},{"layout_dets":[{"category_id":0,"poly":[117.98550415039062,651.4144897460938,250.4237060546875,651.4144897460938,250.4237060546875,681.6185302734375,117.98550415039062,681.6185302734375],"score":0.9999960660934448},{"category_id":1,"poly":[117.66885375976562,252.15200805664062,717.08544921875,252.15200805664062,717.08544921875,583.297607421875,117.66885375976562,583.297607421875],"score":0.9999945163726807},{"category_id":1,"poly":[781.657470703125,254.46270751953125,1380.3555908203125,254.46270751953125,1380.3555908203125,383.94049072265625,781.657470703125,383.94049072265625],"score":0.9999942779541016},{"category_id":1,"poly":[117.45056915283203,787.5240478515625,717.2051391601562,787.5240478515625,717.2051391601562,1283.0518798828125,117.45056915283203,1283.0518798828125],"score":0.9999867677688599},{"category_id":1,"poly":[781.4447631835938,518.472412109375,1381.477294921875,518.472412109375,1381.477294921875,1115.6346435546875,781.4447631835938,1115.6346435546875],"score":0.9999841451644897},{"category_id":1,"poly":[117.63233947753906,1283.588623046875,717.8540649414062,1283.588623046875,717.8540649414062,1846.9638671875,117.63233947753906,1846.9638671875],"score":0.9999799728393555},{"category_id":1,"poly":[781.07568359375,1281.677734375,1381.986572265625,1281.677734375,1381.986572265625,1846.426025390625,781.07568359375,1846.426025390625],"score":0.9999785423278809},{"category_id":0,"poly":[118.35901641845703,719.439697265625,523.7083740234375,719.439697265625,523.7083740234375,748.3140258789062,118.35901641845703,748.3140258789062],"score":0.999972939491272},{"category_id":2,"poly":[1346.6025390625,195.05506896972656,1381.052734375,195.05506896972656,1381.052734375,216.444580078125,1346.6025390625,216.444580078125],"score":0.9999722242355347},{"category_id":9,"poly":[1346.9267578125,438.0544738769531,1379.662841796875,438.0544738769531,1379.662841796875,465.9036560058594,1346.9267578125,465.9036560058594],"score":0.999956488609314},{"category_id":8,"poly":[776.7714233398438,1153.8201904296875,1201.17236328125,1153.8201904296875,1201.17236328125,1238.2689208984375,776.7714233398438,1238.2689208984375],"score":0.9999522566795349},{"category_id":9,"poly":[1347.771484375,1178.1368408203125,1379.2054443359375,1178.1368408203125,1379.2054443359375,1209.2332763671875,1347.771484375,1209.2332763671875],"score":0.9999111890792847},{"category_id":2,"poly":[466.5557861328125,194.43499755859375,1031.9271240234375,194.43499755859375,1031.9271240234375,219.32943725585938,466.5557861328125,219.32943725585938],"score":0.9998725652694702},{"category_id":8,"poly":[779.863525390625,430.4822082519531,996.8546752929688,430.4822082519531,996.8546752929688,471.1015319824219,779.863525390625,471.1015319824219],"score":0.999752938747406},{"category_id":14,"poly":[777,1156,1200,1156,1200,1237,777,1237],"score":0.92,"latex":"Q_{\\mathcal{U}}=a+b(\\Delta P)+\\frac{Y}{1+\\exp\\left(\\frac{T-T_{\\mathrm{half}}}{S}\\right)}"},{"category_id":13,"poly":[1150,520,1201,520,1201,551,1150,551],"score":0.9,"latex":"f(P)"},{"category_id":13,"poly":[1210,1384,1262,1384,1262,1414,1210,1414],"score":0.9,"latex":"T_{\\mathrm{half}}"},{"category_id":13,"poly":[856,520,897,520,897,550,856,550],"score":0.9,"latex":"Q_{\\%}"},{"category_id":13,"poly":[930,552,982,552,982,584,930,584],"score":0.89,"latex":"g(T)"},{"category_id":13,"poly":[857,1285,898,1285,898,1315,857,1315],"score":0.89,"latex":"Q_{\\%}"},{"category_id":13,"poly":[1196,1649,1278,1649,1278,1678,1196,1678],"score":0.89,"latex":"\\Delta P\\!=\\!0"},{"category_id":13,"poly":[1270,1483,1311,1483,1311,1515,1270,1515],"score":0.89,"latex":"Q_{\\%}"},{"category_id":13,"poly":[1259,1418,1301,1418,1301,1449,1259,1449],"score":0.89,"latex":"Q_{\\%}"},{"category_id":13,"poly":[1075,1682,1140,1682,1140,1711,1075,1711],"score":0.88,"latex":"a\\!+\\!Y."},{"category_id":13,"poly":[895,1483,976,1483,976,1512,895,1512],"score":0.88,"latex":"\\Delta P\\!=\\!0"},{"category_id":13,"poly":[1206,1285,1252,1285,1252,1315,1206,1315],"score":0.88,"latex":"Q_{50}"},{"category_id":13,"poly":[779,1682,821,1682,821,1714,779,1714],"score":0.88,"latex":"Q_{\\%}"},{"category_id":13,"poly":[1313,1649,1374,1649,1374,1678,1313,1678],"score":0.87,"latex":"T\\!=\\!0"},{"category_id":14,"poly":[777,432,997,432,997,470,777,470],"score":0.83,"latex":"Q_{\\mathcal{I}_{\\theta}}=f(P)+g(T)"},{"category_id":13,"poly":[963,1350,1002,1350,1002,1378,963,1378],"score":0.8,"latex":"\\Delta P"},{"category_id":13,"poly":[989,1318,1012,1318,1012,1345,989,1345],"score":0.64,"latex":"Y"},{"category_id":13,"poly":[1077,1318,1098,1318,1098,1345,1077,1345],"score":0.64,"latex":"S"},{"category_id":13,"poly":[1239,1583,1262,1583,1262,1611,1239,1611],"score":0.51,"latex":"S"},{"category_id":13,"poly":[989,1488,1008,1488,1008,1511,989,1511],"score":0.3,"latex":"a"},{"category_id":15,"poly":[115,653,253,653,253,682,115,682],"score":1,"text":""},{"category_id":15,"poly":[116,257,717,257,717,285,116,285],"score":1,"text":""},{"category_id":15,"poly":[117,290,717,290,717,319,117,319],"score":1,"text":""},{"category_id":15,"poly":[112,320,718,320,718,357,112,357],"score":1,"text":""},{"category_id":15,"poly":[116,357,718,357,718,385,116,385],"score":1,"text":""},{"category_id":15,"poly":[118,391,718,391,718,420,118,420],"score":1,"text":""},{"category_id":15,"poly":[114,421,719,421,719,455,114,455],"score":1,"text":""},{"category_id":15,"poly":[115,457,718,457,718,489,115,489],"score":1,"text":""},{"category_id":15,"poly":[114,487,718,487,718,521,114,521],"score":1,"text":""},{"category_id":15,"poly":[116,520,718,520,718,554,116,554],"score":1,"text":""},{"category_id":15,"poly":[117,555,240,555,240,585,117,585],"score":1,"text":""},{"category_id":15,"poly":[783,257,1380,257,1380,286,783,286],"score":1,"text":""},{"category_id":15,"poly":[780,291,1383,291,1383,321,780,321],"score":1,"text":""},{"category_id":15,"poly":[780,321,1382,321,1382,354,780,354],"score":1,"text":""},{"category_id":15,"poly":[780,353,1014,353,1014,388,780,388],"score":1,"text":""},{"category_id":15,"poly":[148,787,716,787,716,819,148,819],"score":1,"text":""},{"category_id":15,"poly":[114,820,718,820,718,853,114,853],"score":1,"text":""},{"category_id":15,"poly":[114,853,716,853,716,885,114,885],"score":1,"text":""},{"category_id":15,"poly":[114,886,719,886,719,918,114,918],"score":1,"text":""},{"category_id":15,"poly":[116,919,718,919,718,952,116,952],"score":1,"text":""},{"category_id":15,"poly":[115,953,715,953,715,985,115,985],"score":1,"text":""},{"category_id":15,"poly":[114,988,718,988,718,1018,114,1018],"score":1,"text":""},{"category_id":15,"poly":[115,1020,718,1020,718,1051,115,1051],"score":1,"text":""},{"category_id":15,"poly":[115,1052,716,1052,716,1084,115,1084],"score":1,"text":""},{"category_id":15,"poly":[114,1086,717,1086,717,1119,114,1119],"score":1,"text":""},{"category_id":15,"poly":[116,1120,719,1120,719,1154,116,1154],"score":1,"text":""},{"category_id":15,"poly":[115,1153,719,1153,719,1183,115,1183],"score":1,"text":""},{"category_id":15,"poly":[117,1188,716,1188,716,1215,117,1215],"score":1,"text":""},{"category_id":15,"poly":[115,1218,717,1218,717,1251,115,1251],"score":1,"text":""},{"category_id":15,"poly":[116,1254,478,1254,478,1284,116,1284],"score":1,"text":""},{"category_id":15,"poly":[784,521,855,521,855,552,784,552],"score":1,"text":""},{"category_id":15,"poly":[898,521,1149,521,1149,552,898,552],"score":1,"text":""},{"category_id":15,"poly":[1202,521,1384,521,1384,552,1202,552],"score":1,"text":""},{"category_id":15,"poly":[781,556,929,556,929,584,781,584],"score":1,"text":""},{"category_id":15,"poly":[983,556,1380,556,1380,584,983,584],"score":1,"text":""},{"category_id":15,"poly":[780,587,1383,587,1383,616,780,616],"score":1,"text":""},{"category_id":15,"poly":[782,622,1383,622,1383,650,782,650],"score":1,"text":""},{"category_id":15,"poly":[781,654,1382,654,1382,685,781,685],"score":1,"text":""},{"category_id":15,"poly":[782,689,1383,689,1383,719,782,719],"score":1,"text":""},{"category_id":15,"poly":[779,718,1383,718,1383,751,779,751],"score":1,"text":""},{"category_id":15,"poly":[780,753,1381,753,1381,784,780,784],"score":1,"text":""},{"category_id":15,"poly":[780,785,1383,785,1383,819,780,819],"score":1,"text":""},{"category_id":15,"poly":[780,820,1383,820,1383,849,780,849],"score":1,"text":""},{"category_id":15,"poly":[780,854,1384,854,1384,883,780,883],"score":1,"text":""},{"category_id":15,"poly":[782,888,1382,888,1382,916,782,916],"score":1,"text":""},{"category_id":15,"poly":[780,919,1383,919,1383,950,780,950],"score":1,"text":""},{"category_id":15,"poly":[782,954,1381,954,1381,982,782,982],"score":1,"text":""},{"category_id":15,"poly":[782,988,1381,988,1381,1015,782,1015],"score":1,"text":""},{"category_id":15,"poly":[781,1019,1380,1019,1380,1050,781,1050],"score":1,"text":""},{"category_id":15,"poly":[780,1052,1382,1052,1382,1084,780,1084],"score":1,"text":""},{"category_id":15,"poly":[781,1085,1140,1085,1140,1116,781,1116],"score":1,"text":""},{"category_id":15,"poly":[149,1285,715,1285,715,1317,149,1317],"score":1,"text":""},{"category_id":15,"poly":[116,1319,716,1319,716,1351,116,1351],"score":1,"text":""},{"category_id":15,"poly":[117,1354,717,1354,717,1381,117,1381],"score":1,"text":""},{"category_id":15,"poly":[116,1387,719,1387,719,1417,116,1417],"score":1,"text":""},{"category_id":15,"poly":[116,1421,718,1421,718,1448,116,1448],"score":1,"text":""},{"category_id":15,"poly":[115,1452,718,1452,718,1482,115,1482],"score":1,"text":""},{"category_id":15,"poly":[118,1487,718,1487,718,1517,118,1517],"score":1,"text":""},{"category_id":15,"poly":[118,1520,718,1520,718,1548,118,1548],"score":1,"text":""},{"category_id":15,"poly":[117,1553,718,1553,718,1583,117,1583],"score":1,"text":""},{"category_id":15,"poly":[119,1586,717,1586,717,1614,119,1614],"score":1,"text":""},{"category_id":15,"poly":[118,1619,719,1619,719,1649,118,1649],"score":1,"text":""},{"category_id":15,"poly":[116,1651,718,1651,718,1681,116,1681],"score":1,"text":""},{"category_id":15,"poly":[116,1684,719,1684,719,1717,116,1717],"score":1,"text":""},{"category_id":15,"poly":[115,1719,718,1719,718,1748,115,1748],"score":1,"text":""},{"category_id":15,"poly":[116,1753,718,1753,718,1781,116,1781],"score":1,"text":""},{"category_id":15,"poly":[115,1783,718,1783,718,1816,115,1816],"score":1,"text":""},{"category_id":15,"poly":[115,1818,716,1818,716,1851,115,1851],"score":1,"text":""},{"category_id":15,"poly":[784,1286,856,1286,856,1317,784,1317],"score":1,"text":""},{"category_id":15,"poly":[899,1286,1205,1286,1205,1317,899,1317],"score":1,"text":""},{"category_id":15,"poly":[1253,1286,1381,1286,1381,1317,1253,1317],"score":1,"text":""},{"category_id":15,"poly":[779,1320,988,1320,988,1349,779,1349],"score":1,"text":""},{"category_id":15,"poly":[1013,1320,1076,1320,1076,1349,1013,1349],"score":1,"text":""},{"category_id":15,"poly":[1099,1320,1382,1320,1382,1349,1099,1349],"score":1,"text":""},{"category_id":15,"poly":[783,1354,962,1354,962,1380,783,1380],"score":1,"text":""},{"category_id":15,"poly":[1003,1354,1382,1354,1382,1380,1003,1380],"score":1,"text":""},{"category_id":15,"poly":[780,1385,1209,1385,1209,1417,780,1417],"score":1,"text":""},{"category_id":15,"poly":[1263,1385,1382,1385,1382,1417,1263,1417],"score":1,"text":""},{"category_id":15,"poly":[781,1419,1258,1419,1258,1450,781,1450],"score":1,"text":""},{"category_id":15,"poly":[1302,1419,1383,1419,1383,1450,1302,1450],"score":1,"text":""},{"category_id":15,"poly":[782,1453,1381,1453,1381,1482,782,1482],"score":1,"text":""},{"category_id":15,"poly":[781,1485,894,1485,894,1515,781,1515],"score":1,"text":""},{"category_id":15,"poly":[977,1485,988,1485,988,1515,977,1515],"score":1,"text":""},{"category_id":15,"poly":[1009,1485,1269,1485,1269,1515,1009,1515],"score":1,"text":""},{"category_id":15,"poly":[1312,1485,1381,1485,1381,1515,1312,1515],"score":1,"text":""},{"category_id":15,"poly":[780,1518,1384,1518,1384,1549,780,1549],"score":1,"text":""},{"category_id":15,"poly":[782,1552,1381,1552,1381,1582,782,1582],"score":1,"text":""},{"category_id":15,"poly":[781,1585,1238,1585,1238,1616,781,1616],"score":1,"text":""},{"category_id":15,"poly":[1263,1585,1381,1585,1381,1616,1263,1616],"score":1,"text":""},{"category_id":15,"poly":[780,1617,1383,1617,1383,1650,780,1650],"score":1,"text":""},{"category_id":15,"poly":[780,1651,1195,1651,1195,1684,780,1684],"score":1,"text":""},{"category_id":15,"poly":[1279,1651,1312,1651,1312,1684,1279,1684],"score":1,"text":""},{"category_id":15,"poly":[1375,1651,1382,1651,1382,1684,1375,1684],"score":1,"text":""},{"category_id":15,"poly":[822,1685,1074,1685,1074,1716,822,1716],"score":1,"text":""},{"category_id":15,"poly":[1141,1685,1381,1685,1381,1716,1141,1716],"score":1,"text":""},{"category_id":15,"poly":[781,1718,1382,1718,1382,1749,781,1749],"score":1,"text":""},{"category_id":15,"poly":[779,1752,1384,1752,1384,1782,779,1782],"score":1,"text":""},{"category_id":15,"poly":[781,1785,1381,1785,1381,1815,781,1815],"score":1,"text":""},{"category_id":15,"poly":[781,1818,1021,1818,1021,1847,781,1847],"score":1,"text":""},{"category_id":15,"poly":[115,719,526,719,526,753,115,753],"score":1,"text":""},{"category_id":15,"poly":[1342,194,1385,194,1385,222,1342,222],"score":1,"text":""},{"category_id":15,"poly":[467,194,1031,194,1031,223,467,223],"score":1,"text":""}],"page_info":{"page_no":2,"height":2064,"width":1512}},{"layout_dets":[{"category_id":9,"poly":[1360.4927978515625,806.4979858398438,1393.5625,806.4979858398438,1393.5625,835.6344604492188,1360.4927978515625,835.6344604492188],"score":0.9999969005584717},{"category_id":0,"poly":[794.844482421875,500.991943359375,1061.7340087890625,500.991943359375,1061.7340087890625,529.24072265625,794.844482421875,529.24072265625],"score":0.9999960660934448},{"category_id":1,"poly":[795.1665649414062,877.1232299804688,1396.0089111328125,877.1232299804688,1396.0089111328125,1240.274658203125,795.1665649414062,1240.274658203125],"score":0.9999922513961792},{"category_id":1,"poly":[795.332275390625,1244.03369140625,1393.7730712890625,1244.03369140625,1393.7730712890625,1508.46240234375,795.332275390625,1508.46240234375],"score":0.9999896883964539},{"category_id":9,"poly":[1360.6024169921875,1543.2252197265625,1393.3878173828125,1543.2252197265625,1393.3878173828125,1573.742919921875,1360.6024169921875,1573.742919921875],"score":0.9999892711639404},{"category_id":3,"poly":[143.5907440185547,259.15399169921875,713.1119995117188,259.15399169921875,713.1119995117188,1178.934326171875,143.5907440185547,1178.934326171875],"score":0.9999874830245972},{"category_id":9,"poly":[695.67822265625,1697.9281005859375,729.6531982421875,1697.9281005859375,729.6531982421875,1727.17919921875,695.67822265625,1727.17919921875],"score":0.9999865293502808},{"category_id":1,"poly":[794.4080200195312,566.529296875,1394.333984375,566.529296875,1394.333984375,762.9804077148438,794.4080200195312,762.9804077148438],"score":0.9999858736991882},{"category_id":2,"poly":[130.26829528808594,194.7806396484375,166.77345275878906,194.7806396484375,166.77345275878906,214.85922241210938,130.26829528808594,214.85922241210938],"score":0.9999834895133972},{"category_id":4,"poly":[130.88356018066406,1202.5416259765625,732.796142578125,1202.5416259765625,732.796142578125,1255.511474609375,130.88356018066406,1255.511474609375],"score":0.9999827146530151},{"category_id":1,"poly":[131.3754425048828,1355.7259521484375,730.267333984375,1355.7259521484375,730.267333984375,1652.284912109375,131.3754425048828,1652.284912109375],"score":0.9999791979789734},{"category_id":1,"poly":[131.39866638183594,1783.6964111328125,730.248779296875,1783.6964111328125,730.248779296875,1845.9530029296875,131.39866638183594,1845.9530029296875],"score":0.9999772906303406},{"category_id":8,"poly":[793.2948608398438,779.8839721679688,1107.3804931640625,779.8839721679688,1107.3804931640625,863.3013305664062,793.2948608398438,863.3013305664062],"score":0.9999750852584839},{"category_id":1,"poly":[793.5794067382812,254.0756378173828,1395.463623046875,254.0756378173828,1395.463623046875,448.5631408691406,793.5794067382812,448.5631408691406],"score":0.9999666213989258},{"category_id":9,"poly":[1360.5198974609375,1667.3173828125,1393.3824462890625,1667.3173828125,1393.3824462890625,1697.634033203125,1360.5198974609375,1697.634033203125],"score":0.9999586939811707},{"category_id":2,"poly":[481.1080322265625,195.15699768066406,1044.8505859375,195.15699768066406,1044.8505859375,218.15383911132812,481.1080322265625,218.15383911132812],"score":0.9999556541442871},{"category_id":8,"poly":[792.63037109375,1522.042236328125,1110.2464599609375,1522.042236328125,1110.2464599609375,1603.2904052734375,792.63037109375,1603.2904052734375],"score":0.9999275207519531},{"category_id":8,"poly":[793.098876953125,1664.3182373046875,976.2393188476562,1664.3182373046875,976.2393188476562,1699.446533203125,793.098876953125,1699.446533203125],"score":0.9999255537986755},{"category_id":1,"poly":[795.8683471679688,1716.146484375,1394.600341796875,1716.146484375,1394.600341796875,1844.9305419921875,795.8683471679688,1844.9305419921875],"score":0.9999062418937683},{"category_id":1,"poly":[792.8858642578125,1620.91650390625,840.122802734375,1620.91650390625,840.122802734375,1649.0623779296875,792.8858642578125,1649.0623779296875],"score":0.9998840093612671},{"category_id":8,"poly":[128.56173706054688,1678.516845703125,566.5686645507812,1678.516845703125,566.5686645507812,1756.2882080078125,128.56173706054688,1756.2882080078125],"score":0.999229371547699},{"category_id":0,"poly":[130.90858459472656,1288.063720703125,436.22442626953125,1288.063720703125,436.22442626953125,1318.185302734375,130.90858459472656,1318.185302734375],"score":0.9975346922874451},{"category_id":14,"poly":[790,777,1108,777,1108,863,790,863],"score":0.94,"latex":"E=1.0-\\frac{\\sum_{i=1}^{N}(O_{i}-P_{i})^{2}}{\\sum_{i-1}^{N}(O_{i}-\\bar{O})^{2}}"},{"category_id":14,"poly":[790,1521,1110,1521,1110,1602,790,1602],"score":0.94,"latex":"Q_{\\mathcal{q}_{o}}=a+\\frac{Y}{1+\\exp\\left(\\frac{T-T_{\\mathrm{half}}}{S}\\right)}"},{"category_id":14,"poly":[125,1674,566,1674,566,1756,125,1756],"score":0.93,"latex":"N_{\\mathrm{zero}}=a+b(\\Delta P)+\\frac{Y}{1+\\exp\\left(\\frac{T-T_{\\mathrm{half}}}{S}\\right)}"},{"category_id":13,"poly":[1306,319,1388,319,1388,349,1306,349],"score":0.91,"latex":"\\Delta P\\!=\\!0"},{"category_id":13,"poly":[529,1555,589,1555,589,1585,529,1585],"score":0.9,"latex":"N_{\\mathrm{zero}}"},{"category_id":13,"poly":[1281,1176,1365,1176,1365,1205,1281,1205],"score":0.9,"latex":"E\\!>\\!0.7"},{"category_id":13,"poly":[880,1173,931,1173,931,1206,880,1206],"score":0.89,"latex":"\\!0.7"},{"category_id":13,"poly":[160,1682,231,1682,231,1713,160,1713],"score":0.88,"latex":"a+Y)"},{"category_id":13,"poly":[116,320,188,320,188,351,116,351],"score":0.88,"latex":"(77\\%)"},{"category_id":13,"poly":[268,751,324,751,324,781,268,781],"score":0.87,"latex":"80\\%"},{"category_id":13,"poly":[628,585,684,585,684,615,628,615],"score":0.87,"latex":"75\\%"},{"category_id":13,"poly":[602,619,644,619,644,647,602,647],"score":0.85,"latex":"9\\%"},{"category_id":13,"poly":[533,784,577,784,577,814,533,814],"score":0.83,"latex":"9\\%"},{"category_id":13,"poly":[323,1384,364,1384,364,1412,323,1412],"score":0.77,"latex":"\\Delta P"},{"category_id":13,"poly":[286,852,308,852,308,879,286,879],"score":0.75,"latex":"E"},{"category_id":13,"poly":[409,885,432,885,432,912,409,912],"score":0.71,"latex":"E"},{"category_id":13,"poly":[484,254,524,254,524,284,484,284],"score":0.7,"latex":"(E)"},{"category_id":13,"poly":[566,1085,590,1085,590,1112,566,1112],"score":0.7,"latex":"E"},{"category_id":13,"poly":[315,919,334,919,334,946,315,946],"score":0.66,"latex":"^b"},{"category_id":13,"poly":[376,587,394,587,394,614,376,614],"score":0.62,"latex":"^b"},{"category_id":13,"poly":[460,1051,478,1051,478,1077,460,1077],"score":0.59,"latex":"^b"},{"category_id":13,"poly":[451,319,552,319,552,350,451,350],"score":0.46,"latex":"60\\%\\ 0.8"},{"category_id":13,"poly":[498,719,522,719,522,746,498,746],"score":0.45,"latex":"Y"},{"category_id":15,"poly":[780,760,1382,760,1382,787,780,787],"score":1,"text":""},{"category_id":15,"poly":[778,789,1382,789,1382,813,778,813],"score":1,"text":""},{"category_id":15,"poly":[780,816,871,816,871,840,780,840],"score":1,"text":""},{"category_id":15,"poly":[116,255,483,255,483,286,116,286],"score":1,"text":""},{"category_id":15,"poly":[525,255,718,255,718,286,525,286],"score":1,"text":""},{"category_id":15,"poly":[115,290,717,290,717,321,115,321],"score":1,"text":""},{"category_id":15,"poly":[189,324,295,324,295,351,189,351],"score":1,"text":""},{"category_id":15,"poly":[381,324,450,324,450,351,381,351],"score":1,"text":""},{"category_id":15,"poly":[553,324,717,324,717,351,553,351],"score":1,"text":""},{"category_id":15,"poly":[117,355,718,355,718,386,117,386],"score":1,"text":""},{"category_id":15,"poly":[117,389,718,389,718,417,117,417],"score":1,"text":""},{"category_id":15,"poly":[116,422,718,422,718,452,116,452],"score":1,"text":""},{"category_id":15,"poly":[115,455,717,455,717,485,115,485],"score":1,"text":""},{"category_id":15,"poly":[115,487,718,487,718,520,115,520],"score":1,"text":""},{"category_id":15,"poly":[116,522,719,522,719,552,116,552],"score":1,"text":""},{"category_id":15,"poly":[116,554,718,554,718,585,116,585],"score":1,"text":""},{"category_id":15,"poly":[117,589,375,589,375,620,117,620],"score":1,"text":""},{"category_id":15,"poly":[395,589,627,589,627,620,395,620],"score":1,"text":""},{"category_id":15,"poly":[685,589,721,589,721,620,685,620],"score":1,"text":""},{"category_id":15,"poly":[116,620,601,620,601,652,116,652],"score":1,"text":""},{"category_id":15,"poly":[645,620,717,620,717,652,645,652],"score":1,"text":""},{"category_id":15,"poly":[115,654,718,654,718,685,115,685],"score":1,"text":""},{"category_id":15,"poly":[116,689,719,689,719,717,116,717],"score":1,"text":""},{"category_id":15,"poly":[117,722,497,722,497,750,117,750],"score":1,"text":""},{"category_id":15,"poly":[523,722,717,722,717,750,523,750],"score":1,"text":""},{"category_id":15,"poly":[116,754,267,754,267,785,116,785],"score":1,"text":""},{"category_id":15,"poly":[325,754,718,754,718,785,325,785],"score":1,"text":""},{"category_id":15,"poly":[116,787,532,787,532,818,116,818],"score":1,"text":""},{"category_id":15,"poly":[578,787,718,787,718,818,578,818],"score":1,"text":""},{"category_id":15,"poly":[118,821,434,821,434,852,118,852],"score":1,"text":""},{"category_id":15,"poly":[834,882,1382,882,1382,912,834,912],"score":1,"text":""},{"category_id":15,"poly":[781,914,1381,914,1381,943,781,943],"score":1,"text":""},{"category_id":15,"poly":[781,949,1381,949,1381,981,781,981],"score":1,"text":""},{"category_id":15,"poly":[780,981,1381,981,1381,1014,780,1014],"score":1,"text":""},{"category_id":15,"poly":[779,1015,1165,1015,1165,1046,779,1046],"score":1,"text":""},{"category_id":15,"poly":[151,852,285,852,285,883,151,883],"score":1,"text":""},{"category_id":15,"poly":[309,852,717,852,717,883,309,883],"score":1,"text":""},{"category_id":15,"poly":[114,885,408,885,408,916,114,916],"score":1,"text":""},{"category_id":15,"poly":[433,885,720,885,720,916,433,916],"score":1,"text":""},{"category_id":15,"poly":[116,921,314,921,314,951,116,951],"score":1,"text":""},{"category_id":15,"poly":[335,921,718,921,718,951,335,951],"score":1,"text":""},{"category_id":15,"poly":[117,954,718,954,718,984,117,984],"score":1,"text":""},{"category_id":15,"poly":[117,988,718,988,718,1015,117,1015],"score":1,"text":""},{"category_id":15,"poly":[115,1021,718,1021,718,1049,115,1049],"score":1,"text":""},{"category_id":15,"poly":[117,1054,459,1054,459,1081,117,1081],"score":1,"text":""},{"category_id":15,"poly":[479,1054,717,1054,717,1081,479,1081],"score":1,"text":""},{"category_id":15,"poly":[115,1087,565,1087,565,1117,115,1117],"score":1,"text":""},{"category_id":15,"poly":[591,1087,719,1087,719,1117,591,1117],"score":1,"text":""},{"category_id":15,"poly":[117,1120,717,1120,717,1149,117,1149],"score":1,"text":""},{"category_id":15,"poly":[115,1152,718,1152,718,1183,115,1183],"score":1,"text":""},{"category_id":15,"poly":[116,1186,646,1186,646,1216,116,1216],"score":1,"text":""},{"category_id":15,"poly":[815,1049,1382,1049,1382,1079,815,1079],"score":1,"text":""},{"category_id":15,"poly":[782,1083,877,1083,877,1113,782,1113],"score":1,"text":""},{"category_id":15,"poly":[976,1083,1381,1083,1381,1113,976,1113],"score":1,"text":""},{"category_id":15,"poly":[782,1115,1383,1115,1383,1146,782,1146],"score":1,"text":""},{"category_id":15,"poly":[782,1150,1384,1150,1384,1178,782,1178],"score":1,"text":""},{"category_id":15,"poly":[782,1183,1383,1183,1383,1214,782,1214],"score":1,"text":""},{"category_id":15,"poly":[781,1216,1381,1216,1381,1244,781,1244],"score":1,"text":""},{"category_id":15,"poly":[782,1250,1381,1250,1381,1277,782,1277],"score":1,"text":""},{"category_id":15,"poly":[784,1281,1382,1281,1382,1312,784,1312],"score":1,"text":""},{"category_id":15,"poly":[782,1314,1382,1314,1382,1346,782,1346],"score":1,"text":""},{"category_id":15,"poly":[784,1350,1381,1350,1381,1378,784,1378],"score":1,"text":""},{"category_id":15,"poly":[783,1382,1382,1382,1382,1413,783,1413],"score":1,"text":""},{"category_id":15,"poly":[782,1416,1380,1416,1380,1447,782,1447],"score":1,"text":""},{"category_id":15,"poly":[781,1450,1382,1450,1382,1479,781,1479],"score":1,"text":""},{"category_id":15,"poly":[781,1483,1384,1483,1384,1511,781,1511],"score":1,"text":""},{"category_id":15,"poly":[781,1516,1383,1516,1383,1547,781,1547],"score":1,"text":""},{"category_id":15,"poly":[781,1550,1383,1550,1383,1578,781,1578],"score":1,"text":""},{"category_id":15,"poly":[780,1584,1382,1584,1382,1611,780,1611],"score":1,"text":""},{"category_id":15,"poly":[780,1616,1381,1616,1381,1646,780,1646],"score":1,"text":""},{"category_id":15,"poly":[782,1650,977,1650,977,1679,782,1679],"score":1,"text":""},{"category_id":15,"poly":[149,1318,716,1318,716,1350,149,1350],"score":1,"text":""},{"category_id":15,"poly":[119,1354,717,1354,717,1382,119,1382],"score":1,"text":""},{"category_id":15,"poly":[117,1388,322,1388,322,1418,117,1418],"score":1,"text":""},{"category_id":15,"poly":[365,1388,718,1388,718,1418,365,1418],"score":1,"text":""},{"category_id":15,"poly":[116,1420,718,1420,718,1449,116,1449],"score":1,"text":""},{"category_id":15,"poly":[114,1452,718,1452,718,1483,114,1483],"score":1,"text":""},{"category_id":15,"poly":[114,1484,720,1484,720,1516,114,1516],"score":1,"text":""},{"category_id":15,"poly":[117,1518,718,1518,718,1548,117,1548],"score":1,"text":""},{"category_id":15,"poly":[115,1551,719,1551,719,1583,115,1583],"score":1,"text":""},{"category_id":15,"poly":[115,1584,718,1584,718,1615,115,1615],"score":1,"text":""},{"category_id":15,"poly":[116,1619,717,1619,717,1650,116,1650],"score":1,"text":""},{"category_id":15,"poly":[118,1652,718,1652,718,1682,118,1682],"score":1,"text":""},{"category_id":15,"poly":[116,1685,159,1685,159,1714,116,1714],"score":1,"text":""},{"category_id":15,"poly":[232,1685,719,1685,719,1714,232,1714],"score":1,"text":""},{"category_id":15,"poly":[118,1719,717,1719,717,1747,118,1747],"score":1,"text":""},{"category_id":15,"poly":[119,1752,718,1752,718,1782,119,1782],"score":1,"text":""},{"category_id":15,"poly":[116,1784,716,1784,716,1814,116,1814],"score":1,"text":""},{"category_id":15,"poly":[116,1816,600,1816,600,1853,116,1853],"score":1,"text":""},{"category_id":15,"poly":[712,1816,717,1816,717,1853,712,1853],"score":1,"text":""},{"category_id":15,"poly":[1342,194,1385,194,1385,222,1342,222],"score":1,"text":""},{"category_id":15,"poly":[783,1710,1324,1710,1324,1739,783,1739],"score":1,"text":""},{"category_id":15,"poly":[782,1741,1381,1741,1381,1774,782,1774],"score":1,"text":""},{"category_id":15,"poly":[888,1774,1382,1774,1382,1807,888,1807],"score":1,"text":""},{"category_id":15,"poly":[890,1807,1071,1807,1071,1841,890,1841],"score":1,"text":""},{"category_id":15,"poly":[467,195,1032,195,1032,222,467,222],"score":1,"text":""},{"category_id":15,"poly":[116,1252,691,1252,691,1287,116,1287],"score":1,"text":""}],"page_info":{"page_no":6,"height":2064,"width":1512}},{"layout_dets":[{"category_id":6,"poly":[130.86541748046875,1373.5548095703125,409.2575988769531,1373.5548095703125,409.2575988769531,1428.9029541015625,130.86541748046875,1428.9029541015625],"score":0.9999980926513672},{"category_id":5,"poly":[125.8742446899414,1427.835205078125,1397.27294921875,1427.835205078125,1397.27294921875,1811.2467041015625,125.8742446899414,1811.2467041015625],"score":0.999991774559021},{"category_id":1,"poly":[796.4013671875,907.4203491210938,1393.1043701171875,907.4203491210938,1393.1043701171875,1312.54296875,796.4013671875,1312.54296875],"score":0.999987781047821},{"category_id":1,"poly":[131.56704711914062,838.73828125,728.2158203125,838.73828125,728.2158203125,1313.8206787109375,131.56704711914062,1313.8206787109375],"score":0.9999876022338867},{"category_id":3,"poly":[304.88818359375,255.19737243652344,1220.4683837890625,255.19737243652344,1220.4683837890625,708.6331176757812,304.88818359375,708.6331176757812],"score":0.9999866485595703},{"category_id":2,"poly":[131.322509765625,196.32687377929688,166.2680206298828,196.32687377929688,166.2680206298828,214.9622344970703,131.322509765625,214.9622344970703],"score":0.9999861717224121},{"category_id":0,"poly":[794.9572143554688,839.4934692382812,1117.90966796875,839.4934692382812,1117.90966796875,868.1668701171875,794.9572143554688,868.1668701171875],"score":0.9999850988388062},{"category_id":2,"poly":[481.3131408691406,195.48025512695312,1044.2947998046875,195.48025512695312,1044.2947998046875,218.969482421875,481.3131408691406,218.969482421875],"score":0.9999847412109375},{"category_id":4,"poly":[510.6108703613281,733.961669921875,1013.2390747070312,733.961669921875,1013.2390747070312,759.1690673828125,510.6108703613281,759.1690673828125],"score":0.9998294115066528},{"category_id":7,"poly":[129.30845642089844,1816.606689453125,940.4096069335938,1816.606689453125,940.4096069335938,1842.029541015625,129.30845642089844,1842.029541015625],"score":0.9996979236602783},{"category_id":13,"poly":[759,733,840,733,840,759,759,759],"score":0.9,"latex":"Y/(Y\\!+\\!a)"},{"category_id":13,"poly":[815,1077,867,1077,867,1108,815,1108],"score":0.89,"latex":"T_{\\mathrm{half}}"},{"category_id":13,"poly":[1088,1179,1140,1179,1140,1211,1088,1211],"score":0.89,"latex":"T_{\\mathrm{half}}"},{"category_id":13,"poly":[130,1247,196,1247,196,1277,130,1277],"score":0.84,"latex":"100\\%"},{"category_id":13,"poly":[209,1042,276,1042,276,1072,209,1072],"score":0.84,"latex":"100\\%"},{"category_id":13,"poly":[1174,940,1224,940,1224,971,1174,971],"score":0.83,"latex":"T_{\\mathrm{half}}"},{"category_id":13,"poly":[129,1401,172,1401,172,1428,129,1428],"score":0.7,"latex":"T_{\\mathrm{half}}"},{"category_id":15,"poly":[128,1373,205,1373,205,1399,128,1399],"score":1,"text":""},{"category_id":15,"poly":[126,1402,128,1402,128,1429,126,1429],"score":1,"text":""},{"category_id":15,"poly":[173,1402,410,1402,410,1429,173,1429],"score":1,"text":""},{"category_id":15,"poly":[828,908,1394,908,1394,939,828,939],"score":1,"text":""},{"category_id":15,"poly":[793,942,1173,942,1173,974,793,974],"score":1,"text":""},{"category_id":15,"poly":[1225,942,1395,942,1395,974,1225,974],"score":1,"text":""},{"category_id":15,"poly":[792,975,1395,975,1395,1008,792,1008],"score":1,"text":""},{"category_id":15,"poly":[792,1012,1396,1012,1396,1040,792,1040],"score":1,"text":""},{"category_id":15,"poly":[794,1044,1395,1044,1395,1075,794,1075],"score":1,"text":""},{"category_id":15,"poly":[793,1080,814,1080,814,1108,793,1108],"score":1,"text":""},{"category_id":15,"poly":[868,1080,1396,1080,1396,1108,868,1108],"score":1,"text":""},{"category_id":15,"poly":[795,1114,1394,1114,1394,1142,795,1142],"score":1,"text":""},{"category_id":15,"poly":[793,1147,1396,1147,1396,1179,793,1179],"score":1,"text":""},{"category_id":15,"poly":[794,1182,1087,1182,1087,1212,794,1212],"score":1,"text":""},{"category_id":15,"poly":[1141,1182,1396,1182,1396,1212,1141,1212],"score":1,"text":""},{"category_id":15,"poly":[795,1216,1395,1216,1395,1247,795,1247],"score":1,"text":""},{"category_id":15,"poly":[795,1250,1395,1250,1395,1280,795,1280],"score":1,"text":""},{"category_id":15,"poly":[794,1285,1395,1285,1395,1314,794,1314],"score":1,"text":""},{"category_id":15,"poly":[163,840,733,840,733,871,163,871],"score":1,"text":""},{"category_id":15,"poly":[129,872,731,872,731,906,129,906],"score":1,"text":""},{"category_id":15,"poly":[128,907,732,907,732,943,128,943],"score":1,"text":""},{"category_id":15,"poly":[129,944,732,944,732,972,129,972],"score":1,"text":""},{"category_id":15,"poly":[129,977,732,977,732,1007,129,1007],"score":1,"text":""},{"category_id":15,"poly":[129,1011,733,1011,733,1041,129,1041],"score":1,"text":""},{"category_id":15,"poly":[129,1046,208,1046,208,1075,129,1075],"score":1,"text":""},{"category_id":15,"poly":[277,1046,734,1046,734,1075,277,1075],"score":1,"text":""},{"category_id":15,"poly":[130,1081,729,1081,729,1109,130,1109],"score":1,"text":""},{"category_id":15,"poly":[131,1113,729,1113,729,1141,131,1141],"score":1,"text":""},{"category_id":15,"poly":[130,1148,731,1148,731,1179,130,1179],"score":1,"text":""},{"category_id":15,"poly":[128,1181,733,1181,733,1213,128,1213],"score":1,"text":""},{"category_id":15,"poly":[129,1215,732,1215,732,1246,129,1246],"score":1,"text":""},{"category_id":15,"poly":[197,1248,731,1248,731,1282,197,1282],"score":1,"text":""},{"category_id":15,"poly":[129,1284,489,1284,489,1318,129,1318],"score":1,"text":""},{"category_id":15,"poly":[127,194,171,194,171,221,127,221],"score":1,"text":""},{"category_id":15,"poly":[792,838,1121,838,1121,873,792,873],"score":1,"text":""},{"category_id":15,"poly":[479,194,1045,194,1045,223,479,223],"score":1,"text":""},{"category_id":15,"poly":[511,735,758,735,758,763,511,763],"score":1,"text":""},{"category_id":15,"poly":[841,735,1012,735,1012,763,841,763],"score":1,"text":""},{"category_id":15,"poly":[129,1818,939,1818,939,1846,129,1846],"score":1,"text":""}],"page_info":{"page_no":7,"height":2064,"width":1512}},{"layout_dets":[{"category_id":6,"poly":[114.02505493164062,252.96316528320312,1384.269287109375,252.96316528320312,1384.269287109375,336.24853515625,114.02505493164062,336.24853515625],"score":0.9999914169311523},{"category_id":1,"poly":[782.9283447265625,1059.0804443359375,1379.0054931640625,1059.0804443359375,1379.0054931640625,1518.4132080078125,782.9283447265625,1518.4132080078125],"score":0.9999841451644897},{"category_id":1,"poly":[117.70853424072266,1242.4888916015625,715.529052734375,1242.4888916015625,715.529052734375,1847.1578369140625,117.70853424072266,1847.1578369140625],"score":0.9999837279319763},{"category_id":5,"poly":[112.87657165527344,340.12872314453125,1386.634033203125,340.12872314453125,1386.634033203125,690.6675415039062,112.87657165527344,690.6675415039062],"score":0.9999768137931824},{"category_id":0,"poly":[782.406005859375,1617.485595703125,928.7228393554688,1617.485595703125,928.7228393554688,1646.1173095703125,782.406005859375,1646.1173095703125],"score":0.9999604225158691},{"category_id":1,"poly":[782.9051513671875,1683.7149658203125,1379.51025390625,1683.7149658203125,1379.51025390625,1845.659423828125,782.9051513671875,1845.659423828125],"score":0.9999464750289917},{"category_id":1,"poly":[119.27611541748047,994.8146362304688,712.2227783203125,994.8146362304688,712.2227783203125,1120.8546142578125,119.27611541748047,1120.8546142578125],"score":0.9999319911003113},{"category_id":0,"poly":[783.0427856445312,993.3594360351562,987.88330078125,993.3594360351562,987.88330078125,1020.2757568359375,783.0427856445312,1020.2757568359375],"score":0.9998669624328613},{"category_id":2,"poly":[1346.874755859375,196.1348114013672,1379.42626953125,196.1348114013672,1379.42626953125,215.66555786132812,1346.874755859375,215.66555786132812],"score":0.9998453855514526},{"category_id":0,"poly":[119.7131118774414,1178.46875,627.736083984375,1178.46875,627.736083984375,1205.487060546875,119.7131118774414,1205.487060546875],"score":0.9995097517967224},{"category_id":2,"poly":[464.84906005859375,193.9958953857422,1033.1195068359375,193.9958953857422,1033.1195068359375,218.67425537109375,464.84906005859375,218.67425537109375],"score":0.9992668628692627},{"category_id":7,"poly":[116.63909149169922,699.02490234375,1381.2991943359375,699.02490234375,1381.2991943359375,856.2590942382812,116.63909149169922,856.2590942382812],"score":0.9891612529754639},{"category_id":13,"poly":[458,778,601,778,601,806,458,806],"score":0.91,"latex":"\\sum Y/\\sum(a+Y)"},{"category_id":13,"poly":[169,1025,221,1025,221,1056,169,1056],"score":0.91,"latex":"T_{\\mathrm{half}}"},{"category_id":13,"poly":[464,750,607,750,607,778,464,778],"score":0.88,"latex":"\\sum Y/\\sum(a+Y)"},{"category_id":13,"poly":[1201,1191,1277,1191,1277,1221,1201,1221],"score":0.88,"latex":"\\Delta N_{\\mathrm{zero}}"},{"category_id":13,"poly":[1296,1323,1350,1323,1350,1353,1296,1353],"score":0.86,"latex":"50\\%"},{"category_id":13,"poly":[1078,1159,1101,1159,1101,1185,1078,1185],"score":0.77,"latex":"E"},{"category_id":13,"poly":[1113,1192,1133,1192,1133,1219,1113,1219],"score":0.69,"latex":"^b"},{"category_id":13,"poly":[375,811,390,811,390,830,375,830],"score":0.67,"latex":"a"},{"category_id":13,"poly":[990,1196,1003,1196,1003,1218,990,1218],"score":0.61,"latex":"t^{\\star}"},{"category_id":13,"poly":[1066,812,1080,812,1080,830,1066,830],"score":0.58,"latex":"a"},{"category_id":13,"poly":[431,808,448,808,448,830,431,830],"score":0.46,"latex":"Y"},{"category_id":13,"poly":[1246,1357,1283,1357,1283,1386,1246,1386],"score":0.43,"latex":"\\mathrm{Ck}"},{"category_id":13,"poly":[773,779,827,779,827,804,773,804],"score":0.42,"latex":"100\\mathrm{th}"},{"category_id":13,"poly":[1107,1357,1144,1357,1144,1386,1107,1386],"score":0.41,"latex":"\\mathrm{Ck}"},{"category_id":13,"poly":[640,807,684,807,684,831,640,831],"score":0.29,"latex":"20\\mathrm{th}"},{"category_id":15,"poly":[115,255,191,255,191,280,115,280],"score":1,"text":""},{"category_id":15,"poly":[114,281,1385,281,1385,313,114,313],"score":1,"text":""},{"category_id":15,"poly":[114,310,683,310,683,341,114,341],"score":1,"text":""},{"category_id":15,"poly":[816,1061,1382,1061,1382,1090,816,1090],"score":1,"text":""},{"category_id":15,"poly":[780,1093,1383,1093,1383,1125,780,1125],"score":1,"text":""},{"category_id":15,"poly":[782,1128,1380,1128,1380,1154,782,1154],"score":1,"text":""},{"category_id":15,"poly":[782,1161,1077,1161,1077,1190,782,1190],"score":1,"text":""},{"category_id":15,"poly":[1102,1161,1381,1161,1381,1190,1102,1190],"score":1,"text":""},{"category_id":15,"poly":[782,1194,989,1194,989,1226,782,1226],"score":1,"text":""},{"category_id":15,"poly":[1004,1194,1112,1194,1112,1226,1004,1226],"score":1,"text":""},{"category_id":15,"poly":[1134,1194,1200,1194,1200,1226,1134,1226],"score":1,"text":""},{"category_id":15,"poly":[1278,1194,1384,1194,1384,1226,1278,1226],"score":1,"text":""},{"category_id":15,"poly":[782,1228,1383,1228,1383,1257,782,1257],"score":1,"text":""},{"category_id":15,"poly":[781,1259,1381,1259,1381,1290,781,1290],"score":1,"text":""},{"category_id":15,"poly":[781,1293,1381,1293,1381,1324,781,1324],"score":1,"text":""},{"category_id":15,"poly":[780,1328,1295,1328,1295,1354,780,1354],"score":1,"text":""},{"category_id":15,"poly":[1351,1328,1382,1328,1382,1354,1351,1354],"score":1,"text":""},{"category_id":15,"poly":[780,1357,1106,1357,1106,1391,780,1391],"score":1,"text":""},{"category_id":15,"poly":[1145,1357,1245,1357,1245,1391,1145,1391],"score":1,"text":""},{"category_id":15,"poly":[1284,1357,1382,1357,1382,1391,1284,1391],"score":1,"text":""},{"category_id":15,"poly":[780,1390,1383,1390,1383,1424,780,1424],"score":1,"text":""},{"category_id":15,"poly":[778,1426,1382,1426,1382,1457,778,1457],"score":1,"text":""},{"category_id":15,"poly":[781,1460,1381,1460,1381,1489,781,1489],"score":1,"text":""},{"category_id":15,"poly":[779,1491,885,1491,885,1524,779,1524],"score":1,"text":""},{"category_id":15,"poly":[150,1245,717,1245,717,1275,150,1275],"score":1,"text":""},{"category_id":15,"poly":[117,1281,717,1281,717,1307,117,1307],"score":1,"text":""},{"category_id":15,"poly":[118,1314,717,1314,717,1342,118,1342],"score":1,"text":""},{"category_id":15,"poly":[117,1347,718,1347,718,1378,117,1378],"score":1,"text":""},{"category_id":15,"poly":[116,1378,718,1378,718,1410,116,1410],"score":1,"text":""},{"category_id":15,"poly":[116,1413,720,1413,720,1443,116,1443],"score":1,"text":""},{"category_id":15,"poly":[117,1447,718,1447,718,1478,117,1478],"score":1,"text":""},{"category_id":15,"poly":[117,1481,717,1481,717,1509,117,1509],"score":1,"text":""},{"category_id":15,"poly":[116,1514,717,1514,717,1544,116,1544],"score":1,"text":""},{"category_id":15,"poly":[117,1549,720,1549,720,1580,117,1580],"score":1,"text":""},{"category_id":15,"poly":[116,1582,718,1582,718,1612,116,1612],"score":1,"text":""},{"category_id":15,"poly":[117,1616,717,1616,717,1647,117,1647],"score":1,"text":""},{"category_id":15,"poly":[115,1648,716,1648,716,1681,115,1681],"score":1,"text":""},{"category_id":15,"poly":[116,1682,717,1682,717,1712,116,1712],"score":1,"text":""},{"category_id":15,"poly":[117,1717,718,1717,718,1748,117,1748],"score":1,"text":""},{"category_id":15,"poly":[117,1751,717,1751,717,1779,117,1779],"score":1,"text":""},{"category_id":15,"poly":[118,1784,718,1784,718,1815,118,1815],"score":1,"text":""},{"category_id":15,"poly":[118,1818,190,1818,190,1849,118,1849],"score":1,"text":""},{"category_id":15,"poly":[778,1614,932,1614,932,1649,778,1649],"score":1,"text":""},{"category_id":15,"poly":[814,1684,1381,1684,1381,1716,814,1716],"score":1,"text":""},{"category_id":15,"poly":[780,1718,1381,1718,1381,1749,780,1749],"score":1,"text":""},{"category_id":15,"poly":[780,1751,1385,1751,1385,1785,780,1785],"score":1,"text":""},{"category_id":15,"poly":[782,1784,1384,1784,1384,1816,782,1816],"score":1,"text":""},{"category_id":15,"poly":[780,1817,1381,1817,1381,1849,780,1849],"score":1,"text":""},{"category_id":15,"poly":[116,993,714,993,714,1022,116,1022],"score":1,"text":""},{"category_id":15,"poly":[115,1026,168,1026,168,1059,115,1059],"score":1,"text":""},{"category_id":15,"poly":[222,1026,713,1026,713,1059,222,1059],"score":1,"text":""},{"category_id":15,"poly":[115,1061,715,1061,715,1092,115,1092],"score":1,"text":""},{"category_id":15,"poly":[115,1092,191,1092,191,1126,115,1126],"score":1,"text":""},{"category_id":15,"poly":[781,992,989,992,989,1023,781,1023],"score":1,"text":""},{"category_id":15,"poly":[1343,193,1384,193,1384,221,1343,221],"score":1,"text":""},{"category_id":15,"poly":[117,1179,630,1179,630,1209,117,1209],"score":1,"text":""},{"category_id":15,"poly":[466,194,1032,194,1032,224,466,224],"score":1,"text":""},{"category_id":15,"poly":[124,693,1386,693,1386,731,124,731],"score":1,"text":""},{"category_id":15,"poly":[114,725,410,725,410,755,114,755],"score":1,"text":""},{"category_id":15,"poly":[120,744,463,744,463,787,120,787],"score":1,"text":""},{"category_id":15,"poly":[608,744,746,744,746,787,608,787],"score":1,"text":""},{"category_id":15,"poly":[123,775,457,775,457,812,123,812],"score":1,"text":""},{"category_id":15,"poly":[602,775,772,775,772,812,602,812],"score":1,"text":""},{"category_id":15,"poly":[828,775,938,775,938,812,828,812],"score":1,"text":""},{"category_id":15,"poly":[122,800,374,800,374,843,122,843],"score":1,"text":""},{"category_id":15,"poly":[391,800,430,800,430,843,391,843],"score":1,"text":""},{"category_id":15,"poly":[449,800,639,800,639,843,449,843],"score":1,"text":""},{"category_id":15,"poly":[685,800,1065,800,1065,843,685,843],"score":1,"text":""},{"category_id":15,"poly":[1081,800,1386,800,1386,843,1081,843],"score":1,"text":""},{"category_id":15,"poly":[115,834,312,834,312,866,115,866],"score":1,"text":""}],"page_info":{"page_no":8,"height":2064,"width":1512}},{"layout_dets":[{"category_id":4,"poly":[131.20469665527344,1337.5986328125,733.359619140625,1337.5986328125,733.359619140625,1417.853759765625,131.20469665527344,1417.853759765625],"score":0.9999973177909851},{"category_id":1,"poly":[131.22447204589844,1444.04736328125,731.0692749023438,1444.04736328125,731.0692749023438,1847.8291015625,131.22447204589844,1847.8291015625],"score":0.9999927282333374},{"category_id":1,"poly":[794.774169921875,255.46261596679688,1396.0054931640625,255.46261596679688,1396.0054931640625,1082.4002685546875,794.774169921875,1082.4002685546875],"score":0.9999898672103882},{"category_id":3,"poly":[134.4770965576172,257.39630126953125,736.1235961914062,257.39630126953125,736.1235961914062,1314.7193603515625,134.4770965576172,1314.7193603515625],"score":0.9999856948852539},{"category_id":2,"poly":[131.43138122558594,196.07794189453125,165.26730346679688,196.07794189453125,165.26730346679688,215.07974243164062,131.43138122558594,215.07974243164062],"score":0.9999680519104004},{"category_id":1,"poly":[795.1031494140625,1085.7908935546875,1395.2928466796875,1085.7908935546875,1395.2928466796875,1847.1925048828125,795.1031494140625,1847.1925048828125],"score":0.9999593496322632},{"category_id":2,"poly":[480.66253662109375,195.42433166503906,1044.6080322265625,195.42433166503906,1044.6080322265625,218.66525268554688,480.66253662109375,218.66525268554688],"score":0.9999505877494812},{"category_id":13,"poly":[1045,452,1098,452,1098,482,1045,482],"score":0.87,"latex":"27\\%"},{"category_id":15,"poly":[128,1339,732,1339,732,1367,128,1367],"score":1,"text":""},{"category_id":15,"poly":[130,1368,730,1368,730,1391,130,1391],"score":1,"text":""},{"category_id":15,"poly":[129,1395,221,1395,221,1419,129,1419],"score":1,"text":""},{"category_id":15,"poly":[130,1445,730,1445,730,1479,130,1479],"score":1,"text":""},{"category_id":15,"poly":[130,1480,731,1480,731,1510,130,1510],"score":1,"text":""},{"category_id":15,"poly":[129,1513,731,1513,731,1543,129,1543],"score":1,"text":""},{"category_id":15,"poly":[130,1548,732,1548,732,1579,130,1579],"score":1,"text":""},{"category_id":15,"poly":[129,1581,732,1581,732,1610,129,1610],"score":1,"text":""},{"category_id":15,"poly":[129,1615,731,1615,731,1646,129,1646],"score":1,"text":""},{"category_id":15,"poly":[130,1647,730,1647,730,1681,130,1681],"score":1,"text":""},{"category_id":15,"poly":[130,1683,731,1683,731,1712,130,1712],"score":1,"text":""},{"category_id":15,"poly":[131,1716,731,1716,731,1747,131,1747],"score":1,"text":""},{"category_id":15,"poly":[129,1750,731,1750,731,1780,129,1780],"score":1,"text":""},{"category_id":15,"poly":[131,1784,733,1784,733,1814,131,1814],"score":1,"text":""},{"category_id":15,"poly":[130,1817,734,1817,734,1848,130,1848],"score":1,"text":""},{"category_id":15,"poly":[794,257,1393,257,1393,285,794,285],"score":1,"text":""},{"category_id":15,"poly":[795,291,1392,291,1392,319,795,319],"score":1,"text":""},{"category_id":15,"poly":[795,323,1396,323,1396,354,795,354],"score":1,"text":""},{"category_id":15,"poly":[793,356,1396,356,1396,387,793,387],"score":1,"text":""},{"category_id":15,"poly":[794,388,1399,388,1399,422,794,422],"score":1,"text":""},{"category_id":15,"poly":[794,423,1396,423,1396,454,794,454],"score":1,"text":""},{"category_id":15,"poly":[794,456,1044,456,1044,487,794,487],"score":1,"text":""},{"category_id":15,"poly":[1099,456,1396,456,1396,487,1099,487],"score":1,"text":""},{"category_id":15,"poly":[794,491,1393,491,1393,519,794,519],"score":1,"text":""},{"category_id":15,"poly":[793,522,1397,522,1397,552,793,552],"score":1,"text":""},{"category_id":15,"poly":[793,556,1395,556,1395,587,793,587],"score":1,"text":""},{"category_id":15,"poly":[794,591,1396,591,1396,618,794,618],"score":1,"text":""},{"category_id":15,"poly":[791,621,1395,621,1395,654,791,654],"score":1,"text":""},{"category_id":15,"poly":[793,657,1396,657,1396,682,793,682],"score":1,"text":""},{"category_id":15,"poly":[792,688,1395,688,1395,716,792,716],"score":1,"text":""},{"category_id":15,"poly":[794,723,1395,723,1395,751,794,751],"score":1,"text":""},{"category_id":15,"poly":[791,753,1400,753,1400,787,791,787],"score":1,"text":""},{"category_id":15,"poly":[795,787,1396,787,1396,816,795,816],"score":1,"text":""},{"category_id":15,"poly":[794,822,1396,822,1396,849,794,849],"score":1,"text":""},{"category_id":15,"poly":[791,853,1394,853,1394,887,791,887],"score":1,"text":""},{"category_id":15,"poly":[791,886,1397,886,1397,918,791,918],"score":1,"text":""},{"category_id":15,"poly":[793,921,1395,921,1395,952,793,952],"score":1,"text":""},{"category_id":15,"poly":[796,955,1395,955,1395,983,796,983],"score":1,"text":""},{"category_id":15,"poly":[793,985,1396,985,1396,1018,793,1018],"score":1,"text":""},{"category_id":15,"poly":[795,1022,1396,1022,1396,1050,795,1050],"score":1,"text":""},{"category_id":15,"poly":[794,1055,1015,1055,1015,1083,794,1083],"score":1,"text":""},{"category_id":15,"poly":[127,193,170,193,170,221,127,221],"score":1,"text":""},{"category_id":15,"poly":[828,1086,1396,1086,1396,1116,828,1116],"score":1,"text":""},{"category_id":15,"poly":[795,1120,1394,1120,1394,1151,795,1151],"score":1,"text":""},{"category_id":15,"poly":[792,1154,1396,1154,1396,1183,792,1183],"score":1,"text":""},{"category_id":15,"poly":[792,1187,1397,1187,1397,1219,792,1219],"score":1,"text":""},{"category_id":15,"poly":[793,1221,1395,1221,1395,1249,793,1249],"score":1,"text":""},{"category_id":15,"poly":[794,1252,1394,1252,1394,1282,794,1282],"score":1,"text":""},{"category_id":15,"poly":[794,1287,1395,1287,1395,1315,794,1315],"score":1,"text":""},{"category_id":15,"poly":[793,1320,1397,1320,1397,1349,793,1349],"score":1,"text":""},{"category_id":15,"poly":[792,1353,1396,1353,1396,1381,792,1381],"score":1,"text":""},{"category_id":15,"poly":[795,1386,1395,1386,1395,1414,795,1414],"score":1,"text":""},{"category_id":15,"poly":[795,1419,1395,1419,1395,1447,795,1447],"score":1,"text":""},{"category_id":15,"poly":[792,1453,1396,1453,1396,1481,792,1481],"score":1,"text":""},{"category_id":15,"poly":[794,1486,1398,1486,1398,1515,794,1515],"score":1,"text":""},{"category_id":15,"poly":[794,1519,1396,1519,1396,1547,794,1547],"score":1,"text":""},{"category_id":15,"poly":[792,1551,1396,1551,1396,1581,792,1581],"score":1,"text":""},{"category_id":15,"poly":[795,1586,1395,1586,1395,1614,795,1614],"score":1,"text":""},{"category_id":15,"poly":[794,1619,1395,1619,1395,1649,794,1649],"score":1,"text":""},{"category_id":15,"poly":[792,1653,1395,1653,1395,1681,792,1681],"score":1,"text":""},{"category_id":15,"poly":[793,1682,1396,1682,1396,1715,793,1715],"score":1,"text":""},{"category_id":15,"poly":[795,1716,1392,1716,1392,1748,795,1748],"score":1,"text":""},{"category_id":15,"poly":[793,1752,1396,1752,1396,1782,793,1782],"score":1,"text":""},{"category_id":15,"poly":[795,1786,1396,1786,1396,1813,795,1813],"score":1,"text":""},{"category_id":15,"poly":[793,1816,1393,1816,1393,1849,793,1849],"score":1,"text":""},{"category_id":15,"poly":[479,193,1045,193,1045,224,479,224],"score":1,"text":""}],"page_info":{"page_no":9,"height":2064,"width":1512}},{"layout_dets":[{"category_id":1,"poly":[117.55416107177734,251.62486267089844,717.456787109375,251.62486267089844,717.456787109375,582.5948486328125,117.55416107177734,582.5948486328125],"score":0.9999960660934448},{"category_id":1,"poly":[781.759521484375,253.28750610351562,1382.113037109375,253.28750610351562,1382.113037109375,749.5453491210938,781.759521484375,749.5453491210938],"score":0.9999918937683105},{"category_id":1,"poly":[780.9722290039062,1416.1888427734375,1381.6937255859375,1416.1888427734375,1381.6937255859375,1847.7171630859375,780.9722290039062,1847.7171630859375],"score":0.9999914169311523},{"category_id":1,"poly":[117.01348114013672,1416.3350830078125,717.9165649414062,1416.3350830078125,717.9165649414062,1848.1842041015625,117.01348114013672,1848.1842041015625],"score":0.999987006187439},{"category_id":1,"poly":[781.1904907226562,752.2116088867188,1380.98291015625,752.2116088867188,1380.98291015625,1280.69482421875,781.1904907226562,1280.69482421875],"score":0.9999850988388062},{"category_id":1,"poly":[117.43770599365234,885.7888793945312,718.2305297851562,885.7888793945312,718.2305297851562,1415.0897216796875,117.43770599365234,1415.0897216796875],"score":0.9999827146530151},{"category_id":1,"poly":[118.48710632324219,587.17626953125,716.4568481445312,587.17626953125,716.4568481445312,883.3399658203125,118.48710632324219,883.3399658203125],"score":0.9999717473983765},{"category_id":2,"poly":[1346.4129638671875,196.00042724609375,1381.5985107421875,196.00042724609375,1381.5985107421875,216.04443359375,1346.4129638671875,216.04443359375],"score":0.9999490976333618},{"category_id":0,"poly":[781.236328125,1351.056884765625,1112.8251953125,1351.056884765625,1112.8251953125,1380.267333984375,781.236328125,1380.267333984375],"score":0.9996969103813171},{"category_id":2,"poly":[466.3724060058594,195.28904724121094,1031.2205810546875,195.28904724121094,1031.2205810546875,219.76708984375,466.3724060058594,219.76708984375],"score":0.9995569586753845},{"category_id":13,"poly":[510,1017,563,1017,563,1047,510,1047],"score":0.89,"latex":"85\\%"},{"category_id":13,"poly":[1121,321,1143,321,1143,347,1121,347],"score":0.55,"latex":"E."},{"category_id":13,"poly":[433,354,456,354,456,380,433,380],"score":0.46,"latex":"E."},{"category_id":13,"poly":[578,1018,683,1018,683,1048,578,1048],"score":0.39,"latex":"1260\\,\\mathrm{mm}"},{"category_id":15,"poly":[118,255,716,255,716,286,118,286],"score":1,"text":""},{"category_id":15,"poly":[116,290,714,290,714,321,116,321],"score":1,"text":""},{"category_id":15,"poly":[119,323,717,323,717,352,119,352],"score":1,"text":""},{"category_id":15,"poly":[117,357,432,357,432,386,117,386],"score":1,"text":""},{"category_id":15,"poly":[457,357,718,357,718,386,457,386],"score":1,"text":""},{"category_id":15,"poly":[116,386,717,386,717,422,116,422],"score":1,"text":""},{"category_id":15,"poly":[115,420,719,420,719,457,115,457],"score":1,"text":""},{"category_id":15,"poly":[119,459,717,459,717,485,119,485],"score":1,"text":""},{"category_id":15,"poly":[116,487,718,487,718,521,116,521],"score":1,"text":""},{"category_id":15,"poly":[118,523,717,523,717,552,118,552],"score":1,"text":""},{"category_id":15,"poly":[118,557,657,557,657,583,118,583],"score":1,"text":""},{"category_id":15,"poly":[816,256,1381,256,1381,286,816,286],"score":1,"text":""},{"category_id":15,"poly":[779,289,1381,289,1381,321,779,321],"score":1,"text":""},{"category_id":15,"poly":[779,322,1120,322,1120,355,779,355],"score":1,"text":""},{"category_id":15,"poly":[1144,322,1385,322,1385,355,1144,355],"score":1,"text":""},{"category_id":15,"poly":[781,356,1384,356,1384,384,781,384],"score":1,"text":""},{"category_id":15,"poly":[780,387,1380,387,1380,420,780,420],"score":1,"text":""},{"category_id":15,"poly":[783,422,1381,422,1381,452,783,452],"score":1,"text":""},{"category_id":15,"poly":[780,455,1383,455,1383,487,780,487],"score":1,"text":""},{"category_id":15,"poly":[781,487,1383,487,1383,520,781,520],"score":1,"text":""},{"category_id":15,"poly":[782,519,1383,519,1383,555,782,555],"score":1,"text":""},{"category_id":15,"poly":[782,557,1381,557,1381,584,782,584],"score":1,"text":""},{"category_id":15,"poly":[781,589,1385,589,1385,620,781,620],"score":1,"text":""},{"category_id":15,"poly":[780,622,1384,622,1384,652,780,652],"score":1,"text":""},{"category_id":15,"poly":[781,654,1381,654,1381,686,781,686],"score":1,"text":""},{"category_id":15,"poly":[781,687,1381,687,1381,718,781,718],"score":1,"text":""},{"category_id":15,"poly":[782,721,1294,721,1294,750,782,750],"score":1,"text":""},{"category_id":15,"poly":[816,1419,1383,1419,1383,1452,816,1452],"score":1,"text":""},{"category_id":15,"poly":[781,1453,1380,1453,1380,1482,781,1482],"score":1,"text":""},{"category_id":15,"poly":[781,1486,1383,1486,1383,1516,781,1516],"score":1,"text":""},{"category_id":15,"poly":[781,1518,1381,1518,1381,1549,781,1549],"score":1,"text":""},{"category_id":15,"poly":[780,1551,1384,1551,1384,1585,780,1585],"score":1,"text":""},{"category_id":15,"poly":[780,1586,1383,1586,1383,1616,780,1616],"score":1,"text":""},{"category_id":15,"poly":[781,1620,1382,1620,1382,1650,781,1650],"score":1,"text":""},{"category_id":15,"poly":[782,1653,1381,1653,1381,1680,782,1680],"score":1,"text":""},{"category_id":15,"poly":[781,1685,1382,1685,1382,1715,781,1715],"score":1,"text":""},{"category_id":15,"poly":[780,1716,1383,1716,1383,1749,780,1749],"score":1,"text":""},{"category_id":15,"poly":[781,1753,1382,1753,1382,1780,781,1780],"score":1,"text":""},{"category_id":15,"poly":[782,1785,1380,1785,1380,1814,782,1814],"score":1,"text":""},{"category_id":15,"poly":[780,1816,1382,1816,1382,1848,780,1848],"score":1,"text":""},{"category_id":15,"poly":[151,1419,717,1419,717,1452,151,1452],"score":1,"text":""},{"category_id":15,"poly":[117,1455,717,1455,717,1481,117,1481],"score":1,"text":""},{"category_id":15,"poly":[116,1487,717,1487,717,1515,116,1515],"score":1,"text":""},{"category_id":15,"poly":[117,1520,718,1520,718,1547,117,1547],"score":1,"text":""},{"category_id":15,"poly":[118,1553,717,1553,717,1580,118,1580],"score":1,"text":""},{"category_id":15,"poly":[117,1586,719,1586,719,1616,117,1616],"score":1,"text":""},{"category_id":15,"poly":[117,1619,716,1619,716,1650,117,1650],"score":1,"text":""},{"category_id":15,"poly":[116,1651,718,1651,718,1683,116,1683],"score":1,"text":""},{"category_id":15,"poly":[116,1685,717,1685,717,1714,116,1714],"score":1,"text":""},{"category_id":15,"poly":[118,1717,718,1717,718,1749,118,1749],"score":1,"text":""},{"category_id":15,"poly":[118,1752,720,1752,720,1783,118,1783],"score":1,"text":""},{"category_id":15,"poly":[118,1787,715,1787,715,1815,118,1815],"score":1,"text":""},{"category_id":15,"poly":[118,1819,520,1819,520,1850,118,1850],"score":1,"text":""},{"category_id":15,"poly":[815,755,1380,755,1380,785,815,785],"score":1,"text":""},{"category_id":15,"poly":[781,786,1382,786,1382,820,781,820],"score":1,"text":""},{"category_id":15,"poly":[780,821,1381,821,1381,851,780,851],"score":1,"text":""},{"category_id":15,"poly":[781,854,1383,854,1383,885,781,885],"score":1,"text":""},{"category_id":15,"poly":[780,887,1382,887,1382,916,780,916],"score":1,"text":""},{"category_id":15,"poly":[782,922,1381,922,1381,948,782,948],"score":1,"text":""},{"category_id":15,"poly":[780,955,1382,955,1382,984,780,984],"score":1,"text":""},{"category_id":15,"poly":[780,986,1381,986,1381,1017,780,1017],"score":1,"text":""},{"category_id":15,"poly":[779,1020,1384,1020,1384,1049,779,1049],"score":1,"text":""},{"category_id":15,"poly":[780,1053,1383,1053,1383,1083,780,1083],"score":1,"text":""},{"category_id":15,"poly":[782,1087,1379,1087,1379,1118,782,1118],"score":1,"text":""},{"category_id":15,"poly":[780,1121,1383,1121,1383,1149,780,1149],"score":1,"text":""},{"category_id":15,"poly":[780,1153,1381,1153,1381,1184,780,1184],"score":1,"text":""},{"category_id":15,"poly":[779,1186,1382,1186,1382,1216,779,1216],"score":1,"text":""},{"category_id":15,"poly":[781,1217,1382,1217,1382,1252,781,1252],"score":1,"text":""},{"category_id":15,"poly":[781,1253,1379,1253,1379,1283,781,1283],"score":1,"text":""},{"category_id":15,"poly":[151,886,718,886,718,918,151,918],"score":1,"text":""},{"category_id":15,"poly":[116,922,718,922,718,949,116,949],"score":1,"text":""},{"category_id":15,"poly":[116,953,717,953,717,983,116,983],"score":1,"text":""},{"category_id":15,"poly":[116,988,718,988,718,1018,116,1018],"score":1,"text":""},{"category_id":15,"poly":[117,1022,509,1022,509,1050,117,1050],"score":1,"text":""},{"category_id":15,"poly":[564,1022,577,1022,577,1050,564,1050],"score":1,"text":""},{"category_id":15,"poly":[684,1022,718,1022,718,1050,684,1050],"score":1,"text":""},{"category_id":15,"poly":[116,1054,720,1054,720,1083,116,1083],"score":1,"text":""},{"category_id":15,"poly":[115,1086,717,1086,717,1119,115,1119],"score":1,"text":""},{"category_id":15,"poly":[116,1118,718,1118,718,1151,116,1151],"score":1,"text":""},{"category_id":15,"poly":[114,1153,719,1153,719,1185,114,1185],"score":1,"text":""},{"category_id":15,"poly":[116,1186,715,1186,715,1216,116,1216],"score":1,"text":""},{"category_id":15,"poly":[115,1218,719,1218,719,1250,115,1250],"score":1,"text":""},{"category_id":15,"poly":[115,1251,718,1251,718,1283,115,1283],"score":1,"text":""},{"category_id":15,"poly":[117,1287,717,1287,717,1316,117,1316],"score":1,"text":""},{"category_id":15,"poly":[118,1319,718,1319,718,1350,118,1350],"score":1,"text":""},{"category_id":15,"poly":[116,1353,719,1353,719,1382,116,1382],"score":1,"text":""},{"category_id":15,"poly":[116,1386,583,1386,583,1417,116,1417],"score":1,"text":""},{"category_id":15,"poly":[150,587,716,587,716,620,150,620],"score":1,"text":""},{"category_id":15,"poly":[116,624,719,624,719,651,116,651],"score":1,"text":""},{"category_id":15,"poly":[115,653,717,653,717,688,115,688],"score":1,"text":""},{"category_id":15,"poly":[117,690,715,690,715,718,117,718],"score":1,"text":""},{"category_id":15,"poly":[115,722,716,722,716,753,115,753],"score":1,"text":""},{"category_id":15,"poly":[115,754,717,754,717,786,115,786],"score":1,"text":""},{"category_id":15,"poly":[116,788,719,788,719,820,116,820],"score":1,"text":""},{"category_id":15,"poly":[116,818,717,818,717,854,116,854],"score":1,"text":""},{"category_id":15,"poly":[116,854,638,854,638,888,116,888],"score":1,"text":""},{"category_id":15,"poly":[1342,194,1386,194,1386,221,1342,221],"score":1,"text":""},{"category_id":15,"poly":[781,1351,1114,1351,1114,1383,781,1383],"score":1,"text":""},{"category_id":15,"poly":[467,195,1030,195,1030,223,467,223],"score":1,"text":""}],"page_info":{"page_no":10,"height":2064,"width":1512}},{"layout_dets":[{"category_id":1,"poly":[129.7488555908203,253.2135772705078,731.62451171875,253.2135772705078,731.62451171875,850.93603515625,129.7488555908203,850.93603515625],"score":0.9999896287918091},{"category_id":1,"poly":[130.6011962890625,1007.9855346679688,731.668212890625,1007.9855346679688,731.668212890625,1439.58154296875,130.6011962890625,1439.58154296875],"score":0.9999825954437256},{"category_id":1,"poly":[130.9359130859375,1596.610595703125,731.9222412109375,1596.610595703125,731.9222412109375,1846.4874267578125,130.9359130859375,1846.4874267578125],"score":0.9999701976776123},{"category_id":2,"poly":[128.8955535888672,194.6787567138672,167.46630859375,194.6787567138672,167.46630859375,216.06105041503906,128.8955535888672,216.06105041503906],"score":0.9999610781669617},{"category_id":0,"poly":[131.96560668945312,943.1329345703125,353.8561096191406,943.1329345703125,353.8561096191406,973.1957397460938,131.96560668945312,973.1957397460938],"score":0.9999556541442871},{"category_id":1,"poly":[785.2122802734375,248.98599243164062,1401.3367919921875,248.98599243164062,1401.3367919921875,1848.156982421875,785.2122802734375,1848.156982421875],"score":0.9999303817749023},{"category_id":0,"poly":[130.31793212890625,1534.6875,256.71337890625,1534.6875,256.71337890625,1561.8223876953125,130.31793212890625,1561.8223876953125],"score":0.999919056892395},{"category_id":2,"poly":[479.6897277832031,194.76876831054688,1046.6419677734375,194.76876831054688,1046.6419677734375,219.28916931152344,479.6897277832031,219.28916931152344],"score":0.9995743632316589},{"category_id":13,"poly":[1067,1022,1120,1022,1120,1049,1067,1049],"score":0.57,"latex":"219\\,\\mathrm{p}"},{"category_id":15,"poly":[131,257,732,257,732,283,131,283],"score":1,"text":""},{"category_id":15,"poly":[130,292,731,292,731,318,130,318],"score":1,"text":""},{"category_id":15,"poly":[131,323,731,323,731,353,131,353],"score":1,"text":""},{"category_id":15,"poly":[129,354,732,354,732,387,129,387],"score":1,"text":""},{"category_id":15,"poly":[131,391,729,391,729,416,131,416],"score":1,"text":""},{"category_id":15,"poly":[130,421,732,421,732,451,130,451],"score":1,"text":""},{"category_id":15,"poly":[131,454,734,454,734,485,131,485],"score":1,"text":""},{"category_id":15,"poly":[128,487,733,487,733,519,128,519],"score":1,"text":""},{"category_id":15,"poly":[128,521,732,521,732,553,128,553],"score":1,"text":""},{"category_id":15,"poly":[130,554,729,554,729,584,130,584],"score":1,"text":""},{"category_id":15,"poly":[130,590,731,590,731,618,130,618],"score":1,"text":""},{"category_id":15,"poly":[131,623,728,623,728,651,131,651],"score":1,"text":""},{"category_id":15,"poly":[130,654,731,654,731,685,130,685],"score":1,"text":""},{"category_id":15,"poly":[130,689,733,689,733,717,130,717],"score":1,"text":""},{"category_id":15,"poly":[130,718,732,718,732,753,130,753],"score":1,"text":""},{"category_id":15,"poly":[130,754,732,754,732,783,130,783],"score":1,"text":""},{"category_id":15,"poly":[128,786,730,786,730,819,128,819],"score":1,"text":""},{"category_id":15,"poly":[130,822,595,822,595,852,130,852],"score":1,"text":""},{"category_id":15,"poly":[163,1012,729,1012,729,1041,163,1041],"score":1,"text":""},{"category_id":15,"poly":[129,1045,732,1045,732,1075,129,1075],"score":1,"text":""},{"category_id":15,"poly":[130,1076,729,1076,729,1109,130,1109],"score":1,"text":""},{"category_id":15,"poly":[129,1110,731,1110,731,1142,129,1142],"score":1,"text":""},{"category_id":15,"poly":[128,1143,732,1143,732,1175,128,1175],"score":1,"text":""},{"category_id":15,"poly":[129,1177,730,1177,730,1209,129,1209],"score":1,"text":""},{"category_id":15,"poly":[129,1209,731,1209,731,1240,129,1240],"score":1,"text":""},{"category_id":15,"poly":[129,1244,729,1244,729,1273,129,1273],"score":1,"text":""},{"category_id":15,"poly":[130,1277,733,1277,733,1307,130,1307],"score":1,"text":""},{"category_id":15,"poly":[129,1311,733,1311,733,1341,129,1341],"score":1,"text":""},{"category_id":15,"poly":[128,1342,732,1342,732,1375,128,1375],"score":1,"text":""},{"category_id":15,"poly":[133,1376,730,1376,730,1408,133,1408],"score":1,"text":""},{"category_id":15,"poly":[130,1410,557,1410,557,1440,130,1440],"score":1,"text":""},{"category_id":15,"poly":[129,1600,731,1600,731,1628,129,1628],"score":1,"text":""},{"category_id":15,"poly":[162,1627,729,1627,729,1653,162,1653],"score":1,"text":""},{"category_id":15,"poly":[163,1655,227,1655,227,1680,163,1680],"score":1,"text":""},{"category_id":15,"poly":[127,1681,733,1681,733,1710,127,1710],"score":1,"text":""},{"category_id":15,"poly":[161,1710,730,1710,730,1737,161,1737],"score":1,"text":""},{"category_id":15,"poly":[163,1739,225,1739,225,1762,163,1762],"score":1,"text":""},{"category_id":15,"poly":[129,1766,733,1766,733,1793,129,1793],"score":1,"text":""},{"category_id":15,"poly":[162,1793,733,1793,733,1819,162,1819],"score":1,"text":""},{"category_id":15,"poly":[163,1821,363,1821,363,1846,163,1846],"score":1,"text":""},{"category_id":15,"poly":[127,194,170,194,170,221,127,221],"score":1,"text":""},{"category_id":15,"poly":[130,943,355,943,355,975,130,975],"score":1,"text":""},{"category_id":15,"poly":[788,249,1401,249,1401,290,788,290],"score":1,"text":""},{"category_id":15,"poly":[825,283,1401,283,1401,317,825,317],"score":1,"text":""},{"category_id":15,"poly":[825,311,1034,311,1034,345,825,345],"score":1,"text":""},{"category_id":15,"poly":[790,338,1398,338,1398,373,790,373],"score":1,"text":""},{"category_id":15,"poly":[826,372,1398,372,1398,400,826,400],"score":1,"text":""},{"category_id":15,"poly":[821,391,1401,391,1401,434,821,434],"score":1,"text":""},{"category_id":15,"poly":[825,426,892,426,892,457,825,457],"score":1,"text":""},{"category_id":15,"poly":[792,453,1399,453,1399,487,792,487],"score":1,"text":""},{"category_id":15,"poly":[819,478,1399,478,1399,519,819,519],"score":1,"text":""},{"category_id":15,"poly":[820,510,892,510,892,541,820,541],"score":1,"text":""},{"category_id":15,"poly":[790,538,1399,538,1399,572,790,572],"score":1,"text":""},{"category_id":15,"poly":[826,568,1399,568,1399,602,826,602],"score":1,"text":""},{"category_id":15,"poly":[825,596,1398,596,1398,630,825,630],"score":1,"text":""},{"category_id":15,"poly":[820,625,942,625,942,654,820,654],"score":1,"text":""},{"category_id":15,"poly":[792,651,1399,651,1399,685,792,685],"score":1,"text":""},{"category_id":15,"poly":[825,681,1398,681,1398,715,825,715],"score":1,"text":""},{"category_id":15,"poly":[823,708,1399,708,1399,747,823,747],"score":1,"text":""},{"category_id":15,"poly":[820,740,887,740,887,768,820,768],"score":1,"text":""},{"category_id":15,"poly":[788,766,1396,766,1396,798,788,798],"score":1,"text":""},{"category_id":15,"poly":[825,795,1398,795,1398,828,825,828],"score":1,"text":""},{"category_id":15,"poly":[826,825,1183,825,1183,853,826,853],"score":1,"text":""},{"category_id":15,"poly":[788,848,1401,848,1401,885,788,885],"score":1,"text":""},{"category_id":15,"poly":[825,880,1396,880,1396,913,825,913],"score":1,"text":""},{"category_id":15,"poly":[825,908,1226,908,1226,942,825,942],"score":1,"text":""},{"category_id":15,"poly":[790,936,1399,936,1399,970,790,970],"score":1,"text":""},{"category_id":15,"poly":[821,961,1401,961,1401,1002,821,1002],"score":1,"text":""},{"category_id":15,"poly":[825,995,1398,995,1398,1029,825,1029],"score":1,"text":""},{"category_id":15,"poly":[825,1023,1066,1023,1066,1057,825,1057],"score":1,"text":""},{"category_id":15,"poly":[1121,1023,1131,1023,1131,1057,1121,1057],"score":1,"text":""},{"category_id":15,"poly":[790,1048,1399,1048,1399,1085,790,1085],"score":1,"text":""},{"category_id":15,"poly":[823,1076,1401,1076,1401,1115,823,1115],"score":1,"text":""},{"category_id":15,"poly":[825,1108,1047,1108,1047,1142,825,1142],"score":1,"text":""},{"category_id":15,"poly":[790,1133,1403,1133,1403,1172,790,1172],"score":1,"text":""},{"category_id":15,"poly":[823,1163,1401,1163,1401,1202,823,1202],"score":1,"text":""},{"category_id":15,"poly":[825,1193,1193,1193,1193,1227,825,1227],"score":1,"text":""},{"category_id":15,"poly":[788,1220,1401,1220,1401,1259,788,1259],"score":1,"text":""},{"category_id":15,"poly":[821,1246,1401,1246,1401,1287,821,1287],"score":1,"text":""},{"category_id":15,"poly":[825,1276,1189,1276,1189,1315,825,1315],"score":1,"text":""},{"category_id":15,"poly":[788,1303,1401,1303,1401,1344,788,1344],"score":1,"text":""},{"category_id":15,"poly":[823,1333,1398,1333,1398,1370,823,1370],"score":1,"text":""},{"category_id":15,"poly":[823,1361,1050,1361,1050,1397,823,1397],"score":1,"text":""},{"category_id":15,"poly":[792,1392,1398,1392,1398,1425,792,1425],"score":1,"text":""},{"category_id":15,"poly":[823,1420,1398,1420,1398,1454,823,1454],"score":1,"text":""},{"category_id":15,"poly":[825,1450,1399,1450,1399,1484,825,1484],"score":1,"text":""},{"category_id":15,"poly":[823,1474,959,1474,959,1512,823,1512],"score":1,"text":""},{"category_id":15,"poly":[790,1501,1399,1501,1399,1542,790,1542],"score":1,"text":""},{"category_id":15,"poly":[823,1533,1399,1533,1399,1569,823,1569],"score":1,"text":""},{"category_id":15,"poly":[825,1563,1401,1563,1401,1597,825,1597],"score":1,"text":""},{"category_id":15,"poly":[823,1588,1238,1588,1238,1625,823,1625],"score":1,"text":""},{"category_id":15,"poly":[792,1620,1399,1620,1399,1654,792,1654],"score":1,"text":""},{"category_id":15,"poly":[825,1648,1399,1648,1399,1682,825,1682],"score":1,"text":""},{"category_id":15,"poly":[821,1673,1401,1673,1401,1714,821,1714],"score":1,"text":""},{"category_id":15,"poly":[826,1705,969,1705,969,1740,826,1740],"score":1,"text":""},{"category_id":15,"poly":[788,1730,1403,1730,1403,1771,788,1771],"score":1,"text":""},{"category_id":15,"poly":[825,1762,1055,1762,1055,1795,825,1795],"score":1,"text":""},{"category_id":15,"poly":[790,1786,1401,1786,1401,1827,790,1827],"score":1,"text":""},{"category_id":15,"poly":[825,1820,1399,1820,1399,1854,825,1854],"score":1,"text":""},{"category_id":15,"poly":[128,1530,260,1530,260,1565,128,1565],"score":1,"text":""},{"category_id":15,"poly":[480,194,1044,194,1044,223,480,223],"score":1,"text":""}],"page_info":{"page_no":11,"height":2064,"width":1512}},{"layout_dets":[{"category_id":1,"poly":[775.5780639648438,251.40318298339844,1385.39208984375,251.40318298339844,1385.39208984375,615.1853637695312,775.5780639648438,615.1853637695312],"score":0.9999980926513672},{"category_id":1,"poly":[116.57582092285156,255.51083374023438,720.6947631835938,255.51083374023438,720.6947631835938,616.0787963867188,116.57582092285156,616.0787963867188],"score":0.9999979734420776},{"category_id":2,"poly":[1346.153564453125,194.1610107421875,1382.1689453125,194.1610107421875,1382.1689453125,217.0152130126953,1346.153564453125,217.0152130126953],"score":0.9999814033508301},{"category_id":2,"poly":[465.8273010253906,194.28273010253906,1032.5506591796875,194.28273010253906,1032.5506591796875,220.25059509277344,465.8273010253906,220.25059509277344],"score":0.9999078512191772},{"category_id":15,"poly":[782,254,1383,254,1383,284,782,284],"score":1,"text":""},{"category_id":15,"poly":[813,282,1384,282,1384,312,813,312],"score":1,"text":""},{"category_id":15,"poly":[814,309,1126,309,1126,339,814,339],"score":1,"text":""},{"category_id":15,"poly":[780,337,1386,337,1386,369,780,369],"score":1,"text":""},{"category_id":15,"poly":[813,366,1382,366,1382,397,813,397],"score":1,"text":""},{"category_id":15,"poly":[813,394,1101,394,1101,423,813,423],"score":1,"text":""},{"category_id":15,"poly":[782,423,1384,423,1384,449,782,449],"score":1,"text":""},{"category_id":15,"poly":[815,452,1381,452,1381,478,815,478],"score":1,"text":""},{"category_id":15,"poly":[811,475,1384,475,1384,506,811,506],"score":1,"text":""},{"category_id":15,"poly":[814,505,991,505,991,532,814,532],"score":1,"text":""},{"category_id":15,"poly":[781,531,1384,531,1384,561,781,561],"score":1,"text":""},{"category_id":15,"poly":[813,560,1385,560,1385,589,813,589],"score":1,"text":""},{"category_id":15,"poly":[813,588,1220,588,1220,613,813,613],"score":1,"text":""},{"category_id":15,"poly":[147,255,719,255,719,282,147,282],"score":1,"text":""},{"category_id":15,"poly":[148,281,715,281,715,311,148,311],"score":1,"text":""},{"category_id":15,"poly":[151,312,233,312,233,336,151,336],"score":1,"text":""},{"category_id":15,"poly":[115,337,720,337,720,367,115,367],"score":1,"text":""},{"category_id":15,"poly":[147,366,718,366,718,394,147,394],"score":1,"text":""},{"category_id":15,"poly":[148,394,211,394,211,419,148,419],"score":1,"text":""},{"category_id":15,"poly":[115,420,719,420,719,451,115,451],"score":1,"text":""},{"category_id":15,"poly":[149,450,720,450,720,479,149,479],"score":1,"text":""},{"category_id":15,"poly":[146,474,720,474,720,507,146,507],"score":1,"text":""},{"category_id":15,"poly":[147,504,720,504,720,533,147,533],"score":1,"text":""},{"category_id":15,"poly":[150,532,719,532,719,561,150,561],"score":1,"text":""},{"category_id":15,"poly":[148,558,719,558,719,588,148,588],"score":1,"text":""},{"category_id":15,"poly":[147,586,302,586,302,618,147,618],"score":1,"text":""},{"category_id":15,"poly":[1344,195,1384,195,1384,220,1344,220],"score":1,"text":""},{"category_id":15,"poly":[468,195,1029,195,1029,223,468,223],"score":1,"text":""}],"page_info":{"page_no":12,"height":2064,"width":1512}}] \ No newline at end of file diff --git a/demo/demo2.json b/demo/demo2.json index d632d70f..3550c18c 100644 --- a/demo/demo2.json +++ b/demo/demo2.json @@ -1 +1 @@ -[{"layout_dets": [{"category_id": 0, "poly": [282.1632080078125, 156.2249755859375, 1416.6795654296875, 156.2249755859375, 1416.6795654296875, 313.81280517578125, 282.1632080078125, 313.81280517578125], "score": 0.999998927116394}, {"category_id": 1, "poly": [861.656982421875, 522.7763061523438, 1569.3853759765625, 522.7763061523438, 1569.3853759765625, 656.883544921875, 861.656982421875, 656.883544921875], "score": 0.9999970197677612}, {"category_id": 1, "poly": [131.8020782470703, 924.7362670898438, 838.9530639648438, 924.7362670898438, 838.9530639648438, 1323.7529296875, 131.8020782470703, 1323.7529296875], "score": 0.9999949932098389}, {"category_id": 1, "poly": [133.32005310058594, 1324.5035400390625, 839.2289428710938, 1324.5035400390625, 839.2289428710938, 1589.4503173828125, 133.32005310058594, 1589.4503173828125], "score": 0.999994158744812}, {"category_id": 1, "poly": [863.3811645507812, 1486.610107421875, 1569.2880859375, 1486.610107421875, 1569.2880859375, 1852.443603515625, 863.3811645507812, 1852.443603515625], "score": 0.9999936819076538}, {"category_id": 1, "poly": [862.9096069335938, 1187.8067626953125, 1568.2279052734375, 1187.8067626953125, 1568.2279052734375, 1486.08935546875, 862.9096069335938, 1486.08935546875], "score": 0.9999932050704956}, {"category_id": 1, "poly": [131.8186492919922, 1652.7752685546875, 837.5543823242188, 1652.7752685546875, 837.5543823242188, 2019.429443359375, 131.8186492919922, 2019.429443359375], "score": 0.9999901056289673}, {"category_id": 0, "poly": [375.1526794433594, 881.8807983398438, 594.3075561523438, 881.8807983398438, 594.3075561523438, 913.4786987304688, 375.1526794433594, 913.4786987304688], "score": 0.9999892115592957}, {"category_id": 2, "poly": [636.1867065429688, 2099.795654296875, 1063.7423095703125, 2099.795654296875, 1063.7423095703125, 2124.524169921875, 636.1867065429688, 2124.524169921875], "score": 0.9999860525131226}, {"category_id": 0, "poly": [375.91864013671875, 1610.209228515625, 592.8395385742188, 1610.209228515625, 592.8395385742188, 1641.5789794921875, 375.91864013671875, 1641.5789794921875], "score": 0.9999815821647644}, {"category_id": 4, "poly": [860.6583251953125, 995.6574096679688, 1569.622314453125, 995.6574096679688, 1569.622314453125, 1126.8409423828125, 860.6583251953125, 1126.8409423828125], "score": 0.9999815821647644}, {"category_id": 1, "poly": [443.1008605957031, 353.8008728027344, 1250.531494140625, 353.8008728027344, 1250.531494140625, 464.65576171875, 443.1008605957031, 464.65576171875], "score": 0.9999791979789734}, {"category_id": 1, "poly": [130.8282928466797, 523.2079467773438, 836.5639038085938, 523.2079467773438, 836.5639038085938, 862.0206909179688, 130.8282928466797, 862.0206909179688], "score": 0.9999784231185913}, {"category_id": 1, "poly": [862.6514282226562, 1851.426513671875, 1568.510498046875, 1851.426513671875, 1568.510498046875, 2017.93359375, 862.6514282226562, 2017.93359375], "score": 0.9999769926071167}, {"category_id": 3, "poly": [882.3795166015625, 685.376708984375, 1544.4088134765625, 685.376708984375, 1544.4088134765625, 969.22265625, 882.3795166015625, 969.22265625], "score": 0.9994785785675049}, {"category_id": 13, "poly": [1195, 1062, 1226, 1062, 1226, 1096, 1195, 1096], "score": 0.88, "latex": "d_{p}"}, {"category_id": 13, "poly": [1304, 1030, 1327, 1030, 1327, 1061, 1304, 1061], "score": 0.65, "latex": "\\bar{\\bf p}"}, {"category_id": 15, "poly": [344.0, 165.0, 1354.0, 172.0, 1353.0, 236.0, 344.0, 229.0], "score": 0.99, "text": "Real-time Temporal Stereo Matching"}, {"category_id": 15, "poly": [293.0, 254.0, 1402.0, 254.0, 1402.0, 309.0, 293.0, 309.0], "score": 0.99, "text": "using Iterative Adaptive Support Weights"}, {"category_id": 15, "poly": [864.0, 527.0, 1568.0, 527.0, 1568.0, 559.0, 864.0, 559.0], "score": 0.99, "text": "disparity map. Note that individual disparities can be converted"}, {"category_id": 15, "poly": [864.0, 561.0, 1568.0, 561.0, 1568.0, 594.0, 864.0, 594.0], "score": 0.98, "text": "to actual depths if the geometry of the camera setup is"}, {"category_id": 15, "poly": [859.0, 587.0, 1568.0, 591.0, 1568.0, 630.0, 859.0, 626.0], "score": 0.98, "text": " known, i.e., the stereo configuration of cameras has been pre-"}, {"category_id": 15, "poly": [862.0, 626.0, 984.0, 626.0, 984.0, 658.0, 862.0, 658.0], "score": 1.0, "text": "calibrated."}, {"category_id": 15, "poly": [155.0, 921.0, 839.0, 924.0, 838.0, 963.0, 155.0, 960.0], "score": 0.98, "text": " Modern stereo matching algorithms achieve excellent results"}, {"category_id": 15, "poly": [127.0, 956.0, 838.0, 958.0, 838.0, 997.0, 127.0, 995.0], "score": 0.98, "text": " on static stereo images, as demonstrated by the Middlebury"}, {"category_id": 15, "poly": [132.0, 995.0, 836.0, 995.0, 836.0, 1027.0, 132.0, 1027.0], "score": 0.98, "text": "stereo performance benchmark [1], [2]. However, their ap-"}, {"category_id": 15, "poly": [134.0, 1027.0, 834.0, 1027.0, 834.0, 1059.0, 134.0, 1059.0], "score": 1.0, "text": "plication to stereo video sequences does not guarantee inter-"}, {"category_id": 15, "poly": [134.0, 1061.0, 836.0, 1061.0, 836.0, 1093.0, 134.0, 1093.0], "score": 0.99, "text": "frame consistency of matches extracted from subsequent stereo"}, {"category_id": 15, "poly": [132.0, 1095.0, 838.0, 1095.0, 838.0, 1125.0, 132.0, 1125.0], "score": 0.99, "text": "frame pairs. The lack of temporal consistency of matches"}, {"category_id": 15, "poly": [134.0, 1128.0, 836.0, 1128.0, 836.0, 1157.0, 134.0, 1157.0], "score": 1.0, "text": "between successive frames introduces spurious artifacts in the"}, {"category_id": 15, "poly": [132.0, 1160.0, 836.0, 1160.0, 836.0, 1192.0, 132.0, 1192.0], "score": 0.99, "text": "resulting disparity maps. The problem of obtaining temporally"}, {"category_id": 15, "poly": [132.0, 1194.0, 838.0, 1194.0, 838.0, 1226.0, 132.0, 1226.0], "score": 0.98, "text": "consistent sequences of disparity maps from video streams is"}, {"category_id": 15, "poly": [134.0, 1228.0, 838.0, 1228.0, 838.0, 1260.0, 134.0, 1260.0], "score": 0.98, "text": "known as the temporal stereo correspondence problem, yet"}, {"category_id": 15, "poly": [129.0, 1258.0, 841.0, 1260.0, 841.0, 1293.0, 129.0, 1290.0], "score": 0.98, "text": "the amount of research efforts oriented towards finding an"}, {"category_id": 15, "poly": [134.0, 1292.0, 760.0, 1292.0, 760.0, 1325.0, 134.0, 1325.0], "score": 0.99, "text": "effective solution to this problem is surprisingly small."}, {"category_id": 15, "poly": [157.0, 1320.0, 836.0, 1322.0, 836.0, 1361.0, 157.0, 1359.0], "score": 0.98, "text": " A method is proposed for real-time temporal stereo match-"}, {"category_id": 15, "poly": [134.0, 1361.0, 836.0, 1361.0, 836.0, 1393.0, 134.0, 1393.0], "score": 1.0, "text": "ing that efficiently propagates matching cost information be-"}, {"category_id": 15, "poly": [134.0, 1393.0, 836.0, 1393.0, 836.0, 1425.0, 134.0, 1425.0], "score": 0.99, "text": "tween consecutive frames of a stereo video sequence. This"}, {"category_id": 15, "poly": [132.0, 1423.0, 834.0, 1425.0, 834.0, 1458.0, 132.0, 1455.0], "score": 0.98, "text": "method is invariant to the number of prior frames being"}, {"category_id": 15, "poly": [134.0, 1458.0, 836.0, 1458.0, 836.0, 1490.0, 134.0, 1490.0], "score": 0.99, "text": "considered, and can be easily incorporated into any local stereo"}, {"category_id": 15, "poly": [132.0, 1492.0, 836.0, 1492.0, 836.0, 1524.0, 132.0, 1524.0], "score": 0.98, "text": "method based on edge-aware filters. The iterative adaptive"}, {"category_id": 15, "poly": [132.0, 1526.0, 838.0, 1526.0, 838.0, 1558.0, 132.0, 1558.0], "score": 0.99, "text": "support matching algorithm presented in [3] serves as a"}, {"category_id": 15, "poly": [132.0, 1558.0, 557.0, 1558.0, 557.0, 1590.0, 132.0, 1590.0], "score": 0.99, "text": "foundation for the proposed method."}, {"category_id": 15, "poly": [887.0, 1483.0, 1571.0, 1485.0, 1571.0, 1524.0, 887.0, 1522.0], "score": 0.98, "text": " In contrast, local methods, which are typically built upon"}, {"category_id": 15, "poly": [859.0, 1517.0, 1573.0, 1519.0, 1573.0, 1558.0, 859.0, 1556.0], "score": 0.97, "text": " the Winner-Takes-All (WTA) framework, have the property of "}, {"category_id": 15, "poly": [864.0, 1556.0, 1566.0, 1556.0, 1566.0, 1588.0, 864.0, 1588.0], "score": 0.99, "text": "computational regularity and are thus suitable for implemen-"}, {"category_id": 15, "poly": [862.0, 1588.0, 1566.0, 1588.0, 1566.0, 1620.0, 862.0, 1620.0], "score": 1.0, "text": "tation on parallel graphics hardware. Within the WTA frame-"}, {"category_id": 15, "poly": [862.0, 1616.0, 1568.0, 1618.0, 1568.0, 1657.0, 862.0, 1655.0], "score": 0.98, "text": "work, local stereo algorithms consider a range of disparity"}, {"category_id": 15, "poly": [864.0, 1655.0, 1566.0, 1655.0, 1566.0, 1687.0, 864.0, 1687.0], "score": 0.98, "text": "hypotheses and compute a volume of pixel-wise dissimilarity"}, {"category_id": 15, "poly": [862.0, 1689.0, 1571.0, 1689.0, 1571.0, 1721.0, 862.0, 1721.0], "score": 0.99, "text": "metrics between the reference image and the matched image at"}, {"category_id": 15, "poly": [862.0, 1723.0, 1568.0, 1721.0, 1568.0, 1753.0, 862.0, 1755.0], "score": 0.99, "text": "every considered disparity value. Final disparities are chosen"}, {"category_id": 15, "poly": [864.0, 1755.0, 1568.0, 1755.0, 1568.0, 1785.0, 864.0, 1785.0], "score": 1.0, "text": "from the cost volume by traversing through its values and"}, {"category_id": 15, "poly": [866.0, 1788.0, 1568.0, 1788.0, 1568.0, 1820.0, 866.0, 1820.0], "score": 0.99, "text": "selecting the disparities associated with minimum matching"}, {"category_id": 15, "poly": [859.0, 1817.0, 1377.0, 1820.0, 1377.0, 1859.0, 859.0, 1856.0], "score": 0.98, "text": " costs for every pixel of the reference image."}, {"category_id": 15, "poly": [885.0, 1187.0, 1571.0, 1187.0, 1571.0, 1226.0, 885.0, 1226.0], "score": 0.97, "text": " In their excellent taxonomy paper [1], Scharstein and"}, {"category_id": 15, "poly": [864.0, 1224.0, 1566.0, 1224.0, 1566.0, 1254.0, 864.0, 1254.0], "score": 0.99, "text": "Szeliski classify stereo algorithms as local or global meth-"}, {"category_id": 15, "poly": [859.0, 1249.0, 1571.0, 1254.0, 1570.0, 1293.0, 859.0, 1288.0], "score": 0.99, "text": " ods. Global methods, which offer outstanding accuracy, are"}, {"category_id": 15, "poly": [862.0, 1288.0, 1571.0, 1288.0, 1571.0, 1327.0, 862.0, 1327.0], "score": 0.98, "text": "typically derived from an energy minimization framework"}, {"category_id": 15, "poly": [859.0, 1322.0, 1566.0, 1322.0, 1566.0, 1352.0, 859.0, 1352.0], "score": 0.99, "text": "that allows for explicit integration of disparity smoothness"}, {"category_id": 15, "poly": [864.0, 1357.0, 1568.0, 1357.0, 1568.0, 1389.0, 864.0, 1389.0], "score": 0.99, "text": "constraints and thus is capable of regularizing the solution"}, {"category_id": 15, "poly": [864.0, 1391.0, 1568.0, 1391.0, 1568.0, 1421.0, 864.0, 1421.0], "score": 1.0, "text": "in weakly textured areas. The minimization, however, is often"}, {"category_id": 15, "poly": [864.0, 1423.0, 1568.0, 1423.0, 1568.0, 1455.0, 864.0, 1455.0], "score": 0.99, "text": "achieved using iterative methods or graph cuts, which do not"}, {"category_id": 15, "poly": [864.0, 1458.0, 1418.0, 1458.0, 1418.0, 1487.0, 864.0, 1487.0], "score": 0.99, "text": "lend themselves well to parallel implementation."}, {"category_id": 15, "poly": [155.0, 1650.0, 839.0, 1652.0, 838.0, 1691.0, 155.0, 1689.0], "score": 0.97, "text": " Stereo matching is the process of identifying correspon-"}, {"category_id": 15, "poly": [134.0, 1687.0, 838.0, 1687.0, 838.0, 1719.0, 134.0, 1719.0], "score": 0.99, "text": "dences between pixels in stereo images obtained using a"}, {"category_id": 15, "poly": [132.0, 1723.0, 838.0, 1721.0, 838.0, 1753.0, 132.0, 1755.0], "score": 0.98, "text": "pair of synchronized cameras. These correspondences are"}, {"category_id": 15, "poly": [134.0, 1755.0, 836.0, 1755.0, 836.0, 1788.0, 134.0, 1788.0], "score": 0.99, "text": "conveniently represented using the notion of disparity, i.e. the"}, {"category_id": 15, "poly": [134.0, 1788.0, 836.0, 1788.0, 836.0, 1820.0, 134.0, 1820.0], "score": 1.0, "text": "positional offset between two matching pixels. It is assumed"}, {"category_id": 15, "poly": [134.0, 1822.0, 836.0, 1822.0, 836.0, 1854.0, 134.0, 1854.0], "score": 0.99, "text": "that the stereo images are rectified, such that matching pixels"}, {"category_id": 15, "poly": [132.0, 1854.0, 836.0, 1854.0, 836.0, 1886.0, 132.0, 1886.0], "score": 0.99, "text": "are confined within corresponding rows of the images and"}, {"category_id": 15, "poly": [134.0, 1888.0, 838.0, 1888.0, 838.0, 1918.0, 134.0, 1918.0], "score": 1.0, "text": "thus disparities are restricted to the horizontal dimension, as"}, {"category_id": 15, "poly": [134.0, 1920.0, 838.0, 1920.0, 838.0, 1952.0, 134.0, 1952.0], "score": 1.0, "text": "illustrated in Figure 1. For visualization purposes, disparities"}, {"category_id": 15, "poly": [134.0, 1955.0, 838.0, 1955.0, 838.0, 1987.0, 134.0, 1987.0], "score": 0.99, "text": "recovered for every pixel of a reference image are stored"}, {"category_id": 15, "poly": [129.0, 1985.0, 841.0, 1982.0, 841.0, 2021.0, 129.0, 2024.0], "score": 0.98, "text": "together in the form of an image, which is known as the"}, {"category_id": 15, "poly": [370.0, 885.0, 594.0, 885.0, 594.0, 917.0, 370.0, 917.0], "score": 1.0, "text": "1. INTRODUCTION"}, {"category_id": 15, "poly": [638.0, 2099.0, 1062.0, 2099.0, 1062.0, 2131.0, 638.0, 2131.0], "score": 0.98, "text": "978-1-4673-5208-6/13/$31.00 @2013 IEEE"}, {"category_id": 15, "poly": [374.0, 1613.0, 591.0, 1613.0, 591.0, 1645.0, 374.0, 1645.0], "score": 0.95, "text": "II. BACKGROUND"}, {"category_id": 15, "poly": [859.0, 992.0, 1571.0, 995.0, 1571.0, 1034.0, 859.0, 1031.0], "score": 0.99, "text": " Figure 1: Geometry of two horizontally aligned views where p"}, {"category_id": 15, "poly": [864.0, 1098.0, 1291.0, 1098.0, 1291.0, 1130.0, 864.0, 1130.0], "score": 0.99, "text": "them along the horizontal dimension."}, {"category_id": 15, "poly": [859.0, 1061.0, 1194.0, 1059.0, 1194.0, 1098.0, 859.0, 1100.0], "score": 0.98, "text": " pixel in the target frame, and"}, {"category_id": 15, "poly": [1227.0, 1061.0, 1571.0, 1059.0, 1571.0, 1098.0, 1227.0, 1100.0], "score": 0.97, "text": " denotes the disparity between"}, {"category_id": 15, "poly": [864.0, 1034.0, 1303.0, 1034.0, 1303.0, 1063.0, 864.0, 1063.0], "score": 0.99, "text": "denotes a pixel in the reference frame,"}, {"category_id": 15, "poly": [1328.0, 1034.0, 1566.0, 1034.0, 1566.0, 1063.0, 1328.0, 1063.0], "score": 0.96, "text": " denotes its matching"}, {"category_id": 15, "poly": [508.0, 357.0, 1194.0, 360.0, 1194.0, 392.0, 508.0, 390.0], "score": 0.98, "text": "Jedrzej Kowalczuk, Eric T. Psota, and Lance C. P\u00e9rez"}, {"category_id": 15, "poly": [443.0, 392.0, 1245.0, 392.0, 1245.0, 424.0, 443.0, 424.0], "score": 0.99, "text": "Department of Electrical Engineering, University of Nebraska-Lincoln"}, {"category_id": 15, "poly": [614.0, 435.0, 1081.0, 435.0, 1081.0, 465.0, 614.0, 465.0], "score": 0.99, "text": "[jkowalczuk2,epsota,lperez] @unl.edu"}, {"category_id": 15, "poly": [159.0, 527.0, 836.0, 527.0, 836.0, 559.0, 159.0, 559.0], "score": 0.98, "text": "Abstract-Stereo matching algorithms are nearly always de-"}, {"category_id": 15, "poly": [132.0, 555.0, 838.0, 555.0, 838.0, 587.0, 132.0, 587.0], "score": 0.98, "text": "signed to find matches between a single pair of images. A method"}, {"category_id": 15, "poly": [134.0, 580.0, 836.0, 580.0, 836.0, 612.0, 134.0, 612.0], "score": 1.0, "text": "is presented that was specifically designed to operate on sequences"}, {"category_id": 15, "poly": [132.0, 605.0, 838.0, 607.0, 838.0, 646.0, 132.0, 644.0], "score": 0.99, "text": "of images. This method considers the cost of matching image"}, {"category_id": 15, "poly": [132.0, 637.0, 838.0, 637.0, 838.0, 669.0, 132.0, 669.0], "score": 0.98, "text": "points in both the spatial and temporal domain. To maintain"}, {"category_id": 15, "poly": [134.0, 667.0, 838.0, 667.0, 838.0, 699.0, 134.0, 699.0], "score": 0.97, "text": "real-time operation, a temporal cost aggregation method is used"}, {"category_id": 15, "poly": [132.0, 692.0, 836.0, 692.0, 836.0, 722.0, 132.0, 722.0], "score": 0.98, "text": "to evaluate the likelihood of matches that is invariant with respect"}, {"category_id": 15, "poly": [127.0, 717.0, 841.0, 715.0, 841.0, 754.0, 127.0, 756.0], "score": 0.97, "text": "to the number of prior images being considered. This method"}, {"category_id": 15, "poly": [127.0, 742.0, 841.0, 745.0, 841.0, 784.0, 127.0, 781.0], "score": 0.98, "text": "has been implemented on massively parallel GPU hardware,"}, {"category_id": 15, "poly": [132.0, 777.0, 838.0, 777.0, 838.0, 809.0, 132.0, 809.0], "score": 0.99, "text": "and the implementation ranks as one of the fastest and most"}, {"category_id": 15, "poly": [132.0, 802.0, 838.0, 804.0, 838.0, 836.0, 132.0, 834.0], "score": 0.99, "text": "accurate real-time stereo matching methods as measured by the"}, {"category_id": 15, "poly": [134.0, 830.0, 619.0, 830.0, 619.0, 862.0, 134.0, 862.0], "score": 0.99, "text": "Middlebury stereo performance benchmark."}, {"category_id": 15, "poly": [887.0, 1849.0, 1568.0, 1852.0, 1568.0, 1891.0, 887.0, 1888.0], "score": 0.99, "text": " Disparity maps obtained using this simple strategy are often"}, {"category_id": 15, "poly": [862.0, 1888.0, 1568.0, 1888.0, 1568.0, 1920.0, 862.0, 1920.0], "score": 0.98, "text": "too noisy to be considered useable. To reduce the effects"}, {"category_id": 15, "poly": [864.0, 1923.0, 1568.0, 1923.0, 1568.0, 1952.0, 864.0, 1952.0], "score": 0.99, "text": "of noise and enforce spatial consistency of matches, local"}, {"category_id": 15, "poly": [862.0, 1948.0, 1568.0, 1950.0, 1568.0, 1989.0, 861.0, 1987.0], "score": 0.99, "text": "stereo algorithms consider arbitrarily shaped and sized support"}, {"category_id": 15, "poly": [864.0, 1989.0, 1568.0, 1989.0, 1568.0, 2021.0, 864.0, 2021.0], "score": 0.99, "text": "windows centered at each pixel of the reference image, and"}], "page_info": {"page_no": 0, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 8, "poly": [962.3624267578125, 1513.2073974609375, 1465.4017333984375, 1513.2073974609375, 1465.4017333984375, 1669.1397705078125, 962.3624267578125, 1669.1397705078125], "score": 0.9999995231628418}, {"category_id": 9, "poly": [1530.72998046875, 1101.879638671875, 1565.2568359375, 1101.879638671875, 1565.2568359375, 1130.8609619140625, 1530.72998046875, 1130.8609619140625], "score": 0.9999992251396179}, {"category_id": 9, "poly": [1529.8787841796875, 1575.843505859375, 1565.931396484375, 1575.843505859375, 1565.931396484375, 1607.2161865234375, 1529.8787841796875, 1607.2161865234375], "score": 0.9999987483024597}, {"category_id": 1, "poly": [865.1971435546875, 1684.040283203125, 1566.561279296875, 1684.040283203125, 1566.561279296875, 1813.7021484375, 865.1971435546875, 1813.7021484375], "score": 0.9999987483024597}, {"category_id": 9, "poly": [1530.5263671875, 1839.3990478515625, 1565.1201171875, 1839.3990478515625, 1565.1201171875, 1869.825439453125, 1530.5263671875, 1869.825439453125], "score": 0.9999977946281433}, {"category_id": 8, "poly": [972.3255004882812, 1075.85498046875, 1461.2088623046875, 1075.85498046875, 1461.2088623046875, 1155.465087890625, 972.3255004882812, 1155.465087890625], "score": 0.999996542930603}, {"category_id": 1, "poly": [865.4874267578125, 158.47100830078125, 1565.84375, 158.47100830078125, 1565.84375, 355.3230285644531, 865.4874267578125, 355.3230285644531], "score": 0.9999960660934448}, {"category_id": 1, "poly": [133.51382446289062, 158.21670532226562, 835.5382080078125, 158.21670532226562, 835.5382080078125, 558.8020629882812, 133.51382446289062, 558.8020629882812], "score": 0.9999951124191284}, {"category_id": 1, "poly": [134.01239013671875, 954.4151000976562, 836.1470336914062, 954.4151000976562, 836.1470336914062, 1618.77197265625, 134.01239013671875, 1618.77197265625], "score": 0.9999947547912598}, {"category_id": 1, "poly": [134.4542999267578, 558.8201904296875, 834.2548828125, 558.8201904296875, 834.2548828125, 954.7811279296875, 134.4542999267578, 954.7811279296875], "score": 0.9999943971633911}, {"category_id": 1, "poly": [866.33642578125, 421.84442138671875, 1566.451904296875, 421.84442138671875, 1566.451904296875, 787.1864624023438, 866.33642578125, 787.1864624023438], "score": 0.9999930262565613}, {"category_id": 1, "poly": [864.974853515625, 1167.92236328125, 1567.0927734375, 1167.92236328125, 1567.0927734375, 1298.29541015625, 864.974853515625, 1298.29541015625], "score": 0.9999929666519165}, {"category_id": 1, "poly": [864.5220947265625, 853.943359375, 1565.82080078125, 853.943359375, 1565.82080078125, 1080.8125, 864.5220947265625, 1080.8125], "score": 0.9999923706054688}, {"category_id": 1, "poly": [865.4466552734375, 1919.30615234375, 1566.4720458984375, 1919.30615234375, 1566.4720458984375, 2017.154541015625, 865.4466552734375, 2017.154541015625], "score": 0.9999904036521912}, {"category_id": 1, "poly": [864.801513671875, 1302.438232421875, 1566.760986328125, 1302.438232421875, 1566.760986328125, 1498.9681396484375, 864.801513671875, 1498.9681396484375], "score": 0.9999889135360718}, {"category_id": 1, "poly": [133.34628295898438, 1620.0596923828125, 836.7553100585938, 1620.0596923828125, 836.7553100585938, 2018.44873046875, 133.34628295898438, 2018.44873046875], "score": 0.9999861717224121}, {"category_id": 0, "poly": [865.5296020507812, 809.8997802734375, 1302.7711181640625, 809.8997802734375, 1302.7711181640625, 841.3140869140625, 865.5296020507812, 841.3140869140625], "score": 0.9999798536300659}, {"category_id": 0, "poly": [1131.11181640625, 378.66229248046875, 1299.6181640625, 378.66229248046875, 1299.6181640625, 409.04852294921875, 1131.11181640625, 409.04852294921875], "score": 0.9999651908874512}, {"category_id": 8, "poly": [1003.5569458007812, 1824.2362060546875, 1420.7132568359375, 1824.2362060546875, 1420.7132568359375, 1905.175048828125, 1003.5569458007812, 1905.175048828125], "score": 0.999914288520813}, {"category_id": 14, "poly": [974, 1076, 1454, 1076, 1454, 1155, 974, 1155], "score": 0.94, "latex": "w(p,q)=\\exp{\\left(-\\frac{\\Delta_{g}(p,q)}{\\gamma_{g}}-\\frac{\\Delta_{c}(p,q)}{\\gamma_{c}}\\right)},"}, {"category_id": 14, "poly": [1006, 1825, 1423, 1825, 1423, 1907, 1006, 1907], "score": 0.94, "latex": "\\delta(q,\\bar{q})=\\sum_{c=\\{r,g,b\\}}\\operatorname*{min}(|q_{c}-\\bar{q}_{c}|,\\tau)."}, {"category_id": 14, "poly": [963, 1510, 1464, 1510, 1464, 1671, 963, 1671], "score": 0.93, "latex": "C(p,\\bar{p})=\\frac{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})\\delta(q,\\bar{q})}{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})}\\,,"}, {"category_id": 13, "poly": [1335, 1166, 1432, 1166, 1432, 1200, 1335, 1200], "score": 0.93, "latex": "\\Delta_{c}(p,q)"}, {"category_id": 13, "poly": [939, 1166, 1039, 1166, 1039, 1201, 939, 1201], "score": 0.93, "latex": "\\Delta_{g}(p,q)"}, {"category_id": 13, "poly": [1289, 1683, 1365, 1683, 1365, 1717, 1289, 1717], "score": 0.93, "latex": "\\delta(q,\\bar{q})"}, {"category_id": 13, "poly": [1362, 1367, 1441, 1367, 1441, 1401, 1362, 1401], "score": 0.92, "latex": "\\bar{p}\\in S_{p}"}, {"category_id": 13, "poly": [864, 1019, 951, 1019, 951, 1053, 864, 1053], "score": 0.92, "latex": "q\\in\\Omega_{p}"}, {"category_id": 13, "poly": [1351, 953, 1388, 953, 1388, 987, 1351, 987], "score": 0.9, "latex": "\\Omega_{p}"}, {"category_id": 13, "poly": [913, 1467, 949, 1467, 949, 1501, 913, 1501], "score": 0.89, "latex": "\\Omega_{\\bar{p}}"}, {"category_id": 13, "poly": [1531, 1367, 1565, 1367, 1565, 1401, 1531, 1401], "score": 0.89, "latex": "S_{p}"}, {"category_id": 13, "poly": [1528, 1434, 1565, 1434, 1565, 1468, 1528, 1468], "score": 0.89, "latex": "\\Omega_{p}"}, {"category_id": 13, "poly": [1485, 1205, 1516, 1205, 1516, 1234, 1485, 1234], "score": 0.88, "latex": "\\gamma_{g}"}, {"category_id": 13, "poly": [1159, 1206, 1178, 1206, 1178, 1233, 1159, 1233], "score": 0.82, "latex": "p"}, {"category_id": 13, "poly": [863, 1238, 893, 1238, 893, 1266, 863, 1266], "score": 0.82, "latex": "\\gamma_{c}"}, {"category_id": 13, "poly": [1177, 1436, 1196, 1436, 1196, 1465, 1177, 1465], "score": 0.8, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [1371, 1024, 1391, 1024, 1391, 1051, 1371, 1051], "score": 0.8, "latex": "p"}, {"category_id": 13, "poly": [1540, 1406, 1558, 1406, 1558, 1432, 1540, 1432], "score": 0.8, "latex": "p"}, {"category_id": 13, "poly": [1447, 1024, 1465, 1024, 1465, 1051, 1447, 1051], "score": 0.79, "latex": "q"}, {"category_id": 13, "poly": [1101, 1437, 1121, 1437, 1121, 1465, 1101, 1465], "score": 0.79, "latex": "p"}, {"category_id": 13, "poly": [1389, 1307, 1407, 1307, 1407, 1332, 1389, 1332], "score": 0.79, "latex": "p"}, {"category_id": 13, "poly": [1230, 1206, 1247, 1206, 1247, 1233, 1230, 1233], "score": 0.78, "latex": "q"}, {"category_id": 13, "poly": [1029, 1372, 1048, 1372, 1048, 1399, 1029, 1399], "score": 0.78, "latex": "p"}, {"category_id": 13, "poly": [916, 1752, 934, 1752, 934, 1782, 916, 1782], "score": 0.76, "latex": "\\bar{q}"}, {"category_id": 13, "poly": [1407, 1925, 1425, 1925, 1425, 1946, 1407, 1946], "score": 0.75, "latex": "\\tau"}, {"category_id": 13, "poly": [1548, 1722, 1565, 1722, 1565, 1749, 1548, 1749], "score": 0.75, "latex": "q"}, {"category_id": 13, "poly": [1050, 992, 1068, 992, 1068, 1018, 1050, 1018], "score": 0.75, "latex": "p"}, {"category_id": 15, "poly": [864.0, 1783.0, 1298.0, 1783.0, 1298.0, 1822.0, 864.0, 1822.0], "score": 0.99, "text": "green, and blue components given by"}, {"category_id": 15, "poly": [866.0, 1687.0, 1288.0, 1687.0, 1288.0, 1719.0, 866.0, 1719.0], "score": 0.96, "text": "where the pixel dissimilarity metric"}, {"category_id": 15, "poly": [1366.0, 1687.0, 1564.0, 1687.0, 1564.0, 1719.0, 1366.0, 1719.0], "score": 0.97, "text": "ischosen as the"}, {"category_id": 15, "poly": [866.0, 1751.0, 915.0, 1751.0, 915.0, 1783.0, 866.0, 1783.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [935.0, 1751.0, 1564.0, 1751.0, 1564.0, 1783.0, 935.0, 1783.0], "score": 0.98, "text": ". Here, the truncation of color difference for the red,"}, {"category_id": 15, "poly": [866.0, 1719.0, 1547.0, 1719.0, 1547.0, 1749.0, 866.0, 1749.0], "score": 0.99, "text": "sum of truncated absolute color differences between pixels"}, {"category_id": 15, "poly": [864.0, 163.0, 1568.0, 163.0, 1568.0, 192.0, 864.0, 192.0], "score": 1.0, "text": "temporal information, making it possible to process a temporal"}, {"category_id": 15, "poly": [859.0, 188.0, 1571.0, 193.0, 1570.0, 229.0, 859.0, 225.0], "score": 0.99, "text": " collection of cost volumes. The filtering operation was shown"}, {"category_id": 15, "poly": [864.0, 229.0, 1566.0, 229.0, 1566.0, 261.0, 864.0, 261.0], "score": 0.99, "text": "to preserve spatio-temporal edges present in the cost volumes,"}, {"category_id": 15, "poly": [859.0, 261.0, 1564.0, 264.0, 1564.0, 296.0, 859.0, 293.0], "score": 0.98, "text": " resulting in increased temporal consistency of disparity maps,"}, {"category_id": 15, "poly": [864.0, 296.0, 1566.0, 296.0, 1566.0, 328.0, 864.0, 328.0], "score": 0.99, "text": "greater robustness to image noise, and more accurate behavior"}, {"category_id": 15, "poly": [866.0, 328.0, 1160.0, 328.0, 1160.0, 360.0, 866.0, 360.0], "score": 1.0, "text": "around object boundaries."}, {"category_id": 15, "poly": [129.0, 158.0, 841.0, 153.0, 841.0, 192.0, 130.0, 197.0], "score": 0.99, "text": "aggregate cost values within the pixel neighborhoods defined"}, {"category_id": 15, "poly": [129.0, 188.0, 841.0, 190.0, 841.0, 229.0, 129.0, 227.0], "score": 0.99, "text": "by these windows. In 2005, Yoon and Kweon [4] proposed"}, {"category_id": 15, "poly": [132.0, 229.0, 838.0, 229.0, 838.0, 261.0, 132.0, 261.0], "score": 1.0, "text": "an adaptive matching cost aggregation scheme, which assigns"}, {"category_id": 15, "poly": [132.0, 261.0, 838.0, 261.0, 838.0, 293.0, 132.0, 293.0], "score": 0.98, "text": "a weight value to every pixel located in the support window"}, {"category_id": 15, "poly": [132.0, 293.0, 838.0, 293.0, 838.0, 325.0, 132.0, 325.0], "score": 0.98, "text": "of a given pixel of interest. The weight value is based on"}, {"category_id": 15, "poly": [132.0, 328.0, 836.0, 328.0, 836.0, 360.0, 132.0, 360.0], "score": 0.99, "text": "the spatial and color similarity between the pixel of interest"}, {"category_id": 15, "poly": [134.0, 360.0, 836.0, 360.0, 836.0, 392.0, 134.0, 392.0], "score": 1.0, "text": "and a pixel in its support window, and the aggregated cost is"}, {"category_id": 15, "poly": [134.0, 394.0, 836.0, 394.0, 836.0, 426.0, 134.0, 426.0], "score": 0.99, "text": "computed as a weighted average of the pixel-wise costs within"}, {"category_id": 15, "poly": [127.0, 422.0, 839.0, 424.0, 838.0, 463.0, 127.0, 461.0], "score": 0.98, "text": " the considered support window. The edge-preserving nature"}, {"category_id": 15, "poly": [129.0, 456.0, 838.0, 454.0, 838.0, 493.0, 129.0, 495.0], "score": 0.99, "text": " and matching accuracy of adaptive support weights have made"}, {"category_id": 15, "poly": [132.0, 490.0, 841.0, 490.0, 841.0, 529.0, 132.0, 529.0], "score": 0.99, "text": "them one of the most popular choices for cost aggregation in"}, {"category_id": 15, "poly": [132.0, 527.0, 797.0, 527.0, 797.0, 559.0, 132.0, 559.0], "score": 0.97, "text": "recently proposed stereo matching algorithms [3], [5]-[8]."}, {"category_id": 15, "poly": [157.0, 958.0, 836.0, 958.0, 836.0, 988.0, 157.0, 988.0], "score": 0.99, "text": "It has been demonstrated that the performance of stereo"}, {"category_id": 15, "poly": [132.0, 990.0, 838.0, 990.0, 838.0, 1022.0, 132.0, 1022.0], "score": 0.99, "text": "algorithms designed to match a single pair of images can"}, {"category_id": 15, "poly": [132.0, 1024.0, 836.0, 1024.0, 836.0, 1056.0, 132.0, 1056.0], "score": 0.99, "text": "be adapted to take advantage of the temporal dependencies"}, {"category_id": 15, "poly": [129.0, 1054.0, 838.0, 1054.0, 838.0, 1093.0, 129.0, 1093.0], "score": 0.97, "text": "available in stereo video sequences. Early proposed solutions"}, {"category_id": 15, "poly": [132.0, 1091.0, 836.0, 1091.0, 836.0, 1123.0, 132.0, 1123.0], "score": 0.99, "text": "to temporal stereo matching attempted to average matching"}, {"category_id": 15, "poly": [134.0, 1123.0, 836.0, 1123.0, 836.0, 1155.0, 134.0, 1155.0], "score": 0.99, "text": "costs across subsequent frames of a video sequence [13],"}, {"category_id": 15, "poly": [129.0, 1153.0, 841.0, 1150.0, 841.0, 1189.0, 129.0, 1192.0], "score": 0.98, "text": "[14]. Attempts have been made to integrate estimation of"}, {"category_id": 15, "poly": [134.0, 1192.0, 838.0, 1192.0, 838.0, 1224.0, 134.0, 1224.0], "score": 0.99, "text": "motion fields (optical flow) into temporal stereo matching. The"}, {"category_id": 15, "poly": [132.0, 1224.0, 838.0, 1224.0, 838.0, 1256.0, 132.0, 1256.0], "score": 0.99, "text": "methods of [15] and [16] perform smoothing of disparities"}, {"category_id": 15, "poly": [129.0, 1254.0, 841.0, 1254.0, 841.0, 1292.0, 129.0, 1292.0], "score": 0.99, "text": " along motion vectors recovered from the video sequence. The"}, {"category_id": 15, "poly": [132.0, 1290.0, 838.0, 1290.0, 838.0, 1322.0, 132.0, 1322.0], "score": 0.99, "text": "estimation of the motion field, however, prevents real-time"}, {"category_id": 15, "poly": [132.0, 1325.0, 838.0, 1325.0, 838.0, 1354.0, 132.0, 1354.0], "score": 0.99, "text": "implementation, since state-of-the-art optical flow algorithms"}, {"category_id": 15, "poly": [129.0, 1354.0, 841.0, 1354.0, 841.0, 1393.0, 129.0, 1393.0], "score": 0.99, "text": " do not, in general, approach real-time frame rates. In a related"}, {"category_id": 15, "poly": [129.0, 1386.0, 841.0, 1384.0, 841.0, 1423.0, 129.0, 1425.0], "score": 0.99, "text": "approach, Sizintsev and Wildes [17], [18] used steerable"}, {"category_id": 15, "poly": [134.0, 1423.0, 836.0, 1423.0, 836.0, 1455.0, 134.0, 1455.0], "score": 0.99, "text": "filters to obtain descriptors characterizing motion of image"}, {"category_id": 15, "poly": [134.0, 1455.0, 836.0, 1455.0, 836.0, 1487.0, 134.0, 1487.0], "score": 0.99, "text": "features in both space and time. Unlike traditional algorithms,"}, {"category_id": 15, "poly": [132.0, 1490.0, 838.0, 1490.0, 838.0, 1522.0, 132.0, 1522.0], "score": 0.98, "text": "their method performs matching on spatio-temporal motion"}, {"category_id": 15, "poly": [129.0, 1519.0, 841.0, 1517.0, 841.0, 1556.0, 129.0, 1558.0], "score": 0.99, "text": " descriptors, rather than on pure pixel intensity values, which"}, {"category_id": 15, "poly": [132.0, 1554.0, 841.0, 1554.0, 841.0, 1593.0, 132.0, 1593.0], "score": 0.99, "text": "leads to improved temporal coherence of disparity maps at the"}, {"category_id": 15, "poly": [132.0, 1586.0, 698.0, 1586.0, 698.0, 1618.0, 132.0, 1618.0], "score": 0.99, "text": "cost of reduced accuracy at depth discontinuities."}, {"category_id": 15, "poly": [159.0, 559.0, 838.0, 559.0, 838.0, 591.0, 159.0, 591.0], "score": 0.99, "text": "Recently, Rheman et al. [9], [10] have revisited the cost"}, {"category_id": 15, "poly": [132.0, 594.0, 838.0, 589.0, 839.0, 621.0, 132.0, 626.0], "score": 1.0, "text": "aggregation step of stereo algorithms, and demonstrated that"}, {"category_id": 15, "poly": [132.0, 626.0, 838.0, 626.0, 838.0, 658.0, 132.0, 658.0], "score": 0.99, "text": "cost aggregation can be performed by filtering of subsequent"}, {"category_id": 15, "poly": [134.0, 660.0, 834.0, 660.0, 834.0, 692.0, 134.0, 692.0], "score": 1.0, "text": "layers of the initially computed matching cost volume. In par-"}, {"category_id": 15, "poly": [132.0, 692.0, 836.0, 692.0, 836.0, 724.0, 132.0, 724.0], "score": 0.99, "text": "ticular, the edge-aware image filters, such as the bilateral filter"}, {"category_id": 15, "poly": [127.0, 719.0, 839.0, 724.0, 838.0, 761.0, 127.0, 756.0], "score": 0.99, "text": " of Tomasi and Manducci [11] or the guided filter of He [12],"}, {"category_id": 15, "poly": [132.0, 759.0, 838.0, 759.0, 838.0, 791.0, 132.0, 791.0], "score": 0.98, "text": "have been rendered useful for the problem of matching cost"}, {"category_id": 15, "poly": [132.0, 793.0, 838.0, 791.0, 838.0, 823.0, 132.0, 825.0], "score": 0.99, "text": "aggregation, enabling stereo algorithms to correctly recover"}, {"category_id": 15, "poly": [134.0, 825.0, 838.0, 825.0, 838.0, 857.0, 134.0, 857.0], "score": 0.98, "text": "disparities along object boundaries. In fact, Yoon and Kweon's"}, {"category_id": 15, "poly": [134.0, 859.0, 838.0, 859.0, 838.0, 891.0, 134.0, 891.0], "score": 1.0, "text": "adaptive support-weight cost aggregation scheme is equivalent"}, {"category_id": 15, "poly": [132.0, 891.0, 838.0, 891.0, 838.0, 924.0, 132.0, 924.0], "score": 0.98, "text": "to the application of the so-called joint bilateral filter to the"}, {"category_id": 15, "poly": [134.0, 924.0, 547.0, 924.0, 547.0, 956.0, 134.0, 956.0], "score": 1.0, "text": "layers of the matching cost volume."}, {"category_id": 15, "poly": [889.0, 422.0, 1568.0, 424.0, 1568.0, 456.0, 889.0, 454.0], "score": 0.98, "text": "The proposed temporal stereo matching algorithm is an"}, {"category_id": 15, "poly": [862.0, 456.0, 1571.0, 456.0, 1571.0, 495.0, 862.0, 495.0], "score": 1.0, "text": "extension of the real-time iterative adaptive support-weight"}, {"category_id": 15, "poly": [864.0, 490.0, 1568.0, 490.0, 1568.0, 522.0, 864.0, 522.0], "score": 0.99, "text": "algorithm described in [3]. In addition to real-time two-"}, {"category_id": 15, "poly": [864.0, 525.0, 1566.0, 525.0, 1566.0, 557.0, 864.0, 557.0], "score": 1.0, "text": "pass aggregation of the cost values in the spatial domain,"}, {"category_id": 15, "poly": [864.0, 557.0, 1568.0, 557.0, 1568.0, 589.0, 864.0, 589.0], "score": 0.99, "text": "the proposed algorithm enhances stereo matching on video"}, {"category_id": 15, "poly": [866.0, 594.0, 1566.0, 594.0, 1566.0, 626.0, 866.0, 626.0], "score": 0.97, "text": "sequences by aggregating costs along the time dimension."}, {"category_id": 15, "poly": [864.0, 626.0, 1568.0, 626.0, 1568.0, 658.0, 864.0, 658.0], "score": 1.0, "text": "The operation of the algorithm has been divided into four"}, {"category_id": 15, "poly": [866.0, 660.0, 1568.0, 660.0, 1568.0, 692.0, 866.0, 692.0], "score": 0.99, "text": "stages: 1) two-pass spatial cost aggregation, 2) temporal cost"}, {"category_id": 15, "poly": [862.0, 688.0, 1568.0, 685.0, 1568.0, 724.0, 862.0, 727.0], "score": 1.0, "text": "aggregation, 3) disparity selection and confidence assessment,"}, {"category_id": 15, "poly": [866.0, 724.0, 1568.0, 724.0, 1568.0, 756.0, 866.0, 756.0], "score": 1.0, "text": "and 4) iterative disparity refinement. In the following, each of"}, {"category_id": 15, "poly": [864.0, 759.0, 1254.0, 759.0, 1254.0, 791.0, 864.0, 791.0], "score": 1.0, "text": "these stages is described in detail."}, {"category_id": 15, "poly": [860.0, 1265.0, 1194.0, 1270.0, 1194.0, 1306.0, 859.0, 1301.0], "score": 0.99, "text": " color similarity, respectively."}, {"category_id": 15, "poly": [1433.0, 1169.0, 1566.0, 1169.0, 1566.0, 1201.0, 1433.0, 1201.0], "score": 0.98, "text": "is the color"}, {"category_id": 15, "poly": [864.0, 1169.0, 938.0, 1169.0, 938.0, 1201.0, 864.0, 1201.0], "score": 1.0, "text": "where"}, {"category_id": 15, "poly": [1040.0, 1169.0, 1334.0, 1169.0, 1334.0, 1201.0, 1040.0, 1201.0], "score": 0.98, "text": "is the geometric distance,"}, {"category_id": 15, "poly": [1517.0, 1196.0, 1566.0, 1201.0, 1566.0, 1240.0, 1517.0, 1235.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [862.0, 1196.0, 1158.0, 1201.0, 1158.0, 1240.0, 861.0, 1235.0], "score": 1.0, "text": "difference between pixels"}, {"category_id": 15, "poly": [894.0, 1233.0, 1566.0, 1231.0, 1566.0, 1270.0, 894.0, 1272.0], "score": 0.97, "text": "regulate the strength of grouping by geometric distance and"}, {"category_id": 15, "poly": [1179.0, 1196.0, 1229.0, 1201.0, 1229.0, 1240.0, 1179.0, 1235.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [1248.0, 1196.0, 1484.0, 1201.0, 1484.0, 1240.0, 1248.0, 1235.0], "score": 0.99, "text": ", and the coefficients"}, {"category_id": 15, "poly": [887.0, 848.0, 1568.0, 850.0, 1568.0, 889.0, 887.0, 887.0], "score": 0.99, "text": " Humans group shapes by observing the geometric distance"}, {"category_id": 15, "poly": [859.0, 885.0, 1568.0, 882.0, 1568.0, 921.0, 859.0, 924.0], "score": 0.98, "text": " and color similarity of points in space. To mimic this vi-"}, {"category_id": 15, "poly": [864.0, 921.0, 1568.0, 921.0, 1568.0, 953.0, 864.0, 953.0], "score": 0.99, "text": "sual grouping, the adaptive support-weight stereo matching"}, {"category_id": 15, "poly": [864.0, 1054.0, 899.0, 1054.0, 899.0, 1084.0, 864.0, 1084.0], "score": 1.0, "text": "by"}, {"category_id": 15, "poly": [866.0, 956.0, 1350.0, 956.0, 1350.0, 988.0, 866.0, 988.0], "score": 0.98, "text": "algorithm [4] considers a support window"}, {"category_id": 15, "poly": [1389.0, 956.0, 1566.0, 956.0, 1566.0, 988.0, 1389.0, 988.0], "score": 0.98, "text": " centered at the"}, {"category_id": 15, "poly": [952.0, 1022.0, 1370.0, 1022.0, 1370.0, 1054.0, 952.0, 1054.0], "score": 0.98, "text": ". The support weight relating pixels"}, {"category_id": 15, "poly": [1392.0, 1022.0, 1446.0, 1022.0, 1446.0, 1054.0, 1392.0, 1054.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [1466.0, 1022.0, 1566.0, 1022.0, 1566.0, 1054.0, 1466.0, 1054.0], "score": 0.98, "text": "is given"}, {"category_id": 15, "poly": [866.0, 990.0, 1049.0, 990.0, 1049.0, 1022.0, 866.0, 1022.0], "score": 1.0, "text": "pixel of interest"}, {"category_id": 15, "poly": [1069.0, 990.0, 1566.0, 990.0, 1566.0, 1022.0, 1069.0, 1022.0], "score": 1.0, "text": ", and assigns a support weight to each pixel"}, {"category_id": 15, "poly": [862.0, 1948.0, 1568.0, 1950.0, 1568.0, 1989.0, 861.0, 1987.0], "score": 0.98, "text": "vides additional robustness to outliers. Rather than evaluating"}, {"category_id": 15, "poly": [864.0, 1989.0, 1566.0, 1989.0, 1566.0, 2021.0, 864.0, 2021.0], "score": 0.98, "text": "Equation (2) directly, real-time algorithms often approximate"}, {"category_id": 15, "poly": [862.0, 1920.0, 1406.0, 1920.0, 1406.0, 1952.0, 862.0, 1952.0], "score": 0.99, "text": "This limits each of their magnitudes to at most"}, {"category_id": 15, "poly": [1426.0, 1920.0, 1561.0, 1920.0, 1561.0, 1952.0, 1426.0, 1952.0], "score": 0.96, "text": ",whichpro-"}, {"category_id": 15, "poly": [859.0, 1331.0, 1571.0, 1334.0, 1571.0, 1373.0, 859.0, 1370.0], "score": 0.98, "text": " iterative adaptive support-weight algorithm evaluates matching"}, {"category_id": 15, "poly": [859.0, 1464.0, 912.0, 1467.0, 912.0, 1506.0, 859.0, 1503.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [950.0, 1464.0, 1474.0, 1467.0, 1474.0, 1506.0, 950.0, 1503.0], "score": 1.0, "text": ", the initial matching cost is aggregated using"}, {"category_id": 15, "poly": [1442.0, 1370.0, 1530.0, 1370.0, 1530.0, 1402.0, 1442.0, 1402.0], "score": 0.98, "text": ", where"}, {"category_id": 15, "poly": [1197.0, 1437.0, 1527.0, 1437.0, 1527.0, 1469.0, 1197.0, 1469.0], "score": 0.97, "text": ", and their support windows"}, {"category_id": 15, "poly": [866.0, 1402.0, 1539.0, 1402.0, 1539.0, 1435.0, 866.0, 1435.0], "score": 1.0, "text": "denotes a set of matching candidates associated with pixel"}, {"category_id": 15, "poly": [864.0, 1437.0, 1100.0, 1437.0, 1100.0, 1469.0, 864.0, 1469.0], "score": 0.97, "text": "For a pair of pixels"}, {"category_id": 15, "poly": [1122.0, 1437.0, 1176.0, 1437.0, 1176.0, 1469.0, 1122.0, 1469.0], "score": 0.94, "text": " and"}, {"category_id": 15, "poly": [887.0, 1299.0, 1388.0, 1304.0, 1388.0, 1336.0, 887.0, 1331.0], "score": 0.96, "text": " To identify a match for the pixel of interest"}, {"category_id": 15, "poly": [1408.0, 1299.0, 1568.0, 1304.0, 1568.0, 1336.0, 1408.0, 1331.0], "score": 1.0, "text": ", the real-time"}, {"category_id": 15, "poly": [864.0, 1370.0, 1028.0, 1370.0, 1028.0, 1402.0, 864.0, 1402.0], "score": 1.0, "text": "costs between"}, {"category_id": 15, "poly": [1049.0, 1370.0, 1361.0, 1370.0, 1361.0, 1402.0, 1049.0, 1402.0], "score": 0.99, "text": " and every match candidate"}, {"category_id": 15, "poly": [160.0, 1618.0, 836.0, 1623.0, 836.0, 1655.0, 159.0, 1650.0], "score": 0.99, "text": "Most recently, local stereo algorithms based on edge-aware"}, {"category_id": 15, "poly": [127.0, 1650.0, 841.0, 1652.0, 841.0, 1691.0, 127.0, 1689.0], "score": 0.97, "text": " filters were extended to incorporate temporal evidence into"}, {"category_id": 15, "poly": [132.0, 1687.0, 836.0, 1687.0, 836.0, 1719.0, 132.0, 1719.0], "score": 0.97, "text": "the matching process. The method of Richardt et al. [19]"}, {"category_id": 15, "poly": [134.0, 1723.0, 838.0, 1723.0, 838.0, 1753.0, 134.0, 1753.0], "score": 0.99, "text": "employs a variant of the bilateral grid [20] implemented on"}, {"category_id": 15, "poly": [134.0, 1755.0, 838.0, 1755.0, 838.0, 1788.0, 134.0, 1788.0], "score": 0.99, "text": "graphics hardware, which accelerates cost aggregation and"}, {"category_id": 15, "poly": [134.0, 1788.0, 838.0, 1788.0, 838.0, 1820.0, 134.0, 1820.0], "score": 1.0, "text": "allows for weighted propagation of pixel dissimilarity metrics"}, {"category_id": 15, "poly": [132.0, 1822.0, 838.0, 1822.0, 838.0, 1854.0, 132.0, 1854.0], "score": 0.99, "text": "from previous frames to the current one. Although this method"}, {"category_id": 15, "poly": [129.0, 1856.0, 838.0, 1856.0, 838.0, 1888.0, 129.0, 1888.0], "score": 1.0, "text": " outperforms the baseline frame-to-frame approach, the amount"}, {"category_id": 15, "poly": [132.0, 1888.0, 838.0, 1888.0, 838.0, 1920.0, 132.0, 1920.0], "score": 0.97, "text": "of hardware memory necessary to construct the bilateral grid"}, {"category_id": 15, "poly": [127.0, 1916.0, 841.0, 1918.0, 841.0, 1957.0, 127.0, 1955.0], "score": 0.99, "text": "limits its application to single-channel, i.e., grayscale images "}, {"category_id": 15, "poly": [132.0, 1955.0, 838.0, 1955.0, 838.0, 1985.0, 132.0, 1985.0], "score": 0.99, "text": "only. Hosni et al. [10], on the other hand, reformulated kernels"}, {"category_id": 15, "poly": [132.0, 1989.0, 838.0, 1989.0, 838.0, 2021.0, 132.0, 2021.0], "score": 0.99, "text": "of the guided image filter to operate on both spatial and"}, {"category_id": 15, "poly": [859.0, 809.0, 1307.0, 809.0, 1307.0, 848.0, 859.0, 848.0], "score": 0.99, "text": "A. Two-Pass Spatial Cost Aggregation"}, {"category_id": 15, "poly": [1129.0, 376.0, 1300.0, 376.0, 1300.0, 417.0, 1129.0, 417.0], "score": 0.94, "text": "III. METHOD"}], "page_info": {"page_no": 1, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 1, "poly": [865.5088500976562, 856.5537109375, 1567.692626953125, 856.5537109375, 1567.692626953125, 1420.9698486328125, 865.5088500976562, 1420.9698486328125], "score": 0.9999963045120239}, {"category_id": 8, "poly": [281.1294860839844, 1001.0513916015625, 689.37451171875, 1001.0513916015625, 689.37451171875, 1075.8765869140625, 281.1294860839844, 1075.8765869140625], "score": 0.9999961256980896}, {"category_id": 1, "poly": [133.53353881835938, 158.6427459716797, 836.7297973632812, 158.6427459716797, 836.7297973632812, 390.48828125, 133.53353881835938, 390.48828125], "score": 0.9999960660934448}, {"category_id": 8, "poly": [145.77777099609375, 1839.6416015625, 803.4192504882812, 1839.6416015625, 803.4192504882812, 1993.239013671875, 145.77777099609375, 1993.239013671875], "score": 0.9999958872795105}, {"category_id": 1, "poly": [864.9884643554688, 1420.8831787109375, 1567.3118896484375, 1420.8831787109375, 1567.3118896484375, 2023.257080078125, 864.9884643554688, 2023.257080078125], "score": 0.9999951124191284}, {"category_id": 9, "poly": [1529.267333984375, 388.6717834472656, 1565.1744384765625, 388.6717834472656, 1565.1744384765625, 416.4899597167969, 1529.267333984375, 416.4899597167969], "score": 0.9999918937683105}, {"category_id": 9, "poly": [800.3933715820312, 1551.524169921875, 833.2618408203125, 1551.524169921875, 833.2618408203125, 1582.073486328125, 800.3933715820312, 1582.073486328125], "score": 0.9999911189079285}, {"category_id": 1, "poly": [864.3720092773438, 200.97483825683594, 1565.6871337890625, 200.97483825683594, 1565.6871337890625, 365.6230163574219, 864.3720092773438, 365.6230163574219], "score": 0.9999903440475464}, {"category_id": 1, "poly": [134.87628173828125, 1369.5762939453125, 835.0336303710938, 1369.5762939453125, 835.0336303710938, 1533.884765625, 134.87628173828125, 1533.884765625], "score": 0.9999880790710449}, {"category_id": 1, "poly": [134.59988403320312, 444.5299377441406, 836.5606079101562, 444.5299377441406, 836.5606079101562, 709.0791015625, 134.59988403320312, 709.0791015625], "score": 0.999987006187439}, {"category_id": 1, "poly": [134.15472412109375, 1084.4288330078125, 836.2360229492188, 1084.4288330078125, 836.2360229492188, 1314.6600341796875, 134.15472412109375, 1314.6600341796875], "score": 0.9999866485595703}, {"category_id": 9, "poly": [800.6007690429688, 1023.1047973632812, 833.2154541015625, 1023.1047973632812, 833.2154541015625, 1055.7227783203125, 800.6007690429688, 1055.7227783203125], "score": 0.9999839663505554}, {"category_id": 8, "poly": [948.4016723632812, 372.03607177734375, 1486.11279296875, 372.03607177734375, 1486.11279296875, 449.3696594238281, 948.4016723632812, 449.3696594238281], "score": 0.9999831914901733}, {"category_id": 8, "poly": [145.31065368652344, 714.4036254882812, 820.3599853515625, 714.4036254882812, 820.3599853515625, 791.855712890625, 145.31065368652344, 791.855712890625], "score": 0.9999772906303406}, {"category_id": 1, "poly": [863.8760986328125, 599.6033325195312, 1566.84619140625, 599.6033325195312, 1566.84619140625, 797.44189453125, 863.8760986328125, 797.44189453125], "score": 0.999976396560669}, {"category_id": 1, "poly": [864.925537109375, 464.9669189453125, 1565.212158203125, 464.9669189453125, 1565.212158203125, 529.045654296875, 864.925537109375, 529.045654296875], "score": 0.999973475933075}, {"category_id": 1, "poly": [133.88735961914062, 797.7457885742188, 835.5986328125, 797.7457885742188, 835.5986328125, 994.4456176757812, 133.88735961914062, 994.4456176757812], "score": 0.9999661445617676}, {"category_id": 1, "poly": [134.8787841796875, 1615.116455078125, 835.4554443359375, 1615.116455078125, 835.4554443359375, 1815.4564208984375, 134.8787841796875, 1815.4564208984375], "score": 0.9999580383300781}, {"category_id": 9, "poly": [1530.1783447265625, 550.1576538085938, 1564.607177734375, 550.1576538085938, 1564.607177734375, 578.6950073242188, 1530.1783447265625, 578.6950073242188], "score": 0.9999532103538513}, {"category_id": 9, "poly": [801.0740966796875, 738.4259643554688, 834.7449340820312, 738.4259643554688, 834.7449340820312, 770.4969482421875, 801.0740966796875, 770.4969482421875], "score": 0.9996598958969116}, {"category_id": 0, "poly": [1134.302490234375, 815.6021728515625, 1295.3885498046875, 815.6021728515625, 1295.3885498046875, 844.6544799804688, 1134.302490234375, 844.6544799804688], "score": 0.9994980096817017}, {"category_id": 9, "poly": [798.6090698242188, 1986.7332763671875, 834.5460205078125, 1986.7332763671875, 834.5460205078125, 2017.6595458984375, 798.6090698242188, 2017.6595458984375], "score": 0.9992558360099792}, {"category_id": 0, "poly": [135.0093994140625, 406.12335205078125, 475.6328125, 406.12335205078125, 475.6328125, 437.4545593261719, 135.0093994140625, 437.4545593261719], "score": 0.9990860819816589}, {"category_id": 8, "poly": [1029.3924560546875, 541.857177734375, 1400.174072265625, 541.857177734375, 1400.174072265625, 585.1640625, 1029.3924560546875, 585.1640625], "score": 0.9979717135429382}, {"category_id": 0, "poly": [133.26077270507812, 1330.139892578125, 713.5426635742188, 1330.139892578125, 713.5426635742188, 1363.1341552734375, 133.26077270507812, 1363.1341552734375], "score": 0.9967154860496521}, {"category_id": 8, "poly": [338.6681823730469, 1547.7218017578125, 626.6519775390625, 1547.7218017578125, 626.6519775390625, 1604.587646484375, 338.6681823730469, 1604.587646484375], "score": 0.9945433139801025}, {"category_id": 1, "poly": [864.5469970703125, 160.16702270507812, 1251.313720703125, 160.16702270507812, 1251.313720703125, 190.15760803222656, 864.5469970703125, 190.15760803222656], "score": 0.9902143478393555}, {"category_id": 13, "poly": [550, 577, 648, 577, 648, 612, 550, 612], "score": 0.95, "latex": "C_{a}(p,\\bar{p})"}, {"category_id": 13, "poly": [183, 1780, 304, 1780, 304, 1813, 183, 1813], "score": 0.95, "latex": "p^{\\prime}=m(\\bar{p})"}, {"category_id": 14, "poly": [279, 1000, 687, 1000, 687, 1078, 279, 1078], "score": 0.95, "latex": "w_{t}(p,p_{t-1})=\\exp\\bigg({-\\frac{\\Delta_{c}(p,p_{t-1})}{\\gamma_{t}}}\\bigg),"}, {"category_id": 14, "poly": [147, 1843, 820, 1843, 820, 1992, 147, 1992], "score": 0.94, "latex": "F_{p}=\\left\\{\\begin{array}{l l}{\\underset{\\bar{p}\\in S_{p}\\setminus m(p)}{\\mathrm{min}}\\,C(p,\\bar{p})-\\underset{\\bar{p}\\in S_{p}}{\\mathrm{min}}\\,C(p,\\bar{p})}\\\\ {\\underset{\\bar{p}\\in S_{p}\\setminus m(p)}{\\mathrm{min}}\\,C(p,\\bar{p})}&{|d_{p}-d_{p^{\\prime}}|\\leq1}\\\\ {0,}&{\\mathrm{otherwise}}\\end{array}\\right.."}, {"category_id": 14, "poly": [340, 1546, 628, 1546, 628, 1608, 340, 1608], "score": 0.93, "latex": "m(p)=\\underset{\\bar{p}\\in S_{p}}{\\mathrm{argmin}}\\,C(p,\\bar{p})\\,."}, {"category_id": 13, "poly": [321, 830, 443, 830, 443, 864, 321, 864], "score": 0.93, "latex": "w_{t}(p,p_{t-1})"}, {"category_id": 13, "poly": [581, 1713, 694, 1713, 694, 1747, 581, 1747], "score": 0.93, "latex": "{\\bar{p}}=m(p)"}, {"category_id": 14, "poly": [947, 373, 1478, 373, 1478, 454, 947, 454], "score": 0.93, "latex": "\\Lambda^{i}(p,\\bar{p})=\\alpha\\times\\sum_{q\\in\\Omega_{p}}w(p,q)F_{q}^{i-1}\\left|D_{q}^{i-1}-d_{p}\\right|\\,,"}, {"category_id": 13, "poly": [426, 445, 512, 445, 512, 479, 426, 479], "score": 0.93, "latex": "C(p,{\\bar{p}})"}, {"category_id": 13, "poly": [337, 356, 414, 356, 414, 391, 337, 391], "score": 0.93, "latex": "\\mathcal{O}(\\omega^{2})"}, {"category_id": 13, "poly": [1341, 730, 1565, 730, 1565, 765, 1341, 765], "score": 0.92, "latex": "C_{a}(p,\\bar{p})\\gets C(p,\\bar{p})"}, {"category_id": 13, "poly": [629, 1436, 691, 1436, 691, 1470, 629, 1470], "score": 0.92, "latex": "m(p)"}, {"category_id": 13, "poly": [277, 1469, 361, 1469, 361, 1504, 277, 1504], "score": 0.92, "latex": "\\bar{p}\\in S_{p}"}, {"category_id": 14, "poly": [1030, 541, 1398, 541, 1398, 582, 1030, 582], "score": 0.92, "latex": "C^{i}(p,\\bar{p})=C^{0}(p,\\bar{p})+{\\Lambda^{i}}(p,\\bar{p})\\,,"}, {"category_id": 13, "poly": [453, 356, 518, 356, 518, 391, 453, 391], "score": 0.91, "latex": "\\mathcal{O}(\\omega)"}, {"category_id": 14, "poly": [146, 714, 787, 714, 787, 791, 146, 791], "score": 0.91, "latex": "C(p,\\bar{p})\\gets\\frac{(1-\\lambda)\\cdot C(p,\\bar{p})+\\lambda\\cdot w_{t}(p,p_{t-1})\\cdot C_{a}(p,\\bar{p})}{(1-\\lambda)+\\lambda\\cdot w_{t}(p,p_{t-1})},"}, {"category_id": 13, "poly": [1095, 231, 1134, 231, 1134, 270, 1095, 270], "score": 0.9, "latex": "D_{p}^{i}"}, {"category_id": 13, "poly": [1313, 1752, 1447, 1752, 1447, 1783, 1313, 1783], "score": 0.89, "latex": "640~\\times~480"}, {"category_id": 13, "poly": [593, 1782, 627, 1782, 627, 1815, 593, 1815], "score": 0.89, "latex": "F_{p}"}, {"category_id": 13, "poly": [133, 326, 209, 326, 209, 355, 133, 355], "score": 0.88, "latex": "\\omega\\times\\omega"}, {"category_id": 13, "poly": [208, 1089, 236, 1089, 236, 1116, 208, 1116], "score": 0.85, "latex": "\\gamma_{t}"}, {"category_id": 13, "poly": [1466, 769, 1484, 769, 1484, 797, 1466, 797], "score": 0.83, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [133, 935, 177, 935, 177, 963, 133, 963], "score": 0.83, "latex": "p_{t-1}"}, {"category_id": 13, "poly": [608, 1753, 627, 1753, 627, 1779, 608, 1779], "score": 0.81, "latex": "p"}, {"category_id": 13, "poly": [491, 799, 511, 799, 511, 825, 491, 825], "score": 0.81, "latex": "\\lambda"}, {"category_id": 13, "poly": [1018, 770, 1037, 770, 1037, 796, 1018, 796], "score": 0.81, "latex": "p"}, {"category_id": 13, "poly": [1086, 470, 1107, 470, 1107, 491, 1086, 491], "score": 0.8, "latex": "\\alpha"}, {"category_id": 13, "poly": [466, 901, 485, 901, 485, 929, 466, 929], "score": 0.8, "latex": "p"}, {"category_id": 13, "poly": [208, 484, 227, 484, 227, 511, 208, 511], "score": 0.79, "latex": "p"}, {"category_id": 13, "poly": [462, 1443, 480, 1443, 480, 1468, 462, 1468], "score": 0.77, "latex": "p"}, {"category_id": 13, "poly": [266, 514, 288, 514, 288, 544, 266, 544], "score": 0.77, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [816, 1716, 836, 1716, 836, 1746, 816, 1746], "score": 0.73, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [132, 405, 154, 405, 154, 432, 132, 432], "score": 0.27, "latex": "B"}, {"category_id": 13, "poly": [862, 160, 887, 160, 887, 187, 862, 187], "score": 0.26, "latex": "D"}, {"category_id": 15, "poly": [887.0, 852.0, 1568.0, 855.0, 1568.0, 894.0, 887.0, 891.0], "score": 0.98, "text": " The speed and accuracy of real-time stereo matching al-"}, {"category_id": 15, "poly": [864.0, 891.0, 1566.0, 891.0, 1566.0, 924.0, 864.0, 924.0], "score": 0.99, "text": "gorithms are traditionally demonstrated using still-frame im-"}, {"category_id": 15, "poly": [859.0, 921.0, 1571.0, 919.0, 1571.0, 958.0, 859.0, 960.0], "score": 0.97, "text": " ages from the Middlebury stereo benchmark [1], [2]. Still"}, {"category_id": 15, "poly": [862.0, 956.0, 1568.0, 958.0, 1568.0, 990.0, 862.0, 988.0], "score": 0.99, "text": "frames, however, are insufficient for evaluating stereo match-"}, {"category_id": 15, "poly": [864.0, 992.0, 1571.0, 992.0, 1571.0, 1024.0, 864.0, 1024.0], "score": 1.0, "text": "ing algorithms that incorporate frame-to-frame prediction to"}, {"category_id": 15, "poly": [864.0, 1027.0, 1568.0, 1027.0, 1568.0, 1059.0, 864.0, 1059.0], "score": 0.97, "text": "enhance matching accuracy. An alternative approach is to"}, {"category_id": 15, "poly": [864.0, 1059.0, 1566.0, 1059.0, 1566.0, 1089.0, 864.0, 1089.0], "score": 0.99, "text": "use a stereo video sequence with a ground truth disparity"}, {"category_id": 15, "poly": [862.0, 1091.0, 1566.0, 1091.0, 1566.0, 1123.0, 862.0, 1123.0], "score": 1.0, "text": "for each frame. Obtaining the ground truth disparity of real"}, {"category_id": 15, "poly": [866.0, 1125.0, 1566.0, 1125.0, 1566.0, 1157.0, 866.0, 1157.0], "score": 0.98, "text": "world video sequences is a difficult undertaking due to the"}, {"category_id": 15, "poly": [859.0, 1153.0, 1568.0, 1155.0, 1568.0, 1194.0, 859.0, 1192.0], "score": 0.99, "text": "high frame rate of video and limitations in depth sensing-"}, {"category_id": 15, "poly": [864.0, 1192.0, 1568.0, 1192.0, 1568.0, 1224.0, 864.0, 1224.0], "score": 0.99, "text": "technology. To address the need for stereo video with ground"}, {"category_id": 15, "poly": [864.0, 1224.0, 1568.0, 1224.0, 1568.0, 1256.0, 864.0, 1256.0], "score": 0.99, "text": "truth disparities, five pairs of synthetic stereo video sequences"}, {"category_id": 15, "poly": [864.0, 1258.0, 1568.0, 1258.0, 1568.0, 1290.0, 864.0, 1290.0], "score": 0.99, "text": "of a computer-generated scene were given in [19]. While these"}, {"category_id": 15, "poly": [864.0, 1290.0, 1566.0, 1290.0, 1566.0, 1322.0, 864.0, 1322.0], "score": 1.0, "text": "videos incorporate a sufficient amount of movement variation,"}, {"category_id": 15, "poly": [862.0, 1325.0, 1568.0, 1325.0, 1568.0, 1357.0, 862.0, 1357.0], "score": 0.99, "text": "they were generated from relatively simple models using low-"}, {"category_id": 15, "poly": [862.0, 1359.0, 1571.0, 1359.0, 1571.0, 1389.0, 862.0, 1389.0], "score": 0.99, "text": "resolution rendering, and they do not provide occlusion or"}, {"category_id": 15, "poly": [862.0, 1386.0, 1088.0, 1394.0, 1087.0, 1426.0, 861.0, 1418.0], "score": 0.98, "text": "discontinuity maps."}, {"category_id": 15, "poly": [129.0, 156.0, 839.0, 158.0, 838.0, 197.0, 129.0, 195.0], "score": 0.99, "text": "the matching cost by performing two-pass aggregation using"}, {"category_id": 15, "poly": [130.0, 188.0, 841.0, 193.0, 841.0, 229.0, 129.0, 225.0], "score": 0.98, "text": "two orthogonal 1D windows [5], [6], [8]. The two-pass method "}, {"category_id": 15, "poly": [129.0, 225.0, 841.0, 222.0, 841.0, 261.0, 129.0, 264.0], "score": 0.99, "text": "first aggregates matching costs in the vertical direction, and"}, {"category_id": 15, "poly": [134.0, 261.0, 838.0, 261.0, 838.0, 293.0, 134.0, 293.0], "score": 0.99, "text": "then computes a weighted sum of the aggregated costs in the"}, {"category_id": 15, "poly": [132.0, 291.0, 838.0, 291.0, 838.0, 330.0, 132.0, 330.0], "score": 0.99, "text": "horizontal direction. Given that support regions are of size"}, {"category_id": 15, "poly": [136.0, 360.0, 336.0, 360.0, 336.0, 392.0, 136.0, 392.0], "score": 0.99, "text": "aggregation from"}, {"category_id": 15, "poly": [415.0, 360.0, 452.0, 360.0, 452.0, 392.0, 415.0, 392.0], "score": 0.98, "text": "to"}, {"category_id": 15, "poly": [210.0, 321.0, 836.0, 321.0, 836.0, 360.0, 210.0, 360.0], "score": 0.98, "text": ", the two-pass method reduces the complexity of cost"}, {"category_id": 15, "poly": [887.0, 1416.0, 1571.0, 1419.0, 1571.0, 1458.0, 887.0, 1455.0], "score": 0.98, "text": " To evaluate the performance of temporal aggregation, a"}, {"category_id": 15, "poly": [862.0, 1453.0, 1566.0, 1453.0, 1566.0, 1485.0, 862.0, 1485.0], "score": 0.98, "text": "new synthetic stereo video sequence is introduced along with"}, {"category_id": 15, "poly": [862.0, 1490.0, 1566.0, 1487.0, 1566.0, 1519.0, 862.0, 1522.0], "score": 0.99, "text": "corresponding disparity maps, occlusion maps, and disconti-"}, {"category_id": 15, "poly": [862.0, 1519.0, 1571.0, 1519.0, 1571.0, 1558.0, 862.0, 1558.0], "score": 0.99, "text": "nuity maps for evaluating the performance of temporal stereo"}, {"category_id": 15, "poly": [864.0, 1556.0, 1568.0, 1556.0, 1568.0, 1588.0, 864.0, 1588.0], "score": 1.0, "text": "matching algorithms. To create the video sequence, a complex"}, {"category_id": 15, "poly": [864.0, 1590.0, 1568.0, 1590.0, 1568.0, 1620.0, 864.0, 1620.0], "score": 0.99, "text": "scene was constructed using Google Sketchup and a pair"}, {"category_id": 15, "poly": [864.0, 1622.0, 1568.0, 1622.0, 1568.0, 1655.0, 864.0, 1655.0], "score": 0.99, "text": "of animated paths were rendered photorealistically using the"}, {"category_id": 15, "poly": [859.0, 1650.0, 1571.0, 1652.0, 1571.0, 1691.0, 859.0, 1689.0], "score": 0.99, "text": " Kerkythea rendering software. Realistic material properties"}, {"category_id": 15, "poly": [864.0, 1689.0, 1566.0, 1689.0, 1566.0, 1721.0, 864.0, 1721.0], "score": 1.0, "text": "were used to give surfaces a natural-looking appearance by"}, {"category_id": 15, "poly": [864.0, 1723.0, 1566.0, 1723.0, 1566.0, 1755.0, 864.0, 1755.0], "score": 0.98, "text": "adjusting their specularity, reflectance, and diffusion. The"}, {"category_id": 15, "poly": [864.0, 1788.0, 1568.0, 1788.0, 1568.0, 1820.0, 864.0, 1820.0], "score": 1.0, "text": "frame rate of 30 frames per second, and a duration of 4"}, {"category_id": 15, "poly": [862.0, 1817.0, 1568.0, 1820.0, 1568.0, 1859.0, 861.0, 1856.0], "score": 0.98, "text": "seconds. In addition to performing photorealistic rendering."}, {"category_id": 15, "poly": [864.0, 1856.0, 1568.0, 1856.0, 1568.0, 1888.0, 864.0, 1888.0], "score": 0.99, "text": "depth renders of both video sequences were also generated and"}, {"category_id": 15, "poly": [864.0, 1888.0, 1566.0, 1888.0, 1566.0, 1920.0, 864.0, 1920.0], "score": 0.98, "text": "converted to ground truth disparity for the stereo video. The"}, {"category_id": 15, "poly": [862.0, 1920.0, 1564.0, 1920.0, 1564.0, 1952.0, 862.0, 1952.0], "score": 0.99, "text": "video sequences and ground truth data have been made avail-"}, {"category_id": 15, "poly": [862.0, 1950.0, 1566.0, 1953.0, 1566.0, 1985.0, 862.0, 1982.0], "score": 0.99, "text": "able at http://mc2.unl.edu/current-research"}, {"category_id": 15, "poly": [866.0, 1989.0, 1566.0, 1989.0, 1566.0, 2019.0, 866.0, 2019.0], "score": 0.98, "text": "/ image-processing/. Figure 2 shows two sample frames"}, {"category_id": 15, "poly": [862.0, 1755.0, 1312.0, 1755.0, 1312.0, 1788.0, 862.0, 1788.0], "score": 0.97, "text": "video sequence has a resolution of "}, {"category_id": 15, "poly": [1448.0, 1755.0, 1566.0, 1755.0, 1566.0, 1788.0, 1448.0, 1788.0], "score": 0.99, "text": "pixels,a"}, {"category_id": 15, "poly": [889.0, 197.0, 1566.0, 199.0, 1566.0, 238.0, 889.0, 236.0], "score": 1.0, "text": "Once the first iteration of stereo matching is complete,"}, {"category_id": 15, "poly": [864.0, 268.0, 1566.0, 268.0, 1566.0, 300.0, 864.0, 300.0], "score": 0.99, "text": "subsequent iterations. This is done by penalizing disparities"}, {"category_id": 15, "poly": [864.0, 302.0, 1568.0, 302.0, 1568.0, 335.0, 864.0, 335.0], "score": 1.0, "text": "that deviate from their expected values. The penalty function"}, {"category_id": 15, "poly": [862.0, 337.0, 996.0, 337.0, 996.0, 369.0, 862.0, 369.0], "score": 0.97, "text": "is given by"}, {"category_id": 15, "poly": [864.0, 236.0, 1094.0, 236.0, 1094.0, 268.0, 864.0, 268.0], "score": 0.96, "text": "disparityestimates"}, {"category_id": 15, "poly": [1135.0, 236.0, 1568.0, 236.0, 1568.0, 268.0, 1135.0, 268.0], "score": 0.97, "text": " can be used to guide matching in"}, {"category_id": 15, "poly": [157.0, 1366.0, 839.0, 1368.0, 838.0, 1407.0, 157.0, 1405.0], "score": 1.0, "text": "Having performed temporal cost aggregation, matches are"}, {"category_id": 15, "poly": [134.0, 1405.0, 834.0, 1405.0, 834.0, 1437.0, 134.0, 1437.0], "score": 0.99, "text": "determined using the Winner-Takes-All (WTA) match selec-"}, {"category_id": 15, "poly": [132.0, 1506.0, 374.0, 1506.0, 374.0, 1538.0, 132.0, 1538.0], "score": 1.0, "text": "cost, and is given by"}, {"category_id": 15, "poly": [692.0, 1439.0, 834.0, 1439.0, 834.0, 1471.0, 692.0, 1471.0], "score": 0.99, "text": ", is the can-"}, {"category_id": 15, "poly": [134.0, 1474.0, 276.0, 1474.0, 276.0, 1506.0, 134.0, 1506.0], "score": 0.98, "text": "didate pixel"}, {"category_id": 15, "poly": [362.0, 1474.0, 836.0, 1474.0, 836.0, 1506.0, 362.0, 1506.0], "score": 0.99, "text": " characterized by the minimum matching"}, {"category_id": 15, "poly": [134.0, 1439.0, 461.0, 1439.0, 461.0, 1471.0, 134.0, 1471.0], "score": 1.0, "text": "tion criteria. The match for"}, {"category_id": 15, "poly": [481.0, 1439.0, 628.0, 1439.0, 628.0, 1471.0, 481.0, 1471.0], "score": 0.96, "text": ", denoted as"}, {"category_id": 15, "poly": [134.0, 548.0, 838.0, 545.0, 838.0, 577.0, 134.0, 580.0], "score": 0.99, "text": "aggregation routine is exectuted. At each time instance, the"}, {"category_id": 15, "poly": [134.0, 614.0, 834.0, 614.0, 834.0, 646.0, 134.0, 646.0], "score": 1.0, "text": "weighted summation of costs obtained in the previous frames."}, {"category_id": 15, "poly": [132.0, 646.0, 838.0, 644.0, 838.0, 676.0, 132.0, 678.0], "score": 1.0, "text": "During temporal aggregation, the auxiliary cost is merged with"}, {"category_id": 15, "poly": [132.0, 678.0, 675.0, 681.0, 674.0, 713.0, 132.0, 710.0], "score": 0.99, "text": "the cost obtained from the current frame using"}, {"category_id": 15, "poly": [134.0, 580.0, 549.0, 580.0, 549.0, 612.0, 134.0, 612.0], "score": 1.0, "text": "algorithm stores an auxiliary cost"}, {"category_id": 15, "poly": [649.0, 580.0, 841.0, 580.0, 841.0, 612.0, 649.0, 612.0], "score": 0.96, "text": "which holds a"}, {"category_id": 15, "poly": [157.0, 445.0, 425.0, 442.0, 425.0, 481.0, 157.0, 484.0], "score": 0.98, "text": " Once aggregated costs"}, {"category_id": 15, "poly": [513.0, 445.0, 838.0, 442.0, 838.0, 481.0, 513.0, 484.0], "score": 0.96, "text": " have been computed for all"}, {"category_id": 15, "poly": [132.0, 481.0, 207.0, 481.0, 207.0, 513.0, 132.0, 513.0], "score": 1.0, "text": "pixels"}, {"category_id": 15, "poly": [228.0, 481.0, 838.0, 481.0, 838.0, 513.0, 228.0, 513.0], "score": 0.97, "text": " in the reference image and their respective matching"}, {"category_id": 15, "poly": [134.0, 516.0, 265.0, 516.0, 265.0, 548.0, 134.0, 548.0], "score": 1.0, "text": "candidates"}, {"category_id": 15, "poly": [289.0, 516.0, 838.0, 516.0, 838.0, 548.0, 289.0, 548.0], "score": 0.98, "text": " in the target image, a single-pass temporal"}, {"category_id": 15, "poly": [132.0, 1116.0, 841.0, 1116.0, 841.0, 1155.0, 132.0, 1155.0], "score": 0.99, "text": "in the temporal dimension. The temporal adaptive weight has "}, {"category_id": 15, "poly": [134.0, 1153.0, 838.0, 1153.0, 838.0, 1185.0, 134.0, 1185.0], "score": 0.99, "text": "the effect of preserving edges in the temporal domain, such"}, {"category_id": 15, "poly": [132.0, 1182.0, 836.0, 1182.0, 836.0, 1215.0, 132.0, 1215.0], "score": 0.98, "text": "that when a pixel coordinate transitions from one side of an"}, {"category_id": 15, "poly": [134.0, 1219.0, 838.0, 1219.0, 838.0, 1251.0, 134.0, 1251.0], "score": 0.98, "text": "edge to another in subsequent frames, the auxiliary cost is"}, {"category_id": 15, "poly": [134.0, 1254.0, 838.0, 1254.0, 838.0, 1283.0, 134.0, 1283.0], "score": 0.99, "text": "assigned a small weight and the majority of the cost is derived"}, {"category_id": 15, "poly": [130.0, 1283.0, 404.0, 1286.0, 404.0, 1318.0, 129.0, 1315.0], "score": 1.0, "text": "from the current frame."}, {"category_id": 15, "poly": [134.0, 1086.0, 207.0, 1086.0, 207.0, 1118.0, 134.0, 1118.0], "score": 0.99, "text": "where"}, {"category_id": 15, "poly": [237.0, 1086.0, 836.0, 1086.0, 836.0, 1118.0, 237.0, 1118.0], "score": 0.99, "text": "regulates the strength of grouping by color similarity"}, {"category_id": 15, "poly": [864.0, 600.0, 1568.0, 600.0, 1568.0, 632.0, 864.0, 632.0], "score": 1.0, "text": "and the matches are reselected using the WTA match selection"}, {"category_id": 15, "poly": [864.0, 635.0, 1568.0, 635.0, 1568.0, 667.0, 864.0, 667.0], "score": 0.99, "text": "criteria. The resulting disparity maps are then post-processed"}, {"category_id": 15, "poly": [864.0, 669.0, 1564.0, 669.0, 1564.0, 699.0, 864.0, 699.0], "score": 0.98, "text": "using a combination of median filtering and occlusion filling."}, {"category_id": 15, "poly": [864.0, 701.0, 1566.0, 701.0, 1566.0, 731.0, 864.0, 731.0], "score": 0.98, "text": "Finally, the current cost becomes the auxiliary cost for the next"}, {"category_id": 15, "poly": [862.0, 731.0, 1340.0, 731.0, 1340.0, 770.0, 862.0, 770.0], "score": 0.99, "text": "pair of frames in the video sequence, i.e.,"}, {"category_id": 15, "poly": [864.0, 768.0, 1017.0, 768.0, 1017.0, 800.0, 864.0, 800.0], "score": 1.0, "text": "for all pixels"}, {"category_id": 15, "poly": [1038.0, 768.0, 1465.0, 768.0, 1465.0, 800.0, 1038.0, 800.0], "score": 0.98, "text": " in the and their matching candidates"}, {"category_id": 15, "poly": [864.0, 502.0, 1427.0, 502.0, 1427.0, 532.0, 864.0, 532.0], "score": 1.0, "text": "values are incorporated into the matching cost as"}, {"category_id": 15, "poly": [864.0, 468.0, 1085.0, 468.0, 1085.0, 500.0, 864.0, 500.0], "score": 0.96, "text": "where the value of"}, {"category_id": 15, "poly": [1108.0, 468.0, 1564.0, 468.0, 1564.0, 500.0, 1108.0, 500.0], "score": 0.99, "text": "is chosen empirically. Next, the penalty"}, {"category_id": 15, "poly": [134.0, 866.0, 838.0, 866.0, 838.0, 898.0, 134.0, 898.0], "score": 0.99, "text": "temporal domain. The temporal adaptive weight computed"}, {"category_id": 15, "poly": [132.0, 967.0, 263.0, 967.0, 263.0, 999.0, 132.0, 999.0], "score": 0.93, "text": "is given by"}, {"category_id": 15, "poly": [134.0, 834.0, 320.0, 834.0, 320.0, 866.0, 134.0, 866.0], "score": 0.97, "text": "smoothing and"}, {"category_id": 15, "poly": [444.0, 834.0, 836.0, 834.0, 836.0, 866.0, 444.0, 866.0], "score": 0.92, "text": " enforces color similarity in the"}, {"category_id": 15, "poly": [178.0, 930.0, 838.0, 928.0, 839.0, 967.0, 178.0, 969.0], "score": 0.99, "text": ", located at the same spatial coordinate in the prior frame,"}, {"category_id": 15, "poly": [132.0, 795.0, 490.0, 800.0, 490.0, 832.0, 132.0, 827.0], "score": 0.99, "text": "where the feedback coefficient"}, {"category_id": 15, "poly": [512.0, 795.0, 836.0, 800.0, 836.0, 832.0, 512.0, 827.0], "score": 0.97, "text": " controls the amount of cost"}, {"category_id": 15, "poly": [136.0, 898.0, 465.0, 898.0, 465.0, 930.0, 136.0, 930.0], "score": 0.99, "text": "between the pixel of interest"}, {"category_id": 15, "poly": [486.0, 898.0, 838.0, 898.0, 838.0, 930.0, 486.0, 930.0], "score": 1.0, "text": "in the current frame and pixel"}, {"category_id": 15, "poly": [159.0, 1616.0, 836.0, 1616.0, 836.0, 1648.0, 159.0, 1648.0], "score": 0.99, "text": "To asses the level of confidence associated with selecting"}, {"category_id": 15, "poly": [132.0, 1648.0, 836.0, 1650.0, 836.0, 1682.0, 132.0, 1680.0], "score": 1.0, "text": "minimum cost matches, the algorithm determines another set"}, {"category_id": 15, "poly": [134.0, 1684.0, 838.0, 1684.0, 838.0, 1716.0, 134.0, 1716.0], "score": 1.0, "text": "of matches, this time from the target to reference image, and"}, {"category_id": 15, "poly": [134.0, 1783.0, 182.0, 1783.0, 182.0, 1815.0, 134.0, 1815.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [136.0, 1714.0, 580.0, 1714.0, 580.0, 1746.0, 136.0, 1746.0], "score": 0.98, "text": "verifies if the results agree. Given that"}, {"category_id": 15, "poly": [305.0, 1783.0, 592.0, 1783.0, 592.0, 1815.0, 305.0, 1815.0], "score": 0.99, "text": ", the confidence measure"}, {"category_id": 15, "poly": [628.0, 1783.0, 811.0, 1783.0, 811.0, 1815.0, 628.0, 1815.0], "score": 0.97, "text": "is computed as"}, {"category_id": 15, "poly": [132.0, 1746.0, 607.0, 1751.0, 607.0, 1783.0, 132.0, 1778.0], "score": 1.0, "text": "in the right image is the match for pixel"}, {"category_id": 15, "poly": [628.0, 1746.0, 836.0, 1751.0, 836.0, 1783.0, 628.0, 1778.0], "score": 0.98, "text": "in the left image,"}, {"category_id": 15, "poly": [695.0, 1714.0, 815.0, 1714.0, 815.0, 1746.0, 695.0, 1746.0], "score": 0.99, "text": ", i.e. pixel"}, {"category_id": 15, "poly": [1132.0, 814.0, 1298.0, 814.0, 1298.0, 852.0, 1132.0, 852.0], "score": 1.0, "text": "IV. RESULTS"}, {"category_id": 15, "poly": [155.0, 401.0, 481.0, 406.0, 480.0, 445.0, 155.0, 440.0], "score": 0.99, "text": "Temporal cost aggregation"}, {"category_id": 15, "poly": [129.0, 1325.0, 718.0, 1327.0, 718.0, 1366.0, 129.0, 1363.0], "score": 0.99, "text": "C. Disparity Selection and Confidence Assessment"}, {"category_id": 15, "poly": [888.0, 158.0, 1252.0, 158.0, 1252.0, 197.0, 888.0, 197.0], "score": 0.97, "text": "Iterative Disparity Refinement"}], "page_info": {"page_no": 2, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 1, "poly": [133.2669677734375, 156.7020721435547, 840.6729125976562, 156.7020721435547, 840.6729125976562, 257.75836181640625, 133.2669677734375, 257.75836181640625], "score": 0.9999951124191284}, {"category_id": 3, "poly": [866.177734375, 171.2958526611328, 1510.944580078125, 171.2958526611328, 1510.944580078125, 848.8190307617188, 866.177734375, 848.8190307617188], "score": 0.9999942779541016}, {"category_id": 1, "poly": [131.3756561279297, 1520.5887451171875, 838.545166015625, 1520.5887451171875, 838.545166015625, 1885.353515625, 131.3756561279297, 1885.353515625], "score": 0.9999925494194031}, {"category_id": 4, "poly": [131.56919860839844, 1352.6187744140625, 840.1758422851562, 1352.6187744140625, 840.1758422851562, 1490.513671875, 131.56919860839844, 1490.513671875], "score": 0.9999915361404419}, {"category_id": 1, "poly": [132.41786193847656, 1886.0615234375, 838.675537109375, 1886.0615234375, 838.675537109375, 2019.347412109375, 132.41786193847656, 2019.347412109375], "score": 0.9999526739120483}, {"category_id": 3, "poly": [136.71240234375, 278.259765625, 816.1984252929688, 278.259765625, 816.1984252929688, 1348.5758056640625, 136.71240234375, 1348.5758056640625], "score": 0.9999439120292664}, {"category_id": 1, "poly": [863.4852905273438, 1917.056884765625, 1569.6337890625, 1917.056884765625, 1569.6337890625, 2020.57421875, 863.4852905273438, 2020.57421875], "score": 0.9999344348907471}, {"category_id": 4, "poly": [861.7813720703125, 1749.4459228515625, 1567.659912109375, 1749.4459228515625, 1567.659912109375, 1852.389892578125, 861.7813720703125, 1852.389892578125], "score": 0.9986151456832886}, {"category_id": 3, "poly": [874.6467895507812, 1536.7642822265625, 1506.6514892578125, 1536.7642822265625, 1506.6514892578125, 1734.9659423828125, 874.6467895507812, 1734.9659423828125], "score": 0.9940656423568726}, {"category_id": 4, "poly": [859.3250122070312, 861.2320556640625, 1569.650634765625, 861.2320556640625, 1569.650634765625, 1033.0804443359375, 859.3250122070312, 1033.0804443359375], "score": 0.985899806022644}, {"category_id": 1, "poly": [861.6172485351562, 1064.186279296875, 1564.036865234375, 1064.186279296875, 1564.036865234375, 1135.5125732421875, 861.6172485351562, 1135.5125732421875], "score": 0.9128350019454956}, {"category_id": 3, "poly": [888.8074340820312, 1163.7965087890625, 1529.8028564453125, 1163.7965087890625, 1529.8028564453125, 1510.91162109375, 888.8074340820312, 1510.91162109375], "score": 0.7896175384521484}, {"category_id": 5, "poly": [900.75146484375, 1161.0631103515625, 1527.15673828125, 1161.0631103515625, 1527.15673828125, 1490.2149658203125, 900.75146484375, 1490.2149658203125], "score": 0.7772396802902222}, {"category_id": 0, "poly": [1178.85791015625, 152.25347900390625, 1284.6339111328125, 152.25347900390625, 1284.6339111328125, 179.1011962890625, 1178.85791015625, 179.1011962890625], "score": 0.5732811689376831}, {"category_id": 4, "poly": [1178.981689453125, 152.21678161621094, 1284.4158935546875, 152.21678161621094, 1284.4158935546875, 179.05447387695312, 1178.981689453125, 179.05447387695312], "score": 0.4503781795501709}, {"category_id": 13, "poly": [1295, 896, 1483, 896, 1483, 931, 1295, 931], "score": 0.93, "latex": "\\{\\pm0,\\pm20,\\pm40\\}"}, {"category_id": 13, "poly": [481, 1919, 534, 1919, 534, 1949, 481, 1949], "score": 0.87, "latex": "\\pm20"}, {"category_id": 13, "poly": [591, 1919, 644, 1919, 644, 1949, 591, 1949], "score": 0.87, "latex": "\\pm40"}, {"category_id": 13, "poly": [1227, 1436, 1253, 1436, 1253, 1459, 1227, 1459], "score": 0.86, "latex": "\\gamma_{c}"}, {"category_id": 13, "poly": [1295, 1436, 1323, 1436, 1323, 1461, 1295, 1461], "score": 0.85, "latex": "\\gamma_{g}"}, {"category_id": 13, "poly": [133, 1588, 186, 1588, 186, 1618, 133, 1618], "score": 0.85, "latex": "\\pm20"}, {"category_id": 13, "poly": [249, 1587, 302, 1587, 302, 1618, 249, 1618], "score": 0.84, "latex": "\\pm40"}, {"category_id": 13, "poly": [787, 1555, 828, 1555, 828, 1585, 787, 1585], "score": 0.82, "latex": "\\pm0"}, {"category_id": 13, "poly": [532, 1421, 572, 1421, 572, 1452, 532, 1452], "score": 0.81, "latex": "3^{\\mathrm{rd}}"}, {"category_id": 13, "poly": [230, 1389, 266, 1389, 266, 1419, 230, 1419], "score": 0.8, "latex": "1^{\\mathrm{st}}"}, {"category_id": 13, "poly": [655, 1986, 675, 1986, 675, 2013, 655, 2013], "score": 0.78, "latex": "\\lambda"}, {"category_id": 13, "poly": [200, 1455, 240, 1455, 240, 1486, 200, 1486], "score": 0.75, "latex": "4^{\\mathrm{th}}"}, {"category_id": 13, "poly": [954, 1255, 980, 1255, 980, 1275, 954, 1275], "score": 0.75, "latex": "\\gamma_{c}"}, {"category_id": 13, "poly": [954, 1281, 980, 1281, 980, 1302, 954, 1302], "score": 0.74, "latex": "\\gamma_{g}"}, {"category_id": 13, "poly": [959, 1227, 976, 1227, 976, 1245, 959, 1245], "score": 0.74, "latex": "\\tau"}, {"category_id": 13, "poly": [960, 1352, 976, 1352, 976, 1372, 960, 1372], "score": 0.72, "latex": "k"}, {"category_id": 13, "poly": [410, 1986, 430, 1986, 430, 2013, 410, 2013], "score": 0.7, "latex": "\\lambda"}, {"category_id": 13, "poly": [955, 1331, 979, 1331, 979, 1351, 955, 1351], "score": 0.7, "latex": "\\gamma_{t}"}, {"category_id": 13, "poly": [1489, 1752, 1510, 1752, 1510, 1778, 1489, 1778], "score": 0.69, "latex": "\\lambda"}, {"category_id": 13, "poly": [1176, 965, 1195, 965, 1195, 992, 1176, 992], "score": 0.69, "latex": "\\lambda"}, {"category_id": 13, "poly": [246, 1421, 289, 1421, 289, 1452, 246, 1452], "score": 0.69, "latex": "2^{\\mathrm{nd}}"}, {"category_id": 13, "poly": [958, 1302, 977, 1302, 977, 1323, 958, 1323], "score": 0.63, "latex": "\\lambda"}, {"category_id": 13, "poly": [959, 1380, 977, 1380, 977, 1397, 959, 1397], "score": 0.58, "latex": "\\alpha"}, {"category_id": 13, "poly": [436, 1621, 455, 1621, 455, 1648, 436, 1648], "score": 0.58, "latex": "\\lambda"}, {"category_id": 13, "poly": [959, 1204, 977, 1204, 977, 1219, 959, 1219], "score": 0.42, "latex": "\\omega"}, {"category_id": 13, "poly": [870, 1592, 890, 1592, 890, 1617, 870, 1617], "score": 0.31, "latex": "\\lambda"}, {"category_id": 15, "poly": [134.0, 160.0, 836.0, 160.0, 836.0, 192.0, 134.0, 192.0], "score": 0.99, "text": "of the synthetic stereo scene from a single camera perspective,"}, {"category_id": 15, "poly": [134.0, 195.0, 838.0, 195.0, 838.0, 227.0, 134.0, 227.0], "score": 0.99, "text": "along with the ground truth disparity, occlusion map, and"}, {"category_id": 15, "poly": [130.0, 222.0, 347.0, 230.0, 346.0, 264.0, 129.0, 256.0], "score": 0.99, "text": "discontinuity map."}, {"category_id": 15, "poly": [155.0, 1517.0, 841.0, 1519.0, 841.0, 1558.0, 155.0, 1556.0], "score": 0.99, "text": " The results of temporal stereo matching are given in Figure"}, {"category_id": 15, "poly": [132.0, 1657.0, 838.0, 1657.0, 838.0, 1689.0, 132.0, 1689.0], "score": 0.99, "text": "stereo matching methods, improvements are negligible when"}, {"category_id": 15, "poly": [132.0, 1691.0, 838.0, 1691.0, 838.0, 1723.0, 132.0, 1723.0], "score": 0.99, "text": "no noise is added to the images [10], [19]. This is largely due"}, {"category_id": 15, "poly": [132.0, 1723.0, 836.0, 1723.0, 836.0, 1753.0, 132.0, 1753.0], "score": 0.98, "text": "to the fact that the video used to evaluate these methods is"}, {"category_id": 15, "poly": [129.0, 1753.0, 838.0, 1751.0, 839.0, 1790.0, 129.0, 1792.0], "score": 0.99, "text": " computer generated with very little noise to start with, thus"}, {"category_id": 15, "poly": [134.0, 1790.0, 836.0, 1790.0, 836.0, 1822.0, 134.0, 1822.0], "score": 0.99, "text": "the noise suppression achieved with temporal stereo matching"}, {"category_id": 15, "poly": [132.0, 1817.0, 839.0, 1822.0, 838.0, 1859.0, 132.0, 1854.0], "score": 0.99, "text": "shows little to no improvement over methods that operate on"}, {"category_id": 15, "poly": [130.0, 1856.0, 319.0, 1859.0, 318.0, 1891.0, 129.0, 1888.0], "score": 0.99, "text": "pairs of images."}, {"category_id": 15, "poly": [187.0, 1590.0, 248.0, 1590.0, 248.0, 1622.0, 187.0, 1622.0], "score": 0.87, "text": ",and"}, {"category_id": 15, "poly": [303.0, 1590.0, 838.0, 1590.0, 838.0, 1622.0, 303.0, 1622.0], "score": 0.98, "text": ". Each performance plot is given as a function"}, {"category_id": 15, "poly": [127.0, 1551.0, 786.0, 1554.0, 786.0, 1593.0, 127.0, 1590.0], "score": 0.98, "text": " 3 for uniform additive noise confined to the ranges of"}, {"category_id": 15, "poly": [134.0, 1622.0, 435.0, 1622.0, 435.0, 1655.0, 134.0, 1655.0], "score": 0.99, "text": "of the feedback coefficient"}, {"category_id": 15, "poly": [456.0, 1622.0, 836.0, 1622.0, 836.0, 1655.0, 456.0, 1655.0], "score": 0.97, "text": ". As with the majority of temporal"}, {"category_id": 15, "poly": [134.0, 1359.0, 834.0, 1359.0, 834.0, 1391.0, 134.0, 1391.0], "score": 0.99, "text": "Figure 2: Two sample frames from the synthetic video se-"}, {"category_id": 15, "poly": [573.0, 1418.0, 836.0, 1421.0, 836.0, 1460.0, 573.0, 1457.0], "score": 1.0, "text": "row), and discontinuity"}, {"category_id": 15, "poly": [134.0, 1393.0, 229.0, 1393.0, 229.0, 1425.0, 134.0, 1425.0], "score": 0.96, "text": "quence ("}, {"category_id": 15, "poly": [267.0, 1393.0, 836.0, 1393.0, 836.0, 1425.0, 267.0, 1425.0], "score": 0.98, "text": "row), along with their corresponding ground truth"}, {"category_id": 15, "poly": [127.0, 1456.0, 199.0, 1450.0, 199.0, 1489.0, 128.0, 1495.0], "score": 0.91, "text": "map ("}, {"category_id": 15, "poly": [241.0, 1456.0, 309.0, 1450.0, 310.0, 1489.0, 241.0, 1495.0], "score": 1.0, "text": "row)."}, {"category_id": 15, "poly": [129.0, 1418.0, 245.0, 1421.0, 245.0, 1460.0, 129.0, 1457.0], "score": 0.93, "text": " disparity "}, {"category_id": 15, "poly": [290.0, 1418.0, 531.0, 1421.0, 531.0, 1460.0, 290.0, 1457.0], "score": 1.0, "text": "row), occlusion map ("}, {"category_id": 15, "poly": [159.0, 1888.0, 836.0, 1888.0, 836.0, 1920.0, 159.0, 1920.0], "score": 0.99, "text": " Significant improvements in accuracy can be seen in Figure"}, {"category_id": 15, "poly": [132.0, 1950.0, 839.0, 1955.0, 838.0, 1987.0, 132.0, 1982.0], "score": 1.0, "text": "the effect of noise in the current frame is reduced by increasing"}, {"category_id": 15, "poly": [134.0, 1920.0, 480.0, 1920.0, 480.0, 1952.0, 134.0, 1952.0], "score": 0.99, "text": "3 when the noise has ranges of"}, {"category_id": 15, "poly": [535.0, 1920.0, 590.0, 1920.0, 590.0, 1952.0, 535.0, 1952.0], "score": 0.92, "text": " and"}, {"category_id": 15, "poly": [645.0, 1920.0, 836.0, 1920.0, 836.0, 1952.0, 645.0, 1952.0], "score": 0.96, "text": ". In this scenario,"}, {"category_id": 15, "poly": [676.0, 1989.0, 838.0, 1989.0, 838.0, 2019.0, 676.0, 2019.0], "score": 0.98, "text": "has the effect"}, {"category_id": 15, "poly": [134.0, 1989.0, 409.0, 1989.0, 409.0, 2019.0, 134.0, 2019.0], "score": 1.0, "text": "the feedback coefficient"}, {"category_id": 15, "poly": [431.0, 1989.0, 654.0, 1989.0, 654.0, 2019.0, 431.0, 2019.0], "score": 0.97, "text": ". This increasing of"}, {"category_id": 15, "poly": [864.0, 1920.0, 1566.0, 1920.0, 1566.0, 1952.0, 864.0, 1952.0], "score": 0.98, "text": "of averaging out noise in the per-pixel costs by selecting"}, {"category_id": 15, "poly": [861.0, 1950.0, 1566.0, 1948.0, 1566.0, 1987.0, 862.0, 1989.0], "score": 0.98, "text": "matches based more heavily upon the auxiliary cost, which"}, {"category_id": 15, "poly": [862.0, 1989.0, 1568.0, 1989.0, 1568.0, 2021.0, 862.0, 2021.0], "score": 0.99, "text": "is essentially a much more stable running average of the cost"}, {"category_id": 15, "poly": [864.0, 1788.0, 1564.0, 1785.0, 1564.0, 1817.0, 864.0, 1820.0], "score": 0.99, "text": "responding to the smallest mean squared error (MSE) of the"}, {"category_id": 15, "poly": [864.0, 1822.0, 1427.0, 1822.0, 1427.0, 1854.0, 864.0, 1854.0], "score": 0.99, "text": "disparity estimates for a range of noise strengths."}, {"category_id": 15, "poly": [862.0, 1748.0, 1488.0, 1753.0, 1488.0, 1785.0, 861.0, 1781.0], "score": 0.99, "text": "Figure 4: Optimal values of the feedback coefficient "}, {"category_id": 15, "poly": [1511.0, 1748.0, 1561.0, 1753.0, 1561.0, 1785.0, 1511.0, 1781.0], "score": 0.96, "text": "cor-"}, {"category_id": 15, "poly": [864.0, 866.0, 1566.0, 866.0, 1566.0, 898.0, 864.0, 898.0], "score": 0.99, "text": "Figure 3: Performance of temporal matching at different levels"}, {"category_id": 15, "poly": [864.0, 935.0, 1566.0, 933.0, 1566.0, 965.0, 864.0, 967.0], "score": 0.98, "text": "squared error (MSE) of disparities is plotted versus the values"}, {"category_id": 15, "poly": [864.0, 1001.0, 1492.0, 1001.0, 1492.0, 1031.0, 864.0, 1031.0], "score": 0.99, "text": "values of MSE obtained without temporal aggregation."}, {"category_id": 15, "poly": [864.0, 901.0, 1294.0, 901.0, 1294.0, 933.0, 864.0, 933.0], "score": 0.99, "text": "of uniformly distributed image noise"}, {"category_id": 15, "poly": [1484.0, 901.0, 1568.0, 901.0, 1568.0, 933.0, 1484.0, 933.0], "score": 0.99, "text": ".Mean"}, {"category_id": 15, "poly": [864.0, 967.0, 1175.0, 967.0, 1175.0, 999.0, 864.0, 999.0], "score": 0.99, "text": "of the feedback coefficient"}, {"category_id": 15, "poly": [1196.0, 967.0, 1568.0, 967.0, 1568.0, 999.0, 1196.0, 999.0], "score": 0.99, "text": ". Dashed lines correspond to the"}, {"category_id": 15, "poly": [857.0, 1061.0, 1566.0, 1068.0, 1566.0, 1107.0, 857.0, 1100.0], "score": 0.99, "text": " Table I: Parameters used in the evaluation of real-time tempo-"}, {"category_id": 15, "poly": [859.0, 1102.0, 1093.0, 1105.0, 1092.0, 1137.0, 859.0, 1134.0], "score": 1.0, "text": "ral stereo matching."}, {"category_id": 15, "poly": [1178.0, 151.0, 1282.0, 151.0, 1282.0, 186.0, 1178.0, 186.0], "score": 1.0, "text": "Noise: \u00b10"}, {"category_id": 15, "poly": [1178.0, 151.0, 1282.0, 151.0, 1282.0, 186.0, 1178.0, 186.0], "score": 1.0, "text": "Noise: \u00b10"}], "page_info": {"page_no": 3, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 5, "poly": [880.81298828125, 613.750244140625, 1552.5638427734375, 613.750244140625, 1552.5638427734375, 855.9174194335938, 880.81298828125, 855.9174194335938], "score": 0.9999957084655762}, {"category_id": 1, "poly": [862.7925415039062, 158.05548095703125, 1569.6671142578125, 158.05548095703125, 1569.6671142578125, 456.6153869628906, 862.7925415039062, 456.6153869628906], "score": 0.9999922513961792}, {"category_id": 1, "poly": [864.6585083007812, 1061.7374267578125, 1570.4825439453125, 1061.7374267578125, 1570.4825439453125, 1459.7132568359375, 864.6585083007812, 1459.7132568359375], "score": 0.9999921321868896}, {"category_id": 1, "poly": [130.64285278320312, 1519.7022705078125, 836.2221069335938, 1519.7022705078125, 836.2221069335938, 1882.68359375, 130.64285278320312, 1882.68359375], "score": 0.9999898672103882}, {"category_id": 1, "poly": [133.1135711669922, 158.4307861328125, 837.9683837890625, 158.4307861328125, 837.9683837890625, 323.343017578125, 133.1135711669922, 323.343017578125], "score": 0.9999892115592957}, {"category_id": 4, "poly": [132.3511199951172, 1347.8763427734375, 839.7514038085938, 1347.8763427734375, 839.7514038085938, 1476.9757080078125, 132.3511199951172, 1476.9757080078125], "score": 0.9999880790710449}, {"category_id": 7, "poly": [887.6280517578125, 860.9362182617188, 1551.5972900390625, 860.9362182617188, 1551.5972900390625, 964.0142211914062, 887.6280517578125, 964.0142211914062], "score": 0.9999836683273315}, {"category_id": 1, "poly": [869.9986572265625, 1514.7762451171875, 1571.624755859375, 1514.7762451171875, 1571.624755859375, 2022.618896484375, 869.9986572265625, 2022.618896484375], "score": 0.9999811053276062}, {"category_id": 3, "poly": [164.82151794433594, 352.74810791015625, 805.8219604492188, 352.74810791015625, 805.8219604492188, 1320.43310546875, 164.82151794433594, 1320.43310546875], "score": 0.9999799728393555}, {"category_id": 0, "poly": [1137.668701171875, 1477.0120849609375, 1293.498046875, 1477.0120849609375, 1293.498046875, 1502.5439453125, 1137.668701171875, 1502.5439453125], "score": 0.9999679327011108}, {"category_id": 1, "poly": [133.0285186767578, 1886.7501220703125, 837.0147705078125, 1886.7501220703125, 837.0147705078125, 2018.0294189453125, 133.0285186767578, 2018.0294189453125], "score": 0.9999630451202393}, {"category_id": 0, "poly": [1114.8399658203125, 1022.4933471679688, 1317.0313720703125, 1022.4933471679688, 1317.0313720703125, 1052.679931640625, 1114.8399658203125, 1052.679931640625], "score": 0.9999338984489441}, {"category_id": 1, "poly": [862.0576171875, 480.8196105957031, 1565.8367919921875, 480.8196105957031, 1565.8367919921875, 577.5508422851562, 862.0576171875, 577.5508422851562], "score": 0.8958550691604614}, {"category_id": 6, "poly": [862.0606079101562, 480.7809753417969, 1565.667724609375, 480.7809753417969, 1565.667724609375, 577.4689331054688, 862.0606079101562, 577.4689331054688], "score": 0.4145430028438568}, {"category_id": 13, "poly": [736, 1445, 827, 1445, 827, 1475, 736, 1475], "score": 0.9, "latex": "\\lambda=0.8"}, {"category_id": 13, "poly": [1003, 887, 1105, 887, 1105, 911, 1003, 911], "score": 0.89, "latex": "320\\times240"}, {"category_id": 13, "poly": [338, 1446, 391, 1446, 391, 1475, 338, 1475], "score": 0.87, "latex": "\\pm30"}, {"category_id": 13, "poly": [166, 1619, 219, 1619, 219, 1649, 166, 1649], "score": 0.85, "latex": "\\pm40"}, {"category_id": 13, "poly": [301, 196, 329, 196, 329, 224, 301, 224], "score": 0.84, "latex": "\\gamma_{t}"}, {"category_id": 13, "poly": [795, 1586, 836, 1586, 836, 1616, 795, 1616], "score": 0.84, "latex": "\\pm0"}, {"category_id": 13, "poly": [1037, 939, 1059, 939, 1059, 960, 1037, 960], "score": 0.83, "latex": "\\%"}, {"category_id": 13, "poly": [462, 1586, 482, 1586, 482, 1613, 462, 1613], "score": 0.78, "latex": "\\lambda"}, {"category_id": 15, "poly": [862.0, 160.0, 1571.0, 160.0, 1571.0, 192.0, 862.0, 192.0], "score": 0.98, "text": "the proposed implementation achieves the highest speed of"}, {"category_id": 15, "poly": [864.0, 195.0, 1566.0, 195.0, 1566.0, 227.0, 864.0, 227.0], "score": 0.99, "text": "operation measured by the number of disparity hypotheses"}, {"category_id": 15, "poly": [864.0, 227.0, 1568.0, 227.0, 1568.0, 259.0, 864.0, 259.0], "score": 0.99, "text": "evaluated per second, as shown in Table I1. It is also the second"}, {"category_id": 15, "poly": [862.0, 261.0, 1568.0, 261.0, 1568.0, 293.0, 862.0, 293.0], "score": 0.99, "text": "most accurate real-time method in terms of error rate, as"}, {"category_id": 15, "poly": [864.0, 296.0, 1564.0, 296.0, 1564.0, 325.0, 864.0, 325.0], "score": 1.0, "text": "measured using the Middlebury stereo evaluation benchmark."}, {"category_id": 15, "poly": [859.0, 323.0, 1568.0, 325.0, 1568.0, 358.0, 859.0, 355.0], "score": 0.98, "text": " It should be noted that it is difficult to establish an unbiased"}, {"category_id": 15, "poly": [862.0, 358.0, 1566.0, 358.0, 1566.0, 390.0, 862.0, 390.0], "score": 1.0, "text": "metric for speed comparisons, as the architecture, number of"}, {"category_id": 15, "poly": [866.0, 394.0, 1568.0, 394.0, 1568.0, 426.0, 866.0, 426.0], "score": 0.98, "text": "cores, and clock speed of graphics hardware used are not"}, {"category_id": 15, "poly": [862.0, 424.0, 1259.0, 429.0, 1259.0, 461.0, 861.0, 456.0], "score": 0.99, "text": "consistent across implementations."}, {"category_id": 15, "poly": [889.0, 1061.0, 1571.0, 1061.0, 1571.0, 1100.0, 889.0, 1100.0], "score": 1.0, "text": "While the majority of stereo matching algorithms focus"}, {"category_id": 15, "poly": [859.0, 1093.0, 1571.0, 1095.0, 1571.0, 1134.0, 859.0, 1132.0], "score": 0.99, "text": " on achieving high accuracy on still images, the volume of"}, {"category_id": 15, "poly": [862.0, 1130.0, 1564.0, 1130.0, 1564.0, 1162.0, 862.0, 1162.0], "score": 0.99, "text": "research aimed at recovery of temporally consistent disparity"}, {"category_id": 15, "poly": [862.0, 1162.0, 1568.0, 1162.0, 1568.0, 1201.0, 862.0, 1201.0], "score": 0.99, "text": "maps remains disproportionally small. This paper introduces"}, {"category_id": 15, "poly": [862.0, 1196.0, 1568.0, 1196.0, 1568.0, 1235.0, 862.0, 1235.0], "score": 0.98, "text": "an efficient temporal cost aggregation scheme that can easily"}, {"category_id": 15, "poly": [859.0, 1226.0, 1571.0, 1228.0, 1571.0, 1267.0, 859.0, 1265.0], "score": 0.99, "text": "be combined with conventional spatial cost aggregation to"}, {"category_id": 15, "poly": [864.0, 1265.0, 1568.0, 1265.0, 1568.0, 1297.0, 864.0, 1297.0], "score": 1.0, "text": "improve the accuracy of stereo matching when operating on"}, {"category_id": 15, "poly": [864.0, 1297.0, 1568.0, 1297.0, 1568.0, 1329.0, 864.0, 1329.0], "score": 0.99, "text": "video sequences. A synthetic video sequence, along with"}, {"category_id": 15, "poly": [864.0, 1331.0, 1568.0, 1331.0, 1568.0, 1364.0, 864.0, 1364.0], "score": 0.99, "text": "ground truth disparity data, was generated to evaluate the"}, {"category_id": 15, "poly": [862.0, 1361.0, 1571.0, 1361.0, 1571.0, 1400.0, 862.0, 1400.0], "score": 0.98, "text": "performance of the proposed method. It was shown that"}, {"category_id": 15, "poly": [864.0, 1398.0, 1571.0, 1398.0, 1571.0, 1430.0, 864.0, 1430.0], "score": 0.98, "text": "temporal aggregation is significantly more robust to noise than"}, {"category_id": 15, "poly": [862.0, 1430.0, 1497.0, 1430.0, 1497.0, 1462.0, 862.0, 1462.0], "score": 0.99, "text": "a method that only considers the current stereo frames."}, {"category_id": 15, "poly": [157.0, 1517.0, 838.0, 1517.0, 838.0, 1556.0, 157.0, 1556.0], "score": 0.99, "text": "The optimal value of the feedback coefficient is largely"}, {"category_id": 15, "poly": [134.0, 1554.0, 836.0, 1554.0, 836.0, 1584.0, 134.0, 1584.0], "score": 0.97, "text": "dependent on the noise being added to the image. Figure 4"}, {"category_id": 15, "poly": [132.0, 1655.0, 838.0, 1655.0, 838.0, 1684.0, 132.0, 1684.0], "score": 0.99, "text": "rely on the auxiliary cost when noise is high and it is more"}, {"category_id": 15, "poly": [132.0, 1684.0, 839.0, 1689.0, 838.0, 1721.0, 132.0, 1716.0], "score": 0.98, "text": "beneficial to rely on the current cost when noise is low. Figure"}, {"category_id": 15, "poly": [132.0, 1719.0, 839.0, 1723.0, 838.0, 1755.0, 132.0, 1751.0], "score": 1.0, "text": "5 illustrates the improvements that are achieved when applying"}, {"category_id": 15, "poly": [134.0, 1755.0, 836.0, 1755.0, 836.0, 1785.0, 134.0, 1785.0], "score": 0.98, "text": "temporal stereo matching to a particular pair of frames in the"}, {"category_id": 15, "poly": [134.0, 1788.0, 834.0, 1788.0, 834.0, 1820.0, 134.0, 1820.0], "score": 1.0, "text": "synthetic video sequence. Clearly, the noise in the disparity"}, {"category_id": 15, "poly": [134.0, 1822.0, 836.0, 1822.0, 836.0, 1854.0, 134.0, 1854.0], "score": 0.99, "text": "map is drastically reduced when temporal stereo matching is"}, {"category_id": 15, "poly": [132.0, 1856.0, 196.0, 1856.0, 196.0, 1886.0, 132.0, 1886.0], "score": 1.0, "text": "used."}, {"category_id": 15, "poly": [132.0, 1620.0, 165.0, 1620.0, 165.0, 1652.0, 132.0, 1652.0], "score": 0.99, "text": "to"}, {"category_id": 15, "poly": [220.0, 1620.0, 838.0, 1620.0, 838.0, 1652.0, 220.0, 1652.0], "score": 0.98, "text": ". As intuition would suggest, it is more beneficial to"}, {"category_id": 15, "poly": [127.0, 1584.0, 461.0, 1581.0, 461.0, 1620.0, 127.0, 1623.0], "score": 0.96, "text": " shows the optimal values of"}, {"category_id": 15, "poly": [483.0, 1584.0, 794.0, 1581.0, 794.0, 1620.0, 483.0, 1623.0], "score": 0.99, "text": "for noise ranging between"}, {"category_id": 15, "poly": [134.0, 160.0, 836.0, 160.0, 836.0, 192.0, 134.0, 192.0], "score": 0.99, "text": "over the most recent frames. By maintaining a reasonably"}, {"category_id": 15, "poly": [134.0, 229.0, 836.0, 229.0, 836.0, 261.0, 134.0, 261.0], "score": 0.98, "text": "edges, essentially reducing over-smoothing of a pixel's dis-"}, {"category_id": 15, "poly": [132.0, 261.0, 838.0, 261.0, 838.0, 293.0, 132.0, 293.0], "score": 0.99, "text": "parity when a pixel transitions from one depth to another in"}, {"category_id": 15, "poly": [130.0, 293.0, 354.0, 296.0, 353.0, 328.0, 129.0, 325.0], "score": 1.0, "text": "subsequent frames."}, {"category_id": 15, "poly": [134.0, 192.0, 300.0, 192.0, 300.0, 225.0, 134.0, 225.0], "score": 0.93, "text": "high value of"}, {"category_id": 15, "poly": [330.0, 192.0, 836.0, 192.0, 836.0, 225.0, 330.0, 225.0], "score": 0.99, "text": ", the auxiliary cost also preserves temporal"}, {"category_id": 15, "poly": [132.0, 1345.0, 836.0, 1348.0, 836.0, 1382.0, 132.0, 1380.0], "score": 1.0, "text": "Figure 5: A comparison of stereo matching without temporal"}, {"category_id": 15, "poly": [132.0, 1382.0, 834.0, 1382.0, 834.0, 1414.0, 132.0, 1414.0], "score": 0.98, "text": "cost aggregation (top\uff09 and with temporal cost aggregation"}, {"category_id": 15, "poly": [134.0, 1416.0, 836.0, 1416.0, 836.0, 1446.0, 134.0, 1446.0], "score": 0.98, "text": "(bottom) for a single frame in the synthetic video sequence"}, {"category_id": 15, "poly": [134.0, 1448.0, 337.0, 1446.0, 337.0, 1478.0, 134.0, 1480.0], "score": 0.98, "text": "where the noise is"}, {"category_id": 15, "poly": [392.0, 1448.0, 735.0, 1446.0, 735.0, 1478.0, 392.0, 1480.0], "score": 0.99, "text": "and the feedback coefficient is"}, {"category_id": 15, "poly": [896.0, 855.0, 1324.0, 857.0, 1323.0, 896.0, 896.0, 894.0], "score": 0.95, "text": "1I Millions of Disparity Estimates per Second."}, {"category_id": 15, "poly": [903.0, 912.0, 1550.0, 912.0, 1550.0, 944.0, 903.0, 944.0], "score": 0.99, "text": "3 As measured by the Middlebury stereo performance benchmark using"}, {"category_id": 15, "poly": [901.0, 887.0, 1002.0, 887.0, 1002.0, 919.0, 901.0, 919.0], "score": 0.99, "text": "2Assumes"}, {"category_id": 15, "poly": [1106.0, 887.0, 1404.0, 887.0, 1404.0, 919.0, 1106.0, 919.0], "score": 0.98, "text": "images with 32 disparity levels."}, {"category_id": 15, "poly": [915.0, 937.0, 1036.0, 937.0, 1036.0, 969.0, 915.0, 969.0], "score": 0.96, "text": "the avgerage"}, {"category_id": 15, "poly": [1060.0, 937.0, 1192.0, 937.0, 1192.0, 969.0, 1060.0, 969.0], "score": 0.96, "text": "of bad pixels."}, {"category_id": 15, "poly": [873.0, 1515.0, 1571.0, 1515.0, 1571.0, 1545.0, 873.0, 1545.0], "score": 0.97, "text": "[1] D. Scharstein and R. Szeliski, \u201cA taxonomy and evaluation of dense "}, {"category_id": 15, "poly": [915.0, 1542.0, 1573.0, 1542.0, 1573.0, 1572.0, 915.0, 1572.0], "score": 0.98, "text": "two-frame stereo correspondence algorithms\u201d\u2019 International Journal of"}, {"category_id": 15, "poly": [915.0, 1565.0, 1409.0, 1565.0, 1409.0, 1597.0, 915.0, 1597.0], "score": 0.98, "text": "Computer Vision, vol. 47, pp. 7-42, April-June 2002."}, {"category_id": 15, "poly": [871.0, 1588.0, 1568.0, 1590.0, 1568.0, 1623.0, 871.0, 1620.0], "score": 0.98, "text": "[2] D. Scharstein and R. Szeliski, \u201cHigh-accuracy stereo depth maps using"}, {"category_id": 15, "poly": [915.0, 1616.0, 1568.0, 1616.0, 1568.0, 1648.0, 915.0, 1648.0], "score": 0.97, "text": "structured light,\u201d in In IEEE Computer Society Conference on Computer"}, {"category_id": 15, "poly": [915.0, 1641.0, 1508.0, 1641.0, 1508.0, 1673.0, 915.0, 1673.0], "score": 0.98, "text": "Vision and Pattern Recognition, vol. 1, pp. 195-202, June 2003."}, {"category_id": 15, "poly": [873.0, 1666.0, 1568.0, 1666.0, 1568.0, 1696.0, 873.0, 1696.0], "score": 0.99, "text": "[3] J. Kowalczuk, E. Psota, and L. Perez, \u201cReal-time stereo matching on"}, {"category_id": 15, "poly": [912.0, 1689.0, 1571.0, 1689.0, 1571.0, 1721.0, 912.0, 1721.0], "score": 0.98, "text": " CUDA using an iterative refinement method for adaptive support-weight"}, {"category_id": 15, "poly": [915.0, 1714.0, 1571.0, 1714.0, 1571.0, 1746.0, 915.0, 1746.0], "score": 0.99, "text": "correspondences,\u201d Circuits and Systems for Video Technology, IEEE"}, {"category_id": 15, "poly": [908.0, 1737.0, 1374.0, 1735.0, 1374.0, 1774.0, 908.0, 1776.0], "score": 0.96, "text": "Transactions on, vol. 23, Ppp. 94 -104, Jan. 2013."}, {"category_id": 15, "poly": [873.0, 1765.0, 1568.0, 1765.0, 1568.0, 1797.0, 873.0, 1797.0], "score": 0.99, "text": "[4] K.-J. Yoon and I.-S. Kweon, Locally adaptive support-weight approach"}, {"category_id": 15, "poly": [912.0, 1790.0, 1571.0, 1790.0, 1571.0, 1822.0, 912.0, 1822.0], "score": 0.97, "text": "for visual correspondence search,' in CVPR'05: Proceedings of the 2005"}, {"category_id": 15, "poly": [915.0, 1815.0, 1571.0, 1815.0, 1571.0, 1847.0, 915.0, 1847.0], "score": 0.96, "text": "IEEE Computer Society Conference on ComputerVision andPattern"}, {"category_id": 15, "poly": [915.0, 1840.0, 1568.0, 1840.0, 1568.0, 1872.0, 915.0, 1872.0], "score": 0.97, "text": "Recognition (CVPR'05) - Volume 2, (Washington, DC, USA), Pp. 924-"}, {"category_id": 15, "poly": [912.0, 1863.0, 1247.0, 1863.0, 1247.0, 1895.0, 912.0, 1895.0], "score": 0.98, "text": "931, IEEE Computer Society, 2005."}, {"category_id": 15, "poly": [873.0, 1891.0, 1568.0, 1891.0, 1568.0, 1923.0, 873.0, 1923.0], "score": 0.97, "text": "[5] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, \u201cHigh-quality real-"}, {"category_id": 15, "poly": [912.0, 1916.0, 1566.0, 1916.0, 1566.0, 1946.0, 912.0, 1946.0], "score": 0.99, "text": "time stereo using adaptive cost aggregation and dynamic programming,\""}, {"category_id": 15, "poly": [910.0, 1936.0, 1568.0, 1939.0, 1568.0, 1971.0, 910.0, 1969.0], "score": 0.94, "text": "in 3DPVT'06:Proceedings of the Third International Symposium"}, {"category_id": 15, "poly": [915.0, 1964.0, 1568.0, 1964.0, 1568.0, 1996.0, 915.0, 1996.0], "score": 0.98, "text": "on 3D Data Processing, Visualization, and Transmission (3DPVT'06),"}, {"category_id": 15, "poly": [915.0, 1989.0, 1564.0, 1989.0, 1564.0, 2021.0, 915.0, 2021.0], "score": 1.0, "text": "(Washington, DC, USA), Pp. 798-805, IEEE Computer Society, 2006."}, {"category_id": 15, "poly": [1134.0, 1471.0, 1296.0, 1471.0, 1296.0, 1510.0, 1134.0, 1510.0], "score": 1.0, "text": "REFERENCES"}, {"category_id": 15, "poly": [159.0, 1888.0, 836.0, 1888.0, 836.0, 1920.0, 159.0, 1920.0], "score": 0.99, "text": "The algorithm was implement using NVIDIA's Compute"}, {"category_id": 15, "poly": [134.0, 1920.0, 834.0, 1920.0, 834.0, 1950.0, 134.0, 1950.0], "score": 0.98, "text": "Unified Device Architecture (CUDA). The details of the im-"}, {"category_id": 15, "poly": [129.0, 1948.0, 841.0, 1950.0, 841.0, 1989.0, 129.0, 1987.0], "score": 0.98, "text": " plementation are similar to those given in [3]. When compared "}, {"category_id": 15, "poly": [132.0, 1989.0, 836.0, 1989.0, 836.0, 2021.0, 132.0, 2021.0], "score": 0.99, "text": "to other existing real-time stereo matching implementations,"}, {"category_id": 15, "poly": [1111.0, 1022.0, 1317.0, 1022.0, 1317.0, 1061.0, 1111.0, 1061.0], "score": 1.0, "text": "V. CONCLUSION"}, {"category_id": 15, "poly": [864.0, 484.0, 1564.0, 484.0, 1564.0, 516.0, 864.0, 516.0], "score": 0.99, "text": "Table II: A comparison of speed and accuracy for the imple-"}, {"category_id": 15, "poly": [864.0, 518.0, 1564.0, 518.0, 1564.0, 550.0, 864.0, 550.0], "score": 0.99, "text": "mentations of many leading real-time stereo matching meth-"}, {"category_id": 15, "poly": [862.0, 550.0, 917.0, 550.0, 917.0, 584.0, 862.0, 584.0], "score": 0.96, "text": "ods."}, {"category_id": 15, "poly": [864.0, 484.0, 1564.0, 484.0, 1564.0, 516.0, 864.0, 516.0], "score": 0.99, "text": "Table II: A comparison of speed and accuracy for the imple-"}, {"category_id": 15, "poly": [864.0, 518.0, 1564.0, 518.0, 1564.0, 550.0, 864.0, 550.0], "score": 0.99, "text": "mentations of many leading real-time stereo matching meth-"}, {"category_id": 15, "poly": [862.0, 550.0, 917.0, 550.0, 917.0, 584.0, 862.0, 584.0], "score": 0.96, "text": "ods."}], "page_info": {"page_no": 4, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 1, "poly": [134.58497619628906, 157.681884765625, 841.3460693359375, 157.681884765625, 841.3460693359375, 1666.27001953125, 134.58497619628906, 1666.27001953125], "score": 0.9999936819076538}, {"category_id": 15, "poly": [143.0, 163.0, 838.0, 163.0, 838.0, 192.0, 143.0, 192.0], "score": 0.97, "text": "[6] W. Yu, T. Chen, F. Franchetti, and J. C. Hoe, \u201cHigh performance stereo"}, {"category_id": 15, "poly": [182.0, 188.0, 838.0, 188.0, 838.0, 218.0, 182.0, 218.0], "score": 0.98, "text": "vision designed for massively data parallel platforms,\u2019 Circuits and"}, {"category_id": 15, "poly": [182.0, 213.0, 841.0, 213.0, 841.0, 245.0, 182.0, 245.0], "score": 0.98, "text": "Systems for Video Technology, IEEE Transactions on, vol. 20, pp. 1509"}, {"category_id": 15, "poly": [182.0, 238.0, 411.0, 238.0, 411.0, 268.0, 182.0, 268.0], "score": 0.98, "text": "-1519, November 2010."}, {"category_id": 15, "poly": [143.0, 264.0, 838.0, 264.0, 838.0, 293.0, 143.0, 293.0], "score": 0.99, "text": "[7] S. Mattoccia, M. Viti, and F. Ries, \u201cNear real-time fast bilateral stereo"}, {"category_id": 15, "poly": [182.0, 289.0, 838.0, 289.0, 838.0, 319.0, 182.0, 319.0], "score": 0.96, "text": "on the GPU in Computer Vision and Pattern Recognition Workshops"}, {"category_id": 15, "poly": [178.0, 307.0, 841.0, 309.0, 841.0, 348.0, 178.0, 346.0], "score": 0.95, "text": "(CVPRW), 2011 IEEE Computer Society Conference on,Ppp. 136 -143,"}, {"category_id": 15, "poly": [185.0, 339.0, 289.0, 339.0, 289.0, 364.0, 185.0, 364.0], "score": 0.98, "text": "June 2011."}, {"category_id": 15, "poly": [141.0, 362.0, 838.0, 362.0, 838.0, 392.0, 141.0, 392.0], "score": 0.98, "text": "[8] K. Zhang, J. Lu, Q. Yang, G. Lafruit, R. Lauwereins, and L. Van Gool,"}, {"category_id": 15, "poly": [182.0, 387.0, 838.0, 387.0, 838.0, 419.0, 182.0, 419.0], "score": 0.98, "text": "\"Real-time and accurate stereo: A scalable approach with bitwise fast"}, {"category_id": 15, "poly": [185.0, 412.0, 838.0, 412.0, 838.0, 445.0, 185.0, 445.0], "score": 0.97, "text": "voting on CUDA,\u201d Circuits and Systems for Video Technology, IEEE"}, {"category_id": 15, "poly": [182.0, 438.0, 656.0, 438.0, 656.0, 468.0, 182.0, 468.0], "score": 0.99, "text": "Transactions on, vol. 21, pp. 867 -878, July 2011."}, {"category_id": 15, "poly": [141.0, 463.0, 838.0, 463.0, 838.0, 493.0, 141.0, 493.0], "score": 0.96, "text": "[9] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, \u201cFast cost-"}, {"category_id": 15, "poly": [182.0, 488.0, 838.0, 488.0, 838.0, 518.0, 182.0, 518.0], "score": 0.98, "text": "volume filtering for visual correspondence and beyond,\" in Computer"}, {"category_id": 15, "poly": [180.0, 509.0, 841.0, 511.0, 841.0, 543.0, 180.0, 541.0], "score": 0.95, "text": "Vision and Pattern Recognition (CVPR), 20ll IEEE Conference on,"}, {"category_id": 15, "poly": [180.0, 536.0, 448.0, 534.0, 448.0, 566.0, 180.0, 568.0], "score": 0.99, "text": "Pp. 3017 -3024, June 2011."}, {"category_id": 15, "poly": [134.0, 561.0, 838.0, 561.0, 838.0, 591.0, 134.0, 591.0], "score": 0.99, "text": "[10] A. Hosni, C. Rhemann, M. Bleyer, and M. Gelautz, \u201cTemporally con-"}, {"category_id": 15, "poly": [180.0, 587.0, 836.0, 587.0, 836.0, 616.0, 180.0, 616.0], "score": 0.99, "text": " sistent disparity and optical flow via efficient spatio-temporal filtering,\""}, {"category_id": 15, "poly": [182.0, 612.0, 838.0, 612.0, 838.0, 642.0, 182.0, 642.0], "score": 0.97, "text": "in Advances in Image and Video Technology (Y.-S. Ho, ed.), vol. 7087"}, {"category_id": 15, "poly": [180.0, 632.0, 845.0, 632.0, 845.0, 671.0, 180.0, 671.0], "score": 0.88, "text": "of Lectureotes inComputer Science,pp.16517,Springererlin /"}, {"category_id": 15, "poly": [182.0, 660.0, 353.0, 660.0, 353.0, 692.0, 182.0, 692.0], "score": 1.0, "text": "Heidelberg, 2012."}, {"category_id": 15, "poly": [134.0, 685.0, 838.0, 685.0, 838.0, 717.0, 134.0, 717.0], "score": 0.98, "text": "[11] C. Tomasi and R. Manduchi, \u201cBilateral filtering for gray and color"}, {"category_id": 15, "poly": [182.0, 710.0, 838.0, 710.0, 838.0, 742.0, 182.0, 742.0], "score": 0.98, "text": "images,\u201d in Computer Vision, 1998. Sixth International Conference on,"}, {"category_id": 15, "poly": [180.0, 736.0, 411.0, 731.0, 411.0, 763.0, 181.0, 768.0], "score": 0.93, "text": "pPp. 839 -846, jan 1998."}, {"category_id": 15, "poly": [132.0, 761.0, 838.0, 761.0, 838.0, 791.0, 132.0, 791.0], "score": 0.97, "text": "[12] K. He, J. Sun, and X. Tang, \u201cGuided image filtering,\u201d\u2019 in Computer"}, {"category_id": 15, "poly": [180.0, 784.0, 838.0, 786.0, 838.0, 818.0, 180.0, 816.0], "score": 0.98, "text": "Vision - ECCV 2010, vol. 6311 of Lecture Notes in Computer Science,"}, {"category_id": 15, "poly": [180.0, 811.0, 607.0, 807.0, 608.0, 839.0, 180.0, 843.0], "score": 0.98, "text": "pp. 1-14, Springer Berlin / Heidelberg, 2010."}, {"category_id": 15, "poly": [129.0, 832.0, 839.0, 837.0, 838.0, 869.0, 129.0, 864.0], "score": 0.98, "text": "[13] L. Zhang, B. Curless, and S. M. Seitz, \u201cSpacetime stereo: Shape"}, {"category_id": 15, "poly": [182.0, 862.0, 836.0, 862.0, 836.0, 891.0, 182.0, 891.0], "score": 0.98, "text": "recovery for dynamic scenes,\u201d in IEEE Computer Society Conference"}, {"category_id": 15, "poly": [182.0, 885.0, 834.0, 885.0, 834.0, 917.0, 182.0, 917.0], "score": 0.97, "text": "on Computer Vision and Pattern Recognition, pp. 367-374, June 2003."}, {"category_id": 15, "poly": [132.0, 910.0, 838.0, 910.0, 838.0, 940.0, 132.0, 940.0], "score": 0.98, "text": "[14] J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, \u201cSpacetime"}, {"category_id": 15, "poly": [182.0, 935.0, 838.0, 935.0, 838.0, 965.0, 182.0, 965.0], "score": 0.97, "text": "stereo: a unifying framework for depth from triangulation,\u201d\u2019 Pattern"}, {"category_id": 15, "poly": [182.0, 960.0, 838.0, 960.0, 838.0, 990.0, 182.0, 990.0], "score": 0.98, "text": "Analysis and Machine Intelligence, IEEE Transactions on,vol. 27,"}, {"category_id": 15, "poly": [180.0, 983.0, 462.0, 983.0, 462.0, 1015.0, 180.0, 1015.0], "score": 0.97, "text": "Pp. 296 -302, February 2005."}, {"category_id": 15, "poly": [132.0, 1011.0, 838.0, 1011.0, 838.0, 1040.0, 132.0, 1040.0], "score": 0.99, "text": "[15] E. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, \u201cTemporally"}, {"category_id": 15, "poly": [182.0, 1036.0, 836.0, 1036.0, 836.0, 1066.0, 182.0, 1066.0], "score": 0.99, "text": "consistent reconstruction from multiple video streams using enhanced"}, {"category_id": 15, "poly": [178.0, 1054.0, 843.0, 1056.0, 843.0, 1095.0, 178.0, 1093.0], "score": 0.95, "text": "belief propagation in Computer Vision, 2007.ICCV 2007. IEEE1lth"}, {"category_id": 15, "poly": [180.0, 1082.0, 644.0, 1082.0, 644.0, 1121.0, 180.0, 1121.0], "score": 0.97, "text": "International Conference on, pp. 1 -8, oct. 2007."}, {"category_id": 15, "poly": [134.0, 1109.0, 838.0, 1109.0, 838.0, 1141.0, 134.0, 1141.0], "score": 0.97, "text": "[16] M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann, \u201c\"A stereo approach"}, {"category_id": 15, "poly": [180.0, 1134.0, 838.0, 1134.0, 838.0, 1166.0, 180.0, 1166.0], "score": 0.99, "text": "that handles the mating problem via image warping\" in Computer"}, {"category_id": 15, "poly": [182.0, 1157.0, 838.0, 1157.0, 838.0, 1189.0, 182.0, 1189.0], "score": 0.98, "text": "Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference"}, {"category_id": 15, "poly": [180.0, 1183.0, 459.0, 1175.0, 460.0, 1212.0, 181.0, 1219.0], "score": 0.98, "text": "on, pp. 501 -508, June 2009."}, {"category_id": 15, "poly": [129.0, 1205.0, 838.0, 1208.0, 838.0, 1240.0, 129.0, 1237.0], "score": 0.98, "text": " [17] M. Sizintsev and R. Wildes, \u201cSpatiotemporal stereo via spatiotemporal"}, {"category_id": 15, "poly": [182.0, 1235.0, 838.0, 1235.0, 838.0, 1265.0, 182.0, 1265.0], "score": 0.97, "text": "quadric element (stequel) matching,\u201d in Computer Vision and Pattern"}, {"category_id": 15, "poly": [185.0, 1258.0, 841.0, 1258.0, 841.0, 1290.0, 185.0, 1290.0], "score": 0.98, "text": "Recognition, 2009. CVPR 2009. IEEE Conference on, Pp. 493 -500,"}, {"category_id": 15, "poly": [185.0, 1286.0, 286.0, 1286.0, 286.0, 1311.0, 185.0, 1311.0], "score": 0.99, "text": "june 2009."}, {"category_id": 15, "poly": [132.0, 1309.0, 838.0, 1309.0, 838.0, 1338.0, 132.0, 1338.0], "score": 0.97, "text": "[18] M. Sizintsev and R. Wildes, \u201cSpatiotemporal stereo and scene flow via"}, {"category_id": 15, "poly": [182.0, 1334.0, 841.0, 1334.0, 841.0, 1364.0, 182.0, 1364.0], "score": 0.97, "text": "stequel matching,\u201d\u2019Pattern Analysis and Machine Intelligence, IEEE"}, {"category_id": 15, "poly": [182.0, 1359.0, 684.0, 1359.0, 684.0, 1391.0, 182.0, 1391.0], "score": 1.0, "text": "Transactions on, vol. 34, pp. 1206 -1219, june 2012."}, {"category_id": 15, "poly": [132.0, 1382.0, 834.0, 1382.0, 834.0, 1412.0, 132.0, 1412.0], "score": 0.98, "text": "[19] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A. Dodgson,"}, {"category_id": 15, "poly": [185.0, 1409.0, 838.0, 1409.0, 838.0, 1441.0, 185.0, 1441.0], "score": 0.98, "text": "\"Real-time spatiotemporal stereo matching using the dual-cross-bilateral"}, {"category_id": 15, "poly": [182.0, 1432.0, 838.0, 1432.0, 838.0, 1464.0, 182.0, 1464.0], "score": 0.95, "text": "grid,\" in Proceedings of the European Conference on Computer Vision"}, {"category_id": 15, "poly": [182.0, 1458.0, 838.0, 1458.0, 838.0, 1490.0, 182.0, 1490.0], "score": 0.98, "text": "(ECCV), Lecture Notes in Computer Science, pp. 510-523, September"}, {"category_id": 15, "poly": [182.0, 1477.0, 243.0, 1483.0, 241.0, 1511.0, 179.0, 1505.0], "score": 1.0, "text": "2010."}, {"category_id": 15, "poly": [134.0, 1508.0, 836.0, 1508.0, 836.0, 1538.0, 134.0, 1538.0], "score": 0.98, "text": "[20] S. Paris and F. Durand, \u201cA fast approximation of the bilateral filter using"}, {"category_id": 15, "poly": [182.0, 1533.0, 836.0, 1533.0, 836.0, 1565.0, 182.0, 1565.0], "score": 0.98, "text": "a signal processing approach,\u201d Int. J. Comput. Vision, vol. 81, pp. 24-52,"}, {"category_id": 15, "poly": [185.0, 1561.0, 282.0, 1561.0, 282.0, 1586.0, 185.0, 1586.0], "score": 0.98, "text": "Jan. 2009."}, {"category_id": 15, "poly": [134.0, 1584.0, 836.0, 1584.0, 836.0, 1613.0, 134.0, 1613.0], "score": 0.98, "text": "[21] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nist\u00e9r, \u201cReal-"}, {"category_id": 15, "poly": [182.0, 1609.0, 838.0, 1609.0, 838.0, 1641.0, 182.0, 1641.0], "score": 0.98, "text": "time global stereo matching using hierarchical belief propagation.\u201d in"}, {"category_id": 15, "poly": [182.0, 1634.0, 698.0, 1634.0, 698.0, 1666.0, 182.0, 1666.0], "score": 1.0, "text": "British Machine Vision Conference, pp. 989-998, 2006."}], "page_info": {"page_no": 5, "height": 2200, "width": 1700}}] \ No newline at end of file +[{"layout_dets":[{"category_id":1,"poly":[862.5365600585938,1486.6256103515625,1569.357666015625,1486.6256103515625,1569.357666015625,1852.38623046875,862.5365600585938,1852.38623046875],"score":0.9999908208847046},{"category_id":0,"poly":[375.13604736328125,1609.805419921875,594.1871337890625,1609.805419921875,594.1871337890625,1642.5137939453125,375.13604736328125,1642.5137939453125],"score":0.9999880790710449},{"category_id":1,"poly":[130.0938262939453,523.328857421875,836.4835815429688,523.328857421875,836.4835815429688,861.5789184570312,130.0938262939453,861.5789184570312],"score":0.9999874830245972},{"category_id":0,"poly":[278.4141845703125,155.8585968017578,1419.3870849609375,155.8585968017578,1419.3870849609375,315.50396728515625,278.4141845703125,315.50396728515625],"score":0.9999853372573853},{"category_id":1,"poly":[131.29368591308594,922.8018188476562,838.4244384765625,922.8018188476562,838.4244384765625,1323.72021484375,131.29368591308594,1323.72021484375],"score":0.999984622001648},{"category_id":1,"poly":[862.38427734375,1187.7646484375,1568.11328125,1187.7646484375,1568.11328125,1486.1197509765625,862.38427734375,1486.1197509765625],"score":0.9999804496765137},{"category_id":1,"poly":[130.87384033203125,1651.791015625,839.4205322265625,1651.791015625,839.4205322265625,2020.19775390625,130.87384033203125,2020.19775390625],"score":0.9999734163284302},{"category_id":1,"poly":[132.02276611328125,1323.85302734375,838.2510375976562,1323.85302734375,838.2510375976562,1589.8836669921875,132.02276611328125,1589.8836669921875],"score":0.999958872795105},{"category_id":0,"poly":[374.39312744140625,882.8050537109375,593.989013671875,882.8050537109375,593.989013671875,912.400146484375,374.39312744140625,912.400146484375],"score":0.9999555349349976},{"category_id":1,"poly":[861.1803588867188,524.5841674804688,1567.7874755859375,524.5841674804688,1567.7874755859375,656.8233642578125,861.1803588867188,656.8233642578125],"score":0.9999452829360962},{"category_id":1,"poly":[861.088134765625,1852.827880859375,1569.492431640625,1852.827880859375,1569.492431640625,2019.2318115234375,861.088134765625,2019.2318115234375],"score":0.9999315142631531},{"category_id":3,"poly":[883.976806640625,677.044677734375,1548.9390869140625,677.044677734375,1548.9390869140625,971.9251098632812,883.976806640625,971.9251098632812],"score":0.9998946189880371},{"category_id":2,"poly":[634.717041015625,2100.599365234375,1064.1500244140625,2100.599365234375,1064.1500244140625,2124.908203125,634.717041015625,2124.908203125],"score":0.9992867708206177},{"category_id":4,"poly":[859.9264526367188,995.7284545898438,1569.2523193359375,995.7284545898438,1569.2523193359375,1127.760986328125,859.9264526367188,1127.760986328125],"score":0.9782063364982605},{"category_id":1,"poly":[440.2348937988281,354.70635986328125,1252.7706298828125,354.70635986328125,1252.7706298828125,439.553955078125,440.2348937988281,439.553955078125],"score":0.9727952480316162},{"category_id":1,"poly":[611.07958984375,435.7955017089844,1082.9930419921875,435.7955017089844,1082.9930419921875,461.6663513183594,611.07958984375,461.6663513183594],"score":0.429502010345459},{"category_id":13,"poly":[1195,1062,1226,1062,1226,1096,1195,1096],"score":0.88,"latex":"d_{p}"},{"category_id":13,"poly":[1304,1030,1327,1030,1327,1061,1304,1061],"score":0.65,"latex":"\\bar{\\bf p}"},{"category_id":15,"poly":[891,1487,1567,1487,1567,1521,891,1521],"score":1,"text":""},{"category_id":15,"poly":[864,1523,1569,1523,1569,1555,864,1555],"score":1,"text":""},{"category_id":15,"poly":[865,1556,1567,1556,1567,1586,865,1586],"score":1,"text":""},{"category_id":15,"poly":[864,1589,1568,1589,1568,1619,864,1619],"score":1,"text":""},{"category_id":15,"poly":[864,1621,1565,1621,1565,1654,864,1654],"score":1,"text":""},{"category_id":15,"poly":[864,1656,1564,1656,1564,1686,864,1686],"score":1,"text":""},{"category_id":15,"poly":[864,1690,1569,1690,1569,1720,864,1720],"score":1,"text":""},{"category_id":15,"poly":[864,1724,1567,1724,1567,1752,864,1752],"score":1,"text":""},{"category_id":15,"poly":[861,1753,1569,1753,1569,1788,861,1788],"score":1,"text":""},{"category_id":15,"poly":[865,1786,1566,1786,1566,1821,865,1821],"score":1,"text":""},{"category_id":15,"poly":[866,1824,1371,1824,1371,1854,866,1854],"score":1,"text":""},{"category_id":15,"poly":[373,1610,595,1610,595,1641,373,1641],"score":1,"text":""},{"category_id":15,"poly":[161,529,835,529,835,557,161,557],"score":1,"text":""},{"category_id":15,"poly":[135,557,836,557,836,584,135,584],"score":1,"text":""},{"category_id":15,"poly":[133,585,835,585,835,613,133,613],"score":1,"text":""},{"category_id":15,"poly":[133,612,835,612,835,641,133,641],"score":1,"text":""},{"category_id":15,"poly":[133,639,836,639,836,668,133,668],"score":1,"text":""},{"category_id":15,"poly":[131,667,838,667,838,697,131,697],"score":1,"text":""},{"category_id":15,"poly":[133,696,836,696,836,722,133,722],"score":1,"text":""},{"category_id":15,"poly":[133,723,837,723,837,751,133,751],"score":1,"text":""},{"category_id":15,"poly":[133,752,836,752,836,779,133,779],"score":1,"text":""},{"category_id":15,"poly":[132,779,838,779,838,805,132,805],"score":1,"text":""},{"category_id":15,"poly":[133,806,836,806,836,834,133,834],"score":1,"text":""},{"category_id":15,"poly":[134,835,619,835,619,862,134,862],"score":1,"text":""},{"category_id":15,"poly":[339,166,1358,166,1358,232,339,232],"score":1,"text":""},{"category_id":15,"poly":[285,242,1412,242,1412,318,285,318],"score":1,"text":""},{"category_id":15,"poly":[162,929,836,929,836,959,162,959],"score":1,"text":""},{"category_id":15,"poly":[134,962,834,962,834,992,134,992],"score":1,"text":""},{"category_id":15,"poly":[133,991,836,991,836,1029,133,1029],"score":1,"text":""},{"category_id":15,"poly":[135,1029,835,1029,835,1058,135,1058],"score":1,"text":""},{"category_id":15,"poly":[133,1061,837,1061,837,1093,133,1093],"score":1,"text":""},{"category_id":15,"poly":[132,1094,836,1094,836,1125,132,1125],"score":1,"text":""},{"category_id":15,"poly":[133,1128,836,1128,836,1159,133,1159],"score":1,"text":""},{"category_id":15,"poly":[133,1162,835,1162,835,1192,133,1192],"score":1,"text":""},{"category_id":15,"poly":[133,1195,838,1195,838,1225,133,1225],"score":1,"text":""},{"category_id":15,"poly":[132,1227,837,1227,837,1260,132,1260],"score":1,"text":""},{"category_id":15,"poly":[134,1258,837,1258,837,1292,134,1292],"score":1,"text":""},{"category_id":15,"poly":[134,1293,760,1293,760,1326,134,1326],"score":1,"text":""},{"category_id":15,"poly":[891,1189,1570,1189,1570,1224,891,1224],"score":1,"text":""},{"category_id":15,"poly":[863,1223,1567,1223,1567,1257,863,1257],"score":1,"text":""},{"category_id":15,"poly":[863,1255,1568,1255,1568,1291,863,1291],"score":1,"text":""},{"category_id":15,"poly":[864,1290,1570,1290,1570,1325,864,1325],"score":1,"text":""},{"category_id":15,"poly":[863,1323,1567,1323,1567,1355,863,1355],"score":1,"text":""},{"category_id":15,"poly":[863,1357,1568,1357,1568,1389,863,1389],"score":1,"text":""},{"category_id":15,"poly":[864,1392,1567,1392,1567,1421,864,1421],"score":1,"text":""},{"category_id":15,"poly":[864,1424,1568,1424,1568,1455,864,1455],"score":1,"text":""},{"category_id":15,"poly":[862,1455,1420,1455,1420,1489,862,1489],"score":1,"text":""},{"category_id":15,"poly":[162,1656,835,1656,835,1688,162,1688],"score":1,"text":""},{"category_id":15,"poly":[134,1689,837,1689,837,1721,134,1721],"score":1,"text":""},{"category_id":15,"poly":[134,1721,838,1721,838,1754,134,1754],"score":1,"text":""},{"category_id":15,"poly":[137,1757,834,1757,834,1785,137,1785],"score":1,"text":""},{"category_id":15,"poly":[134,1789,837,1789,837,1819,134,1819],"score":1,"text":""},{"category_id":15,"poly":[133,1822,836,1822,836,1855,133,1855],"score":1,"text":""},{"category_id":15,"poly":[134,1854,836,1854,836,1886,134,1886],"score":1,"text":""},{"category_id":15,"poly":[135,1890,835,1890,835,1918,135,1918],"score":1,"text":""},{"category_id":15,"poly":[135,1920,835,1920,835,1953,135,1953],"score":1,"text":""},{"category_id":15,"poly":[134,1955,837,1955,837,1985,134,1985],"score":1,"text":""},{"category_id":15,"poly":[136,1991,834,1991,834,2016,136,2016],"score":1,"text":""},{"category_id":15,"poly":[162,1326,835,1326,835,1358,162,1358],"score":1,"text":""},{"category_id":15,"poly":[133,1359,836,1359,836,1395,133,1395],"score":1,"text":""},{"category_id":15,"poly":[133,1395,835,1395,835,1424,133,1424],"score":1,"text":""},{"category_id":15,"poly":[132,1424,837,1424,837,1460,132,1460],"score":1,"text":""},{"category_id":15,"poly":[134,1459,837,1459,837,1490,134,1490],"score":1,"text":""},{"category_id":15,"poly":[134,1492,835,1492,835,1525,134,1525],"score":1,"text":""},{"category_id":15,"poly":[133,1528,838,1528,838,1558,133,1558],"score":1,"text":""},{"category_id":15,"poly":[133,1560,553,1560,553,1590,133,1590],"score":1,"text":""},{"category_id":15,"poly":[371,883,596,883,596,915,371,915],"score":1,"text":""},{"category_id":15,"poly":[866,527,1567,527,1567,559,866,559],"score":1,"text":""},{"category_id":15,"poly":[862,561,1567,561,1567,593,862,593],"score":1,"text":""},{"category_id":15,"poly":[862,592,1566,592,1566,626,862,626],"score":1,"text":""},{"category_id":15,"poly":[864,626,984,626,984,656,864,656],"score":1,"text":""},{"category_id":15,"poly":[893,1855,1566,1855,1566,1888,893,1888],"score":1,"text":""},{"category_id":15,"poly":[864,1890,1566,1890,1566,1918,864,1918],"score":1,"text":""},{"category_id":15,"poly":[865,1921,1567,1921,1567,1953,865,1953],"score":1,"text":""},{"category_id":15,"poly":[865,1953,1568,1953,1568,1988,865,1988],"score":1,"text":""},{"category_id":15,"poly":[866,1989,1567,1989,1567,2021,866,2021],"score":1,"text":""},{"category_id":15,"poly":[638,2102,1063,2102,1063,2127,638,2127],"score":1,"text":""},{"category_id":15,"poly":[864,995,1568,995,1568,1034,864,1034],"score":1,"text":""},{"category_id":15,"poly":[864,1030,1303,1030,1303,1065,864,1065],"score":1,"text":""},{"category_id":15,"poly":[1328,1030,1567,1030,1567,1065,1328,1065],"score":1,"text":""},{"category_id":15,"poly":[865,1065,1194,1065,1194,1097,865,1097],"score":1,"text":""},{"category_id":15,"poly":[1227,1065,1566,1065,1566,1097,1227,1097],"score":1,"text":""},{"category_id":15,"poly":[865,1097,1291,1097,1291,1129,865,1129],"score":1,"text":""},{"category_id":15,"poly":[509,358,1192,358,1192,391,509,391],"score":1,"text":""},{"category_id":15,"poly":[445,394,1245,394,1245,426,445,426],"score":1,"text":""},{"category_id":15,"poly":[616,436,1080,436,1080,463,616,463],"score":1,"text":""}],"page_info":{"page_no":0,"height":2200,"width":1700}},{"layout_dets":[{"category_id":8,"poly":[968.1688232421875,1513.3743896484375,1459.2733154296875,1513.3743896484375,1459.2733154296875,1670.746337890625,968.1688232421875,1670.746337890625],"score":0.9999958872795105},{"category_id":1,"poly":[865.7265014648438,421.62957763671875,1567.3912353515625,421.62957763671875,1567.3912353515625,787.9102783203125,865.7265014648438,787.9102783203125],"score":0.9999935030937195},{"category_id":1,"poly":[864.8787231445312,158.1634063720703,1566.29443359375,158.1634063720703,1566.29443359375,355.4730224609375,864.8787231445312,355.4730224609375],"score":0.9999899864196777},{"category_id":9,"poly":[1531.28662109375,1575.48779296875,1563.3642578125,1575.48779296875,1563.3642578125,1606.94140625,1531.28662109375,1606.94140625],"score":0.99998939037323},{"category_id":9,"poly":[1532.0537109375,1839.1907958984375,1563.5245361328125,1839.1907958984375,1563.5245361328125,1870.21142578125,1532.0537109375,1870.21142578125],"score":0.9999882578849792},{"category_id":1,"poly":[132.2044677734375,158.10128784179688,836.2056884765625,158.10128784179688,836.2056884765625,556.8394775390625,132.2044677734375,556.8394775390625],"score":0.9999880790710449},{"category_id":1,"poly":[133.3421630859375,1620.408935546875,834.8189086914062,1620.408935546875,834.8189086914062,2018.436279296875,133.3421630859375,2018.436279296875],"score":0.999987006187439},{"category_id":1,"poly":[864.8934326171875,853.2994995117188,1564.7685546875,853.2994995117188,1564.7685546875,1082.1588134765625,864.8934326171875,1082.1588134765625],"score":0.9999837875366211},{"category_id":1,"poly":[866.321533203125,1684.1400146484375,1564.9150390625,1684.1400146484375,1564.9150390625,1814.8349609375,866.321533203125,1814.8349609375],"score":0.9999825358390808},{"category_id":1,"poly":[134.1085205078125,955.0784301757812,835.7005615234375,955.0784301757812,835.7005615234375,1618.213623046875,134.1085205078125,1618.213623046875],"score":0.9999785423278809},{"category_id":1,"poly":[133.05685424804688,557.9677734375,836.5953979492188,557.9677734375,836.5953979492188,955.5980224609375,133.05685424804688,955.5980224609375],"score":0.999978244304657},{"category_id":1,"poly":[865.6548461914062,1920.167236328125,1565.2188720703125,1920.167236328125,1565.2188720703125,2018.0869140625,865.6548461914062,2018.0869140625],"score":0.9999703168869019},{"category_id":1,"poly":[865.6419067382812,1302.3402099609375,1565.474853515625,1302.3402099609375,1565.474853515625,1499.6136474609375,865.6419067382812,1499.6136474609375],"score":0.9999701976776123},{"category_id":8,"poly":[1005.023681640625,1823.8765869140625,1420.0087890625,1823.8765869140625,1420.0087890625,1906.513916015625,1005.023681640625,1906.513916015625],"score":0.9999603033065796},{"category_id":1,"poly":[865.9749755859375,1167.9549560546875,1565.6162109375,1167.9549560546875,1565.6162109375,1298.2060546875,865.9749755859375,1298.2060546875],"score":0.9999580383300781},{"category_id":9,"poly":[1532.1307373046875,1099.5582275390625,1563.8817138671875,1099.5582275390625,1563.8817138671875,1131.6802978515625,1532.1307373046875,1131.6802978515625],"score":0.9999563097953796},{"category_id":8,"poly":[973.92431640625,1076.1942138671875,1457.8084716796875,1076.1942138671875,1457.8084716796875,1155.179443359375,973.92431640625,1155.179443359375],"score":0.9998143911361694},{"category_id":0,"poly":[1133.8037109375,377.9938659667969,1297.05615234375,377.9938659667969,1297.05615234375,409.77374267578125,1133.8037109375,409.77374267578125],"score":0.9996984004974365},{"category_id":0,"poly":[866.098388671875,810.8038330078125,1303.4818115234375,810.8038330078125,1303.4818115234375,841.358642578125,866.098388671875,841.358642578125],"score":0.9994078874588013},{"category_id":14,"poly":[974,1076,1454,1076,1454,1155,974,1155],"score":0.94,"latex":"w(p,q)=\\exp\\bigg(\\!-\\!\\frac{\\Delta_{g}(p,q)}{\\gamma_{g}}-\\frac{\\Delta_{c}(p,q)}{\\gamma_{c}}\\!\\bigg),"},{"category_id":14,"poly":[1006,1825,1423,1825,1423,1907,1006,1907],"score":0.94,"latex":"\\delta(q,\\bar{q})=\\sum_{c=\\{r,g,b\\}}\\operatorname*{min}(|q_{c}-\\bar{q}_{c}|,\\tau)."},{"category_id":14,"poly":[963,1510,1464,1510,1464,1671,963,1671],"score":0.93,"latex":"C(p,\\bar{p})=\\frac{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})\\delta(q,\\bar{q})}{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})}\\,,"},{"category_id":13,"poly":[1335,1166,1432,1166,1432,1200,1335,1200],"score":0.93,"latex":"\\Delta_{c}(p,q)"},{"category_id":13,"poly":[939,1166,1039,1166,1039,1201,939,1201],"score":0.93,"latex":"\\Delta_{g}(p,q)"},{"category_id":13,"poly":[1289,1683,1365,1683,1365,1717,1289,1717],"score":0.93,"latex":"\\delta(q,\\bar{q})"},{"category_id":13,"poly":[1362,1367,1441,1367,1441,1401,1362,1401],"score":0.92,"latex":"\\bar{p}\\in S_{p}"},{"category_id":13,"poly":[864,1019,951,1019,951,1053,864,1053],"score":0.92,"latex":"q\\in\\Omega_{p}"},{"category_id":13,"poly":[1351,953,1388,953,1388,987,1351,987],"score":0.9,"latex":"\\Omega_{p}"},{"category_id":13,"poly":[913,1467,949,1467,949,1501,913,1501],"score":0.89,"latex":"\\Omega_{\\bar{p}}"},{"category_id":13,"poly":[1531,1367,1565,1367,1565,1401,1531,1401],"score":0.89,"latex":"S_{p}"},{"category_id":13,"poly":[1528,1434,1565,1434,1565,1468,1528,1468],"score":0.89,"latex":"\\Omega_{p}"},{"category_id":13,"poly":[1485,1205,1516,1205,1516,1234,1485,1234],"score":0.88,"latex":"\\gamma_{g}"},{"category_id":13,"poly":[1159,1206,1178,1206,1178,1233,1159,1233],"score":0.82,"latex":"p"},{"category_id":13,"poly":[863,1238,893,1238,893,1266,863,1266],"score":0.82,"latex":"\\gamma_{c}"},{"category_id":13,"poly":[1177,1436,1196,1436,1196,1465,1177,1465],"score":0.8,"latex":"\\bar{p}"},{"category_id":13,"poly":[1371,1024,1391,1024,1391,1051,1371,1051],"score":0.8,"latex":"p"},{"category_id":13,"poly":[1540,1406,1558,1406,1558,1432,1540,1432],"score":0.8,"latex":"p"},{"category_id":13,"poly":[1447,1024,1465,1024,1465,1051,1447,1051],"score":0.79,"latex":"q"},{"category_id":13,"poly":[1101,1437,1121,1437,1121,1465,1101,1465],"score":0.79,"latex":"p"},{"category_id":13,"poly":[1389,1307,1407,1307,1407,1332,1389,1332],"score":0.79,"latex":"p"},{"category_id":13,"poly":[1029,1372,1048,1372,1048,1399,1029,1399],"score":0.78,"latex":"p"},{"category_id":13,"poly":[1230,1206,1247,1206,1247,1233,1230,1233],"score":0.78,"latex":"q"},{"category_id":13,"poly":[916,1752,934,1752,934,1782,916,1782],"score":0.76,"latex":"\\bar{q}"},{"category_id":13,"poly":[1407,1925,1425,1925,1425,1946,1407,1946],"score":0.75,"latex":"\\tau"},{"category_id":13,"poly":[1548,1722,1565,1722,1565,1749,1548,1749],"score":0.75,"latex":"q"},{"category_id":13,"poly":[1050,992,1068,992,1068,1018,1050,1018],"score":0.75,"latex":"p"},{"category_id":15,"poly":[892,423,1568,423,1568,458,892,458],"score":1,"text":""},{"category_id":15,"poly":[865,460,1565,460,1565,490,865,490],"score":1,"text":""},{"category_id":15,"poly":[867,492,1567,492,1567,522,867,522],"score":1,"text":""},{"category_id":15,"poly":[862,525,1567,525,1567,557,862,557],"score":1,"text":""},{"category_id":15,"poly":[864,558,1568,558,1568,591,864,591],"score":1,"text":""},{"category_id":15,"poly":[863,591,1567,591,1567,627,863,627],"score":1,"text":""},{"category_id":15,"poly":[864,626,1568,626,1568,654,864,654],"score":1,"text":""},{"category_id":15,"poly":[866,659,1568,659,1568,689,866,689],"score":1,"text":""},{"category_id":15,"poly":[865,693,1567,693,1567,721,865,721],"score":1,"text":""},{"category_id":15,"poly":[865,724,1569,724,1569,754,865,754],"score":1,"text":""},{"category_id":15,"poly":[865,758,1255,758,1255,788,865,788],"score":1,"text":""},{"category_id":15,"poly":[866,164,1566,164,1566,193,866,193],"score":1,"text":""},{"category_id":15,"poly":[865,195,1566,195,1566,226,865,226],"score":1,"text":""},{"category_id":15,"poly":[863,228,1567,228,1567,263,863,263],"score":1,"text":""},{"category_id":15,"poly":[863,261,1565,261,1565,296,863,296],"score":1,"text":""},{"category_id":15,"poly":[864,296,1568,296,1568,326,864,326],"score":1,"text":""},{"category_id":15,"poly":[865,327,1159,327,1159,360,865,360],"score":1,"text":""},{"category_id":15,"poly":[132,163,838,163,838,192,132,192],"score":1,"text":""},{"category_id":15,"poly":[134,196,837,196,837,226,134,226],"score":1,"text":""},{"category_id":15,"poly":[133,229,835,229,835,262,133,262],"score":1,"text":""},{"category_id":15,"poly":[132,262,836,262,836,292,132,292],"score":1,"text":""},{"category_id":15,"poly":[134,294,839,294,839,327,134,327],"score":1,"text":""},{"category_id":15,"poly":[135,330,837,330,837,357,135,357],"score":1,"text":""},{"category_id":15,"poly":[135,362,836,362,836,392,135,392],"score":1,"text":""},{"category_id":15,"poly":[136,396,835,396,835,423,136,423],"score":1,"text":""},{"category_id":15,"poly":[133,427,836,427,836,460,133,460],"score":1,"text":""},{"category_id":15,"poly":[133,460,837,460,837,493,133,493],"score":1,"text":""},{"category_id":15,"poly":[134,494,837,494,837,524,134,524],"score":1,"text":""},{"category_id":15,"poly":[132,528,800,528,800,561,132,561],"score":1,"text":""},{"category_id":15,"poly":[161,1622,835,1622,835,1655,161,1655],"score":1,"text":""},{"category_id":15,"poly":[132,1655,837,1655,837,1690,132,1690],"score":1,"text":""},{"category_id":15,"poly":[133,1689,837,1689,837,1722,133,1722],"score":1,"text":""},{"category_id":15,"poly":[135,1724,837,1724,837,1754,135,1754],"score":1,"text":""},{"category_id":15,"poly":[134,1755,838,1755,838,1789,134,1789],"score":1,"text":""},{"category_id":15,"poly":[133,1787,837,1787,837,1822,133,1822],"score":1,"text":""},{"category_id":15,"poly":[134,1823,836,1823,836,1852,134,1852],"score":1,"text":""},{"category_id":15,"poly":[136,1857,837,1857,837,1887,136,1887],"score":1,"text":""},{"category_id":15,"poly":[134,1888,836,1888,836,1921,134,1921],"score":1,"text":""},{"category_id":15,"poly":[133,1921,835,1921,835,1954,133,1954],"score":1,"text":""},{"category_id":15,"poly":[136,1956,836,1956,836,1983,136,1983],"score":1,"text":""},{"category_id":15,"poly":[134,1988,837,1988,837,2021,134,2021],"score":1,"text":""},{"category_id":15,"poly":[892,853,1567,853,1567,888,892,888],"score":1,"text":""},{"category_id":15,"poly":[865,887,1568,887,1568,922,865,922],"score":1,"text":""},{"category_id":15,"poly":[865,919,1566,919,1566,955,865,955],"score":1,"text":""},{"category_id":15,"poly":[865,954,1350,954,1350,989,865,989],"score":1,"text":""},{"category_id":15,"poly":[1389,954,1567,954,1567,989,1389,989],"score":1,"text":""},{"category_id":15,"poly":[863,989,1049,989,1049,1021,863,1021],"score":1,"text":""},{"category_id":15,"poly":[1069,989,1566,989,1566,1021,1069,1021],"score":1,"text":""},{"category_id":15,"poly":[862,1022,863,1022,863,1055,862,1055],"score":1,"text":""},{"category_id":15,"poly":[952,1022,1370,1022,1370,1055,952,1055],"score":1,"text":""},{"category_id":15,"poly":[1392,1022,1446,1022,1446,1055,1392,1055],"score":1,"text":""},{"category_id":15,"poly":[1466,1022,1566,1022,1566,1055,1466,1055],"score":1,"text":""},{"category_id":15,"poly":[866,1054,898,1054,898,1087,866,1087],"score":1,"text":""},{"category_id":15,"poly":[865,1685,1288,1685,1288,1717,865,1717],"score":1,"text":""},{"category_id":15,"poly":[1366,1685,1565,1685,1565,1717,1366,1717],"score":1,"text":""},{"category_id":15,"poly":[864,1718,1547,1718,1547,1751,864,1751],"score":1,"text":""},{"category_id":15,"poly":[1566,1718,1567,1718,1567,1751,1566,1751],"score":1,"text":""},{"category_id":15,"poly":[866,1753,915,1753,915,1782,866,1782],"score":1,"text":""},{"category_id":15,"poly":[935,1753,1565,1753,1565,1782,935,1782],"score":1,"text":""},{"category_id":15,"poly":[864,1788,1293,1788,1293,1817,864,1817],"score":1,"text":""},{"category_id":15,"poly":[162,960,834,960,834,987,162,987],"score":1,"text":""},{"category_id":15,"poly":[135,991,834,991,834,1024,135,1024],"score":1,"text":""},{"category_id":15,"poly":[134,1026,835,1026,835,1057,134,1057],"score":1,"text":""},{"category_id":15,"poly":[134,1059,836,1059,836,1090,134,1090],"score":1,"text":""},{"category_id":15,"poly":[133,1093,835,1093,835,1124,133,1124],"score":1,"text":""},{"category_id":15,"poly":[135,1126,835,1126,835,1153,135,1153],"score":1,"text":""},{"category_id":15,"poly":[133,1157,838,1157,838,1188,133,1188],"score":1,"text":""},{"category_id":15,"poly":[134,1192,836,1192,836,1223,134,1223],"score":1,"text":""},{"category_id":15,"poly":[133,1223,835,1223,835,1257,133,1257],"score":1,"text":""},{"category_id":15,"poly":[135,1257,834,1257,834,1287,135,1287],"score":1,"text":""},{"category_id":15,"poly":[135,1291,835,1291,835,1322,135,1322],"score":1,"text":""},{"category_id":15,"poly":[135,1325,835,1325,835,1356,135,1356],"score":1,"text":""},{"category_id":15,"poly":[134,1357,838,1357,838,1391,134,1391],"score":1,"text":""},{"category_id":15,"poly":[135,1392,835,1392,835,1420,135,1420],"score":1,"text":""},{"category_id":15,"poly":[133,1423,835,1423,835,1455,133,1455],"score":1,"text":""},{"category_id":15,"poly":[133,1455,834,1455,834,1487,133,1487],"score":1,"text":""},{"category_id":15,"poly":[133,1491,836,1491,836,1522,133,1522],"score":1,"text":""},{"category_id":15,"poly":[134,1523,837,1523,837,1557,134,1557],"score":1,"text":""},{"category_id":15,"poly":[134,1556,834,1556,834,1588,134,1588],"score":1,"text":""},{"category_id":15,"poly":[133,1588,700,1588,700,1621,133,1621],"score":1,"text":""},{"category_id":15,"poly":[162,561,838,561,838,592,162,592],"score":1,"text":""},{"category_id":15,"poly":[134,594,838,594,838,624,134,624],"score":1,"text":""},{"category_id":15,"poly":[134,628,836,628,836,658,134,658],"score":1,"text":""},{"category_id":15,"poly":[134,659,834,659,834,691,134,691],"score":1,"text":""},{"category_id":15,"poly":[134,694,838,694,838,724,134,724],"score":1,"text":""},{"category_id":15,"poly":[134,727,835,727,835,756,134,756],"score":1,"text":""},{"category_id":15,"poly":[133,760,836,760,836,790,133,790],"score":1,"text":""},{"category_id":15,"poly":[134,794,837,794,837,823,134,823],"score":1,"text":""},{"category_id":15,"poly":[135,826,837,826,837,856,135,856],"score":1,"text":""},{"category_id":15,"poly":[134,858,836,858,836,891,134,891],"score":1,"text":""},{"category_id":15,"poly":[134,894,834,894,834,921,134,921],"score":1,"text":""},{"category_id":15,"poly":[133,925,547,925,547,957,133,957],"score":1,"text":""},{"category_id":15,"poly":[864,1919,1406,1919,1406,1955,864,1955],"score":1,"text":""},{"category_id":15,"poly":[1426,1919,1563,1919,1563,1955,1426,1955],"score":1,"text":""},{"category_id":15,"poly":[865,1952,1565,1952,1565,1987,865,1987],"score":1,"text":""},{"category_id":15,"poly":[864,1985,1567,1985,1567,2024,864,2024],"score":1,"text":""},{"category_id":15,"poly":[893,1301,1388,1301,1388,1335,893,1335],"score":1,"text":""},{"category_id":15,"poly":[1408,1301,1565,1301,1565,1335,1408,1335],"score":1,"text":""},{"category_id":15,"poly":[865,1337,1566,1337,1566,1369,865,1369],"score":1,"text":""},{"category_id":15,"poly":[862,1366,1028,1366,1028,1405,862,1405],"score":1,"text":""},{"category_id":15,"poly":[1049,1366,1361,1366,1361,1405,1049,1405],"score":1,"text":""},{"category_id":15,"poly":[1442,1366,1530,1366,1530,1405,1442,1405],"score":1,"text":""},{"category_id":15,"poly":[1566,1366,1566,1366,1566,1405,1566,1405],"score":1,"text":""},{"category_id":15,"poly":[863,1401,1539,1401,1539,1436,863,1436],"score":1,"text":""},{"category_id":15,"poly":[1559,1401,1565,1401,1565,1436,1559,1436],"score":1,"text":""},{"category_id":15,"poly":[862,1431,1100,1431,1100,1471,862,1471],"score":1,"text":""},{"category_id":15,"poly":[1122,1431,1176,1431,1176,1471,1122,1471],"score":1,"text":""},{"category_id":15,"poly":[1197,1431,1527,1431,1527,1471,1197,1471],"score":1,"text":""},{"category_id":15,"poly":[866,1471,912,1471,912,1503,866,1503],"score":1,"text":""},{"category_id":15,"poly":[950,1471,1471,1471,1471,1503,950,1503],"score":1,"text":""},{"category_id":15,"poly":[865,1166,938,1166,938,1204,865,1204],"score":1,"text":""},{"category_id":15,"poly":[1040,1166,1334,1166,1334,1204,1040,1204],"score":1,"text":""},{"category_id":15,"poly":[1433,1166,1567,1166,1567,1204,1433,1204],"score":1,"text":""},{"category_id":15,"poly":[864,1203,1158,1203,1158,1239,864,1239],"score":1,"text":""},{"category_id":15,"poly":[1179,1203,1229,1203,1229,1239,1179,1239],"score":1,"text":""},{"category_id":15,"poly":[1248,1203,1484,1203,1484,1239,1248,1239],"score":1,"text":""},{"category_id":15,"poly":[1517,1203,1567,1203,1567,1239,1517,1239],"score":1,"text":""},{"category_id":15,"poly":[894,1237,1568,1237,1568,1270,894,1270],"score":1,"text":""},{"category_id":15,"poly":[864,1270,1193,1270,1193,1302,864,1302],"score":1,"text":""},{"category_id":15,"poly":[1131,381,1300,381,1300,411,1131,411],"score":1,"text":""},{"category_id":15,"poly":[862,810,1305,810,1305,847,862,847],"score":1,"text":""}],"page_info":{"page_no":1,"height":2200,"width":1700}},{"layout_dets":[{"category_id":1,"poly":[865.62158203125,855.387939453125,1567.909912109375,855.387939453125,1567.909912109375,1419.8907470703125,865.62158203125,1419.8907470703125],"score":0.9999920725822449},{"category_id":1,"poly":[133.22589111328125,157.53897094726562,836.847412109375,157.53897094726562,836.847412109375,390.4913024902344,133.22589111328125,390.4913024902344],"score":0.9999920725822449},{"category_id":1,"poly":[864.4922485351562,200.4864501953125,1565.703125,200.4864501953125,1565.703125,366.17913818359375,864.4922485351562,366.17913818359375],"score":0.9999903440475464},{"category_id":9,"poly":[1530.2113037109375,548.1371459960938,1565.2470703125,548.1371459960938,1565.2470703125,579.302978515625,1530.2113037109375,579.302978515625],"score":0.9999895095825195},{"category_id":1,"poly":[864.262451171875,1419.922607421875,1568.54638671875,1419.922607421875,1568.54638671875,2021.3343505859375,864.262451171875,2021.3343505859375],"score":0.9999861717224121},{"category_id":9,"poly":[800.5233764648438,1551.26513671875,833.8314208984375,1551.26513671875,833.8314208984375,1582.2572021484375,800.5233764648438,1582.2572021484375],"score":0.9999847412109375},{"category_id":9,"poly":[1530.5628662109375,386.4223327636719,1565.33251953125,386.4223327636719,1565.33251953125,417.39862060546875,1530.5628662109375,417.39862060546875],"score":0.9999842643737793},{"category_id":1,"poly":[133.55337524414062,1083.7138671875,836.2483520507812,1083.7138671875,836.2483520507812,1314.156005859375,133.55337524414062,1314.156005859375],"score":0.9999834895133972},{"category_id":1,"poly":[134.19406127929688,1369.8790283203125,835.7562866210938,1369.8790283203125,835.7562866210938,1533.925048828125,134.19406127929688,1533.925048828125],"score":0.9999833106994629},{"category_id":8,"poly":[145.2665557861328,714.859130859375,828.1447143554688,714.859130859375,828.1447143554688,790.4703979492188,145.2665557861328,790.4703979492188],"score":0.999983012676239},{"category_id":1,"poly":[133.4851531982422,796.4535522460938,836.5848999023438,796.4535522460938,836.5848999023438,995.5222778320312,133.4851531982422,995.5222778320312],"score":0.9999814033508301},{"category_id":1,"poly":[863.7748413085938,597.98779296875,1566.551513671875,597.98779296875,1566.551513671875,797.1552734375,863.7748413085938,797.1552734375],"score":0.9999789595603943},{"category_id":1,"poly":[133.85084533691406,444.86785888671875,835.747802734375,444.86785888671875,835.747802734375,708.8450317382812,133.85084533691406,708.8450317382812],"score":0.9999788999557495},{"category_id":9,"poly":[801.137939453125,1023.3792114257812,833.5880737304688,1023.3792114257812,833.5880737304688,1055.752197265625,801.137939453125,1055.752197265625],"score":0.9999707937240601},{"category_id":8,"poly":[149.37112426757812,1841.37109375,803.680419921875,1841.37109375,803.680419921875,1989.151611328125,149.37112426757812,1989.151611328125],"score":0.9999672770500183},{"category_id":1,"poly":[865.775146484375,463.9938659667969,1563.5001220703125,463.9938659667969,1563.5001220703125,527.5928955078125,865.775146484375,527.5928955078125],"score":0.999967098236084},{"category_id":1,"poly":[133.99685668945312,1614.05908203125,836.1497192382812,1614.05908203125,836.1497192382812,1815.2291259765625,133.99685668945312,1815.2291259765625],"score":0.9999525547027588},{"category_id":8,"poly":[949.450927734375,371.08831787109375,1485.4744873046875,371.08831787109375,1485.4744873046875,450.77783203125,949.450927734375,450.77783203125],"score":0.9999483823776245},{"category_id":8,"poly":[281.1448669433594,1002.1107177734375,688.68701171875,1002.1107177734375,688.68701171875,1076.0518798828125,281.1448669433594,1076.0518798828125],"score":0.9998287558555603},{"category_id":0,"poly":[134.5569610595703,405.0261535644531,477.6263122558594,405.0261535644531,477.6263122558594,437.36474609375,134.5569610595703,437.36474609375],"score":0.9997165203094482},{"category_id":8,"poly":[1028.802001953125,543.2924194335938,1399.876708984375,543.2924194335938,1399.876708984375,584.5335083007812,1028.802001953125,584.5335083007812],"score":0.9996472597122192},{"category_id":0,"poly":[134.864990234375,1329.3621826171875,715.3360595703125,1329.3621826171875,715.3360595703125,1361.1461181640625,134.864990234375,1361.1461181640625],"score":0.9992499351501465},{"category_id":0,"poly":[1135.712158203125,813.497314453125,1294.5224609375,813.497314453125,1294.5224609375,844.8975830078125,1135.712158203125,844.8975830078125],"score":0.9986440539360046},{"category_id":8,"poly":[340.39654541015625,1546.9722900390625,627.0247192382812,1546.9722900390625,627.0247192382812,1603.982177734375,340.39654541015625,1603.982177734375],"score":0.9947470426559448},{"category_id":1,"poly":[865.5308837890625,160.10531616210938,1251.76611328125,160.10531616210938,1251.76611328125,189.97052001953125,865.5308837890625,189.97052001953125],"score":0.9947458505630493},{"category_id":9,"poly":[800.291748046875,738.486083984375,834.7160034179688,738.486083984375,834.7160034179688,769.446533203125,800.291748046875,769.446533203125],"score":0.9944049715995789},{"category_id":9,"poly":[799.2753295898438,1987.968017578125,835.062744140625,1987.968017578125,835.062744140625,2017.0728759765625,799.2753295898438,2017.0728759765625],"score":0.9877938032150269},{"category_id":13,"poly":[550,577,648,577,648,612,550,612],"score":0.95,"latex":"C_{a}(p,\\bar{p})"},{"category_id":13,"poly":[183,1780,304,1780,304,1813,183,1813],"score":0.95,"latex":"p^{\\prime}=m(\\bar{p})"},{"category_id":14,"poly":[279,1000,687,1000,687,1078,279,1078],"score":0.95,"latex":"w_{t}(p,p_{t-1})=\\exp{\\left(-\\frac{\\Delta_{c}(p,p_{t-1})}{\\gamma_{t}}\\right)},"},{"category_id":14,"poly":[147,1843,820,1843,820,1992,147,1992],"score":0.94,"latex":"F_{p}=\\left\\{\\frac{\\displaystyle{\\operatorname*{min}_{\\bar{p}\\in S_{p}\\backslash m(p)}p}-\\operatorname*{min}_{\\bar{p}\\in S_{p}}C(p,\\bar{p})}{\\displaystyle{\\operatorname*{min}_{\\bar{p}\\in S_{p}\\backslash m(p)}p}},\\right.\\ \\left|d_{p}-d_{p^{\\prime}}\\right|\\leq1\\ ."},{"category_id":14,"poly":[340,1546,628,1546,628,1608,340,1608],"score":0.93,"latex":"m(p)=\\underset{\\bar{p}\\in S_{p}}{\\mathrm{argmin}}\\,C(p,\\bar{p})\\,."},{"category_id":13,"poly":[321,830,443,830,443,864,321,864],"score":0.93,"latex":"w_{t}(p,p_{t-1})"},{"category_id":13,"poly":[581,1713,694,1713,694,1747,581,1747],"score":0.93,"latex":"\\bar{p}=m(p)"},{"category_id":14,"poly":[947,373,1478,373,1478,454,947,454],"score":0.93,"latex":"\\Lambda^{i}(p,\\bar{p})=\\alpha\\times\\sum_{q\\in\\Omega_{p}}w(p,q)F_{q}^{i-1}\\left|D_{q}^{i-1}-d_{p}\\right|\\,,"},{"category_id":13,"poly":[426,445,512,445,512,479,426,479],"score":0.93,"latex":"C(p,\\bar{p})"},{"category_id":13,"poly":[337,356,414,356,414,391,337,391],"score":0.93,"latex":"O(\\omega^{2})"},{"category_id":13,"poly":[1341,730,1565,730,1565,765,1341,765],"score":0.92,"latex":"C_{a}(p,\\bar{p})\\leftarrow C(p,\\bar{p})"},{"category_id":13,"poly":[629,1436,691,1436,691,1470,629,1470],"score":0.92,"latex":"m(p)"},{"category_id":13,"poly":[277,1469,361,1469,361,1504,277,1504],"score":0.92,"latex":"\\bar{p}\\in S_{p}"},{"category_id":14,"poly":[1030,541,1398,541,1398,582,1030,582],"score":0.92,"latex":"C^{i}(p,\\bar{p})=C^{0}(p,\\bar{p})+\\Lambda^{i}(p,\\bar{p})\\,,"},{"category_id":13,"poly":[453,356,518,356,518,391,453,391],"score":0.91,"latex":"O(\\omega)"},{"category_id":14,"poly":[146,714,787,714,787,791,146,791],"score":0.91,"latex":"C(p,\\bar{p})\\leftarrow\\frac{(1-\\lambda)\\cdot C(p,\\bar{p})+\\lambda\\cdot w_{t}(p,p_{t-1})\\cdot C_{a}(p,\\bar{p})}{(1-\\lambda)+\\lambda\\cdot w_{t}(p,p_{t-1})},"},{"category_id":13,"poly":[1095,231,1134,231,1134,270,1095,270],"score":0.9,"latex":"D_{p}^{i}"},{"category_id":13,"poly":[1313,1752,1447,1752,1447,1783,1313,1783],"score":0.89,"latex":"640~\\times~480"},{"category_id":13,"poly":[593,1782,627,1782,627,1815,593,1815],"score":0.89,"latex":"F_{p}"},{"category_id":13,"poly":[133,326,209,326,209,355,133,355],"score":0.88,"latex":"\\omega\\times\\omega"},{"category_id":13,"poly":[208,1089,236,1089,236,1116,208,1116],"score":0.85,"latex":"\\gamma_{t}"},{"category_id":13,"poly":[1466,769,1484,769,1484,797,1466,797],"score":0.83,"latex":"\\bar{p}"},{"category_id":13,"poly":[133,935,177,935,177,963,133,963],"score":0.83,"latex":"p_{t-1}"},{"category_id":13,"poly":[608,1753,627,1753,627,1779,608,1779],"score":0.81,"latex":"p"},{"category_id":13,"poly":[1018,770,1037,770,1037,796,1018,796],"score":0.81,"latex":"p"},{"category_id":13,"poly":[491,799,511,799,511,825,491,825],"score":0.81,"latex":"\\lambda"},{"category_id":13,"poly":[1086,470,1107,470,1107,491,1086,491],"score":0.8,"latex":"\\alpha"},{"category_id":13,"poly":[466,901,485,901,485,929,466,929],"score":0.8,"latex":"p"},{"category_id":13,"poly":[208,484,227,484,227,511,208,511],"score":0.79,"latex":"p"},{"category_id":13,"poly":[462,1443,480,1443,480,1468,462,1468],"score":0.77,"latex":"p"},{"category_id":13,"poly":[266,514,288,514,288,544,266,544],"score":0.77,"latex":"\\bar{p}"},{"category_id":13,"poly":[816,1716,836,1716,836,1746,816,1746],"score":0.73,"latex":"\\bar{p}"},{"category_id":13,"poly":[132,405,154,405,154,432,132,432],"score":0.27,"latex":"B"},{"category_id":13,"poly":[862,160,887,160,887,187,862,187],"score":0.26,"latex":"D"},{"category_id":15,"poly":[893,858,1566,858,1566,890,893,890],"score":1,"text":""},{"category_id":15,"poly":[863,894,1566,894,1566,923,863,923],"score":1,"text":""},{"category_id":15,"poly":[865,927,1567,927,1567,955,865,955],"score":1,"text":""},{"category_id":15,"poly":[864,959,1566,959,1566,990,864,990],"score":1,"text":""},{"category_id":15,"poly":[864,993,1567,993,1567,1023,864,1023],"score":1,"text":""},{"category_id":15,"poly":[865,1026,1567,1026,1567,1057,865,1057],"score":1,"text":""},{"category_id":15,"poly":[864,1059,1565,1059,1565,1090,864,1090],"score":1,"text":""},{"category_id":15,"poly":[862,1091,1568,1091,1568,1123,862,1123],"score":1,"text":""},{"category_id":15,"poly":[866,1126,1565,1126,1565,1156,866,1156],"score":1,"text":""},{"category_id":15,"poly":[864,1158,1565,1158,1565,1191,864,1191],"score":1,"text":""},{"category_id":15,"poly":[865,1192,1567,1192,1567,1223,865,1223],"score":1,"text":""},{"category_id":15,"poly":[864,1224,1566,1224,1566,1257,864,1257],"score":1,"text":""},{"category_id":15,"poly":[864,1256,1567,1256,1567,1291,864,1291],"score":1,"text":""},{"category_id":15,"poly":[866,1291,1566,1291,1566,1322,866,1322],"score":1,"text":""},{"category_id":15,"poly":[865,1326,1565,1326,1565,1356,865,1356],"score":1,"text":""},{"category_id":15,"poly":[862,1357,1568,1357,1568,1390,862,1390],"score":1,"text":""},{"category_id":15,"poly":[864,1390,1088,1390,1088,1424,864,1424],"score":1,"text":""},{"category_id":15,"poly":[133,160,835,160,835,195,133,195],"score":1,"text":""},{"category_id":15,"poly":[133,194,837,194,837,227,133,227],"score":1,"text":""},{"category_id":15,"poly":[132,228,837,228,837,263,132,263],"score":1,"text":""},{"category_id":15,"poly":[132,260,836,260,836,294,132,294],"score":1,"text":""},{"category_id":15,"poly":[132,293,837,293,837,329,132,329],"score":1,"text":""},{"category_id":15,"poly":[210,328,837,328,837,360,210,360],"score":1,"text":""},{"category_id":15,"poly":[134,361,336,361,336,393,134,393],"score":1,"text":""},{"category_id":15,"poly":[415,361,452,361,452,393,415,393],"score":1,"text":""},{"category_id":15,"poly":[519,361,526,361,526,393,519,393],"score":1,"text":""},{"category_id":15,"poly":[894,202,1564,202,1564,234,894,234],"score":1,"text":""},{"category_id":15,"poly":[866,233,1094,233,1094,269,866,269],"score":1,"text":""},{"category_id":15,"poly":[1135,233,1568,233,1568,269,1135,269],"score":1,"text":""},{"category_id":15,"poly":[866,269,1563,269,1563,302,866,302],"score":1,"text":""},{"category_id":15,"poly":[863,301,1564,301,1564,336,863,336],"score":1,"text":""},{"category_id":15,"poly":[862,334,994,334,994,372,862,372],"score":1,"text":""},{"category_id":15,"poly":[889,1420,1569,1420,1569,1457,889,1457],"score":1,"text":""},{"category_id":15,"poly":[865,1458,1567,1458,1567,1487,865,1487],"score":1,"text":""},{"category_id":15,"poly":[864,1492,1567,1492,1567,1522,864,1522],"score":1,"text":""},{"category_id":15,"poly":[867,1526,1566,1526,1566,1553,867,1553],"score":1,"text":""},{"category_id":15,"poly":[866,1558,1564,1558,1564,1586,866,1586],"score":1,"text":""},{"category_id":15,"poly":[864,1591,1566,1591,1566,1619,864,1619],"score":1,"text":""},{"category_id":15,"poly":[863,1621,1566,1621,1566,1654,863,1654],"score":1,"text":""},{"category_id":15,"poly":[865,1657,1567,1657,1567,1688,865,1688],"score":1,"text":""},{"category_id":15,"poly":[864,1689,1568,1689,1568,1723,864,1723],"score":1,"text":""},{"category_id":15,"poly":[867,1723,1568,1723,1568,1754,867,1754],"score":1,"text":""},{"category_id":15,"poly":[864,1754,1312,1754,1312,1788,864,1788],"score":1,"text":""},{"category_id":15,"poly":[1448,1754,1569,1754,1569,1788,1448,1788],"score":1,"text":""},{"category_id":15,"poly":[864,1789,1569,1789,1569,1820,864,1820],"score":1,"text":""},{"category_id":15,"poly":[864,1822,1567,1822,1567,1856,864,1856],"score":1,"text":""},{"category_id":15,"poly":[866,1856,1568,1856,1568,1887,866,1887],"score":1,"text":""},{"category_id":15,"poly":[864,1889,1567,1889,1567,1919,864,1919],"score":1,"text":""},{"category_id":15,"poly":[866,1920,1568,1920,1568,1954,866,1954],"score":1,"text":""},{"category_id":15,"poly":[865,1953,1567,1953,1567,1985,865,1985],"score":1,"text":""},{"category_id":15,"poly":[868,1989,1567,1989,1567,2020,868,2020],"score":1,"text":""},{"category_id":15,"poly":[136,1087,207,1087,207,1119,136,1119],"score":1,"text":""},{"category_id":15,"poly":[237,1087,833,1087,833,1119,237,1119],"score":1,"text":""},{"category_id":15,"poly":[133,1120,835,1120,835,1151,133,1151],"score":1,"text":""},{"category_id":15,"poly":[132,1151,837,1151,837,1185,132,1185],"score":1,"text":""},{"category_id":15,"poly":[133,1185,838,1185,838,1218,133,1218],"score":1,"text":""},{"category_id":15,"poly":[137,1221,836,1221,836,1250,137,1250],"score":1,"text":""},{"category_id":15,"poly":[133,1252,837,1252,837,1284,133,1284],"score":1,"text":""},{"category_id":15,"poly":[133,1285,403,1285,403,1317,133,1317],"score":1,"text":""},{"category_id":15,"poly":[161,1372,836,1372,836,1406,161,1406],"score":1,"text":""},{"category_id":15,"poly":[134,1405,834,1405,834,1438,134,1438],"score":1,"text":""},{"category_id":15,"poly":[133,1439,461,1439,461,1470,133,1470],"score":1,"text":""},{"category_id":15,"poly":[481,1439,628,1439,628,1470,481,1470],"score":1,"text":""},{"category_id":15,"poly":[692,1439,834,1439,834,1470,692,1470],"score":1,"text":""},{"category_id":15,"poly":[135,1473,276,1473,276,1505,135,1505],"score":1,"text":""},{"category_id":15,"poly":[362,1473,835,1473,835,1505,362,1505],"score":1,"text":""},{"category_id":15,"poly":[134,1507,374,1507,374,1537,134,1537],"score":1,"text":""},{"category_id":15,"poly":[136,800,490,800,490,829,136,829],"score":1,"text":""},{"category_id":15,"poly":[512,800,836,800,836,829,512,829],"score":1,"text":""},{"category_id":15,"poly":[133,832,320,832,320,867,133,867],"score":1,"text":""},{"category_id":15,"poly":[444,832,836,832,836,867,444,867],"score":1,"text":""},{"category_id":15,"poly":[133,865,838,865,838,901,133,901],"score":1,"text":""},{"category_id":15,"poly":[133,901,465,901,465,930,133,930],"score":1,"text":""},{"category_id":15,"poly":[486,901,835,901,835,930,486,930],"score":1,"text":""},{"category_id":15,"poly":[130,933,132,933,132,967,130,967],"score":1,"text":""},{"category_id":15,"poly":[178,933,837,933,837,967,178,967],"score":1,"text":""},{"category_id":15,"poly":[131,965,264,965,264,1001,131,1001],"score":1,"text":""},{"category_id":15,"poly":[866,602,1565,602,1565,631,866,631],"score":1,"text":""},{"category_id":15,"poly":[865,633,1568,633,1568,669,865,669],"score":1,"text":""},{"category_id":15,"poly":[864,666,1566,666,1566,701,864,701],"score":1,"text":""},{"category_id":15,"poly":[864,700,1568,700,1568,731,864,731],"score":1,"text":""},{"category_id":15,"poly":[863,733,1340,733,1340,767,863,767],"score":1,"text":""},{"category_id":15,"poly":[863,767,1017,767,1017,801,863,801],"score":1,"text":""},{"category_id":15,"poly":[1038,767,1465,767,1465,801,1038,801],"score":1,"text":""},{"category_id":15,"poly":[1485,767,1493,767,1493,801,1485,801],"score":1,"text":""},{"category_id":15,"poly":[162,447,425,447,425,482,162,482],"score":1,"text":""},{"category_id":15,"poly":[513,447,836,447,836,482,513,482],"score":1,"text":""},{"category_id":15,"poly":[135,484,207,484,207,513,135,513],"score":1,"text":""},{"category_id":15,"poly":[228,484,834,484,834,513,228,513],"score":1,"text":""},{"category_id":15,"poly":[134,515,265,515,265,547,134,547],"score":1,"text":""},{"category_id":15,"poly":[289,515,836,515,836,547,289,547],"score":1,"text":""},{"category_id":15,"poly":[134,549,836,549,836,578,134,578],"score":1,"text":""},{"category_id":15,"poly":[135,581,549,581,549,612,135,612],"score":1,"text":""},{"category_id":15,"poly":[649,581,838,581,838,612,649,612],"score":1,"text":""},{"category_id":15,"poly":[136,616,834,616,834,645,136,645],"score":1,"text":""},{"category_id":15,"poly":[133,646,835,646,835,680,133,680],"score":1,"text":""},{"category_id":15,"poly":[134,680,670,680,670,713,134,713],"score":1,"text":""},{"category_id":15,"poly":[866,465,1085,465,1085,499,866,499],"score":1,"text":""},{"category_id":15,"poly":[1108,465,1562,465,1562,499,1108,499],"score":1,"text":""},{"category_id":15,"poly":[867,500,1428,500,1428,531,867,531],"score":1,"text":""},{"category_id":15,"poly":[159,1615,836,1615,836,1650,159,1650],"score":1,"text":""},{"category_id":15,"poly":[135,1652,838,1652,838,1681,135,1681],"score":1,"text":""},{"category_id":15,"poly":[134,1683,839,1683,839,1716,134,1716],"score":1,"text":""},{"category_id":15,"poly":[131,1716,580,1716,580,1750,131,1750],"score":1,"text":""},{"category_id":15,"poly":[695,1716,815,1716,815,1750,695,1750],"score":1,"text":""},{"category_id":15,"poly":[837,1716,837,1716,837,1750,837,1750],"score":1,"text":""},{"category_id":15,"poly":[132,1748,607,1748,607,1785,132,1785],"score":1,"text":""},{"category_id":15,"poly":[628,1748,836,1748,836,1785,628,1785],"score":1,"text":""},{"category_id":15,"poly":[134,1782,182,1782,182,1817,134,1817],"score":1,"text":""},{"category_id":15,"poly":[305,1782,592,1782,592,1817,305,1817],"score":1,"text":""},{"category_id":15,"poly":[628,1782,810,1782,810,1817,628,1817],"score":1,"text":""},{"category_id":15,"poly":[155,404,477,404,477,442,155,442],"score":1,"text":""},{"category_id":15,"poly":[138,1330,716,1330,716,1366,138,1366],"score":1,"text":""},{"category_id":15,"poly":[1132,814,1298,814,1298,847,1132,847],"score":1,"text":""},{"category_id":15,"poly":[888,160,1250,160,1250,193,888,193],"score":1,"text":""}],"page_info":{"page_no":2,"height":2200,"width":1700}},{"layout_dets":[{"category_id":1,"poly":[133.2380828857422,1522.2489013671875,836.1322631835938,1522.2489013671875,836.1322631835938,1885.257080078125,133.2380828857422,1885.257080078125],"score":0.9999951124191284},{"category_id":4,"poly":[861.9458618164062,864.1607055664062,1567.0277099609375,864.1607055664062,1567.0277099609375,1032.004150390625,861.9458618164062,1032.004150390625],"score":0.9999912977218628},{"category_id":3,"poly":[874.5701904296875,154.02452087402344,1495.532958984375,154.02452087402344,1495.532958984375,849.2171630859375,874.5701904296875,849.2171630859375],"score":0.9999904632568359},{"category_id":4,"poly":[863.0010986328125,1752.031005859375,1565.427001953125,1752.031005859375,1565.427001953125,1850.8660888671875,863.0010986328125,1850.8660888671875],"score":0.9999890327453613},{"category_id":1,"poly":[133.61553955078125,160.01754760742188,837.108642578125,160.01754760742188,837.108642578125,257.69354248046875,133.61553955078125,257.69354248046875],"score":0.999984622001648},{"category_id":4,"poly":[132.43441772460938,1355.7642822265625,836.6817626953125,1355.7642822265625,836.6817626953125,1488.745849609375,132.43441772460938,1488.745849609375],"score":0.9999836683273315},{"category_id":3,"poly":[141.9892120361328,280.3852844238281,812.9765625,280.3852844238281,812.9765625,1345.0997314453125,141.9892120361328,1345.0997314453125],"score":0.9999815225601196},{"category_id":1,"poly":[133.11953735351562,1886.8203125,835.4058227539062,1886.8203125,835.4058227539062,2018.5140380859375,133.11953735351562,2018.5140380859375],"score":0.9999706745147705},{"category_id":3,"poly":[874.9677124023438,1161.6328125,1525.4285888671875,1161.6328125,1525.4285888671875,1733.285888671875,874.9677124023438,1733.285888671875],"score":0.9999067783355713},{"category_id":1,"poly":[863.7095336914062,1920.5084228515625,1567.07080078125,1920.5084228515625,1567.07080078125,2018.963134765625,863.7095336914062,2018.963134765625],"score":0.9997776746749878},{"category_id":4,"poly":[863.47607421875,1066.640869140625,1561.8057861328125,1066.640869140625,1561.8057861328125,1132.744384765625,863.47607421875,1132.744384765625],"score":0.6925872564315796},{"category_id":1,"poly":[863.744140625,1067.1168212890625,1561.669921875,1067.1168212890625,1561.669921875,1132.9259033203125,863.744140625,1132.9259033203125],"score":0.4146493673324585},{"category_id":13,"poly":[1295,896,1483,896,1483,931,1295,931],"score":0.93,"latex":"\\{\\pm0,\\pm20,\\pm40\\}"},{"category_id":13,"poly":[481,1919,534,1919,534,1949,481,1949],"score":0.87,"latex":"\\pm20"},{"category_id":13,"poly":[591,1919,644,1919,644,1949,591,1949],"score":0.87,"latex":"\\pm40"},{"category_id":13,"poly":[1227,1436,1253,1436,1253,1459,1227,1459],"score":0.86,"latex":"\\gamma_{c}"},{"category_id":13,"poly":[1295,1436,1323,1436,1323,1461,1295,1461],"score":0.85,"latex":"\\gamma_{g}"},{"category_id":13,"poly":[133,1588,186,1588,186,1618,133,1618],"score":0.85,"latex":"\\pm20"},{"category_id":13,"poly":[249,1587,302,1587,302,1618,249,1618],"score":0.84,"latex":"\\pm40"},{"category_id":13,"poly":[787,1555,828,1555,828,1585,787,1585],"score":0.82,"latex":"\\pm0"},{"category_id":13,"poly":[532,1421,572,1421,572,1452,532,1452],"score":0.81,"latex":"3^{\\mathrm{rd}}"},{"category_id":13,"poly":[230,1389,266,1389,266,1419,230,1419],"score":0.8,"latex":"\\mathrm{{[1^{st}}}"},{"category_id":13,"poly":[655,1986,675,1986,675,2013,655,2013],"score":0.78,"latex":"\\lambda"},{"category_id":13,"poly":[200,1455,240,1455,240,1486,200,1486],"score":0.75,"latex":"\\mathrm{{4^{th}}}"},{"category_id":13,"poly":[954,1255,980,1255,980,1275,954,1275],"score":0.75,"latex":"\\gamma_{c}"},{"category_id":13,"poly":[954,1281,980,1281,980,1302,954,1302],"score":0.74,"latex":"\\gamma_{g}"},{"category_id":13,"poly":[959,1227,976,1227,976,1245,959,1245],"score":0.74,"latex":"\\tau"},{"category_id":13,"poly":[960,1352,976,1352,976,1372,960,1372],"score":0.72,"latex":"k"},{"category_id":13,"poly":[410,1986,430,1986,430,2013,410,2013],"score":0.7,"latex":"\\lambda"},{"category_id":13,"poly":[955,1331,979,1331,979,1351,955,1351],"score":0.7,"latex":"\\gamma_{t}"},{"category_id":13,"poly":[1489,1752,1510,1752,1510,1778,1489,1778],"score":0.69,"latex":"\\lambda"},{"category_id":13,"poly":[1176,965,1195,965,1195,992,1176,992],"score":0.69,"latex":"\\lambda"},{"category_id":13,"poly":[246,1421,289,1421,289,1452,246,1452],"score":0.69,"latex":"2^{\\mathrm{nd}}"},{"category_id":13,"poly":[958,1302,977,1302,977,1323,958,1323],"score":0.63,"latex":"\\lambda"},{"category_id":13,"poly":[959,1380,977,1380,977,1397,959,1397],"score":0.58,"latex":"_\\alpha"},{"category_id":13,"poly":[436,1621,455,1621,455,1648,436,1648],"score":0.58,"latex":"\\lambda"},{"category_id":13,"poly":[959,1204,977,1204,977,1219,959,1219],"score":0.42,"latex":"\\omega"},{"category_id":13,"poly":[870,1592,890,1592,890,1617,870,1617],"score":0.31,"latex":"\\lambda"},{"category_id":15,"poly":[161,1524,833,1524,833,1555,161,1555],"score":1,"text":""},{"category_id":15,"poly":[131,1557,786,1557,786,1588,131,1588],"score":1,"text":""},{"category_id":15,"poly":[829,1557,833,1557,833,1588,829,1588],"score":1,"text":""},{"category_id":15,"poly":[187,1591,248,1591,248,1623,187,1623],"score":1,"text":""},{"category_id":15,"poly":[303,1591,837,1591,837,1623,303,1623],"score":1,"text":""},{"category_id":15,"poly":[133,1622,435,1622,435,1656,133,1656],"score":1,"text":""},{"category_id":15,"poly":[456,1622,837,1622,837,1656,456,1656],"score":1,"text":""},{"category_id":15,"poly":[134,1658,836,1658,836,1690,134,1690],"score":1,"text":""},{"category_id":15,"poly":[134,1692,834,1692,834,1721,134,1721],"score":1,"text":""},{"category_id":15,"poly":[133,1724,835,1724,835,1752,133,1752],"score":1,"text":""},{"category_id":15,"poly":[133,1757,836,1757,836,1786,133,1786],"score":1,"text":""},{"category_id":15,"poly":[132,1788,836,1788,836,1822,132,1822],"score":1,"text":""},{"category_id":15,"poly":[133,1822,836,1822,836,1855,133,1855],"score":1,"text":""},{"category_id":15,"poly":[133,1858,320,1858,320,1888,133,1888],"score":1,"text":""},{"category_id":15,"poly":[864,867,1567,867,1567,900,864,900],"score":1,"text":""},{"category_id":15,"poly":[864,900,1294,900,1294,932,864,932],"score":1,"text":""},{"category_id":15,"poly":[1484,900,1565,900,1565,932,1484,932],"score":1,"text":""},{"category_id":15,"poly":[863,934,1567,934,1567,967,863,967],"score":1,"text":""},{"category_id":15,"poly":[863,966,1175,966,1175,1000,863,1000],"score":1,"text":""},{"category_id":15,"poly":[1196,966,1565,966,1565,1000,1196,1000],"score":1,"text":""},{"category_id":15,"poly":[864,999,1491,999,1491,1035,864,1035],"score":1,"text":""},{"category_id":15,"poly":[865,1754,1488,1754,1488,1783,865,1783],"score":1,"text":""},{"category_id":15,"poly":[1511,1754,1566,1754,1566,1783,1511,1783],"score":1,"text":""},{"category_id":15,"poly":[864,1788,1564,1788,1564,1817,864,1817],"score":1,"text":""},{"category_id":15,"poly":[865,1819,1429,1819,1429,1853,865,1853],"score":1,"text":""},{"category_id":15,"poly":[135,159,832,159,832,194,135,194],"score":1,"text":""},{"category_id":15,"poly":[135,195,836,195,836,227,135,227],"score":1,"text":""},{"category_id":15,"poly":[135,227,347,227,347,263,135,263],"score":1,"text":""},{"category_id":15,"poly":[135,1359,836,1359,836,1391,135,1391],"score":1,"text":""},{"category_id":15,"poly":[133,1390,229,1390,229,1427,133,1427],"score":1,"text":""},{"category_id":15,"poly":[267,1390,837,1390,837,1427,267,1427],"score":1,"text":""},{"category_id":15,"poly":[133,1423,245,1423,245,1458,133,1458],"score":1,"text":""},{"category_id":15,"poly":[290,1423,531,1423,531,1458,290,1458],"score":1,"text":""},{"category_id":15,"poly":[573,1423,834,1423,834,1458,573,1458],"score":1,"text":""},{"category_id":15,"poly":[132,1456,199,1456,199,1492,132,1492],"score":1,"text":""},{"category_id":15,"poly":[241,1456,310,1456,310,1492,241,1492],"score":1,"text":""},{"category_id":15,"poly":[161,1888,834,1888,834,1922,161,1922],"score":1,"text":""},{"category_id":15,"poly":[132,1921,480,1921,480,1952,132,1952],"score":1,"text":""},{"category_id":15,"poly":[535,1921,590,1921,590,1952,535,1952],"score":1,"text":""},{"category_id":15,"poly":[645,1921,833,1921,833,1952,645,1952],"score":1,"text":""},{"category_id":15,"poly":[133,1951,835,1951,835,1988,133,1988],"score":1,"text":""},{"category_id":15,"poly":[133,1987,409,1987,409,2020,133,2020],"score":1,"text":""},{"category_id":15,"poly":[431,1987,654,1987,654,2020,431,2020],"score":1,"text":""},{"category_id":15,"poly":[676,1987,837,1987,837,2020,676,2020],"score":1,"text":""},{"category_id":15,"poly":[863,1921,1566,1921,1566,1955,863,1955],"score":1,"text":""},{"category_id":15,"poly":[863,1955,1565,1955,1565,1986,863,1986],"score":1,"text":""},{"category_id":15,"poly":[861,1988,1568,1988,1568,2021,861,2021],"score":1,"text":""},{"category_id":15,"poly":[865,1068,1558,1068,1558,1100,865,1100],"score":1,"text":""},{"category_id":15,"poly":[863,1099,1094,1099,1094,1137,863,1137],"score":1,"text":""},{"category_id":15,"poly":[864,1067,1559,1067,1559,1102,864,1102],"score":1,"text":""},{"category_id":15,"poly":[863,1099,1094,1099,1094,1137,863,1137],"score":1,"text":""}],"page_info":{"page_no":3,"height":2200,"width":1700}},{"layout_dets":[{"category_id":1,"poly":[864.871337890625,1061.6590576171875,1571.0252685546875,1061.6590576171875,1571.0252685546875,1460.282470703125,864.871337890625,1460.282470703125],"score":0.9999932050704956},{"category_id":1,"poly":[131.24400329589844,1520.90234375,837.9581298828125,1520.90234375,837.9581298828125,1882.6856689453125,131.24400329589844,1882.6856689453125],"score":0.9999930262565613},{"category_id":1,"poly":[863.7288208007812,157.5385284423828,1569.3896484375,157.5385284423828,1569.3896484375,456.0347900390625,863.7288208007812,456.0347900390625],"score":0.9999920725822449},{"category_id":1,"poly":[871.8152465820312,1513.001953125,1571.4056396484375,1513.001953125,1571.4056396484375,2021.031982421875,871.8152465820312,2021.031982421875],"score":0.9999905824661255},{"category_id":7,"poly":[893.027587890625,864.08837890625,1549.4176025390625,864.08837890625,1549.4176025390625,963.4273681640625,893.027587890625,963.4273681640625],"score":0.9999890327453613},{"category_id":0,"poly":[1137.8173828125,1477.2347412109375,1292.7652587890625,1477.2347412109375,1292.7652587890625,1503.3974609375,1137.8173828125,1503.3974609375],"score":0.9999808073043823},{"category_id":3,"poly":[165.4239044189453,354.6653747558594,805.229248046875,354.6653747558594,805.229248046875,1320.15234375,165.4239044189453,1320.15234375],"score":0.9999797344207764},{"category_id":5,"poly":[881.7678833007812,615.662109375,1549.8577880859375,615.662109375,1549.8577880859375,859.138427734375,881.7678833007812,859.138427734375],"score":0.9999761581420898},{"category_id":1,"poly":[132.82102966308594,159.23143005371094,837.5576171875,159.23143005371094,837.5576171875,323.20166015625,132.82102966308594,323.20166015625],"score":0.9999710917472839},{"category_id":0,"poly":[1115.3104248046875,1021.5819091796875,1316.40966796875,1021.5819091796875,1316.40966796875,1051.821533203125,1115.3104248046875,1051.821533203125],"score":0.9999030828475952},{"category_id":1,"poly":[132.45388793945312,1885.7120361328125,836.7922973632812,1885.7120361328125,836.7922973632812,2018.396728515625,132.45388793945312,2018.396728515625],"score":0.9999006986618042},{"category_id":4,"poly":[132.42440795898438,1347.6021728515625,838.28173828125,1347.6021728515625,838.28173828125,1478.394775390625,132.42440795898438,1478.394775390625],"score":0.9995896220207214},{"category_id":1,"poly":[864.6732177734375,481.1195068359375,1562.9296875,481.1195068359375,1562.9296875,577.5771484375,864.6732177734375,577.5771484375],"score":0.997081458568573},{"category_id":13,"poly":[736,1445,827,1445,827,1475,736,1475],"score":0.9,"latex":"\\lambda=0.8"},{"category_id":13,"poly":[1003,887,1105,887,1105,911,1003,911],"score":0.89,"latex":"320\\times240"},{"category_id":13,"poly":[338,1446,391,1446,391,1475,338,1475],"score":0.87,"latex":"\\pm30"},{"category_id":13,"poly":[165,1619,219,1619,219,1649,165,1649],"score":0.85,"latex":"\\pm40"},{"category_id":13,"poly":[301,196,329,196,329,224,301,224],"score":0.84,"latex":"\\gamma_{t}"},{"category_id":13,"poly":[795,1586,836,1586,836,1616,795,1616],"score":0.84,"latex":"\\pm0"},{"category_id":13,"poly":[1037,939,1059,939,1059,960,1037,960],"score":0.83,"latex":"\\%"},{"category_id":13,"poly":[462,1586,482,1586,482,1613,462,1613],"score":0.78,"latex":"\\lambda"},{"category_id":15,"poly":[894,1065,1568,1065,1568,1096,894,1096],"score":1,"text":""},{"category_id":15,"poly":[864,1099,1570,1099,1570,1129,864,1129],"score":1,"text":""},{"category_id":15,"poly":[863,1131,1564,1131,1564,1163,863,1163],"score":1,"text":""},{"category_id":15,"poly":[864,1167,1567,1167,1567,1195,864,1195],"score":1,"text":""},{"category_id":15,"poly":[863,1198,1566,1198,1566,1231,863,1231],"score":1,"text":""},{"category_id":15,"poly":[862,1229,1569,1229,1569,1265,862,1265],"score":1,"text":""},{"category_id":15,"poly":[865,1263,1567,1263,1567,1297,865,1297],"score":1,"text":""},{"category_id":15,"poly":[865,1297,1569,1297,1569,1330,865,1330],"score":1,"text":""},{"category_id":15,"poly":[864,1332,1566,1332,1566,1362,864,1362],"score":1,"text":""},{"category_id":15,"poly":[865,1365,1569,1365,1569,1395,865,1395],"score":1,"text":""},{"category_id":15,"poly":[864,1399,1567,1399,1567,1427,864,1427],"score":1,"text":""},{"category_id":15,"poly":[864,1432,1496,1432,1496,1459,864,1459],"score":1,"text":""},{"category_id":15,"poly":[162,1521,834,1521,834,1555,162,1555],"score":1,"text":""},{"category_id":15,"poly":[135,1556,838,1556,838,1588,135,1588],"score":1,"text":""},{"category_id":15,"poly":[132,1588,461,1588,461,1623,132,1623],"score":1,"text":""},{"category_id":15,"poly":[483,1588,794,1588,794,1623,483,1623],"score":1,"text":""},{"category_id":15,"poly":[837,1588,839,1588,839,1623,837,1623],"score":1,"text":""},{"category_id":15,"poly":[132,1622,164,1622,164,1654,132,1654],"score":1,"text":""},{"category_id":15,"poly":[220,1622,838,1622,838,1654,220,1654],"score":1,"text":""},{"category_id":15,"poly":[134,1657,836,1657,836,1686,134,1686],"score":1,"text":""},{"category_id":15,"poly":[133,1689,836,1689,836,1721,133,1721],"score":1,"text":""},{"category_id":15,"poly":[131,1720,836,1720,836,1755,131,1755],"score":1,"text":""},{"category_id":15,"poly":[132,1755,837,1755,837,1787,132,1787],"score":1,"text":""},{"category_id":15,"poly":[133,1789,835,1789,835,1821,133,1821],"score":1,"text":""},{"category_id":15,"poly":[132,1823,837,1823,837,1854,132,1854],"score":1,"text":""},{"category_id":15,"poly":[134,1857,196,1857,196,1885,134,1885],"score":1,"text":""},{"category_id":15,"poly":[864,161,1569,161,1569,192,864,192],"score":1,"text":""},{"category_id":15,"poly":[864,195,1568,195,1568,225,864,225],"score":1,"text":""},{"category_id":15,"poly":[865,229,1567,229,1567,258,865,258],"score":1,"text":""},{"category_id":15,"poly":[863,261,1569,261,1569,293,863,293],"score":1,"text":""},{"category_id":15,"poly":[863,295,1567,295,1567,324,863,324],"score":1,"text":""},{"category_id":15,"poly":[864,329,1568,329,1568,355,864,355],"score":1,"text":""},{"category_id":15,"poly":[865,362,1569,362,1569,391,865,391],"score":1,"text":""},{"category_id":15,"poly":[864,395,1570,395,1570,427,864,427],"score":1,"text":""},{"category_id":15,"poly":[865,429,1259,429,1259,458,865,458],"score":1,"text":""},{"category_id":15,"poly":[876,1519,1565,1519,1565,1544,876,1544],"score":1,"text":""},{"category_id":15,"poly":[916,1544,1569,1544,1569,1569,916,1569],"score":1,"text":""},{"category_id":15,"poly":[916,1569,1404,1569,1404,1594,916,1594],"score":1,"text":""},{"category_id":15,"poly":[874,1591,1568,1591,1568,1622,874,1622],"score":1,"text":""},{"category_id":15,"poly":[915,1618,1566,1618,1566,1645,915,1645],"score":1,"text":""},{"category_id":15,"poly":[915,1641,1506,1641,1506,1670,915,1670],"score":1,"text":""},{"category_id":15,"poly":[876,1669,1567,1669,1567,1694,876,1694],"score":1,"text":""},{"category_id":15,"poly":[915,1693,1566,1693,1566,1720,915,1720],"score":1,"text":""},{"category_id":15,"poly":[916,1719,1567,1719,1567,1744,916,1744],"score":1,"text":""},{"category_id":15,"poly":[914,1741,1371,1741,1371,1771,914,1771],"score":1,"text":""},{"category_id":15,"poly":[875,1767,1566,1767,1566,1795,875,1795],"score":1,"text":""},{"category_id":15,"poly":[915,1793,1567,1793,1567,1818,915,1818],"score":1,"text":""},{"category_id":15,"poly":[915,1817,1567,1817,1567,1844,915,1844],"score":1,"text":""},{"category_id":15,"poly":[915,1842,1567,1842,1567,1870,915,1870],"score":1,"text":""},{"category_id":15,"poly":[914,1867,1247,1867,1247,1893,914,1893],"score":1,"text":""},{"category_id":15,"poly":[876,1892,1567,1892,1567,1920,876,1920],"score":1,"text":""},{"category_id":15,"poly":[914,1918,1564,1918,1564,1946,914,1946],"score":1,"text":""},{"category_id":15,"poly":[912,1941,1568,1941,1568,1970,912,1970],"score":1,"text":""},{"category_id":15,"poly":[915,1967,1568,1967,1568,1995,915,1995],"score":1,"text":""},{"category_id":15,"poly":[915,1991,1561,1991,1561,2020,915,2020],"score":1,"text":""},{"category_id":15,"poly":[898,859,1320,859,1320,894,898,894],"score":1,"text":""},{"category_id":15,"poly":[897,882,1002,882,1002,920,897,920],"score":1,"text":""},{"category_id":15,"poly":[1106,882,1404,882,1404,920,1106,920],"score":1,"text":""},{"category_id":15,"poly":[897,907,1550,907,1550,946,897,946],"score":1,"text":""},{"category_id":15,"poly":[916,939,1036,939,1036,965,916,965],"score":1,"text":""},{"category_id":15,"poly":[1060,939,1191,939,1191,965,1060,965],"score":1,"text":""},{"category_id":15,"poly":[1136,1477,1295,1477,1295,1503,1136,1503],"score":1,"text":""},{"category_id":15,"poly":[134,162,833,162,833,194,134,194],"score":1,"text":""},{"category_id":15,"poly":[133,191,300,191,300,229,133,229],"score":1,"text":""},{"category_id":15,"poly":[330,191,837,191,837,229,330,229],"score":1,"text":""},{"category_id":15,"poly":[134,228,835,228,835,263,134,263],"score":1,"text":""},{"category_id":15,"poly":[132,262,837,262,837,294,132,294],"score":1,"text":""},{"category_id":15,"poly":[134,293,355,293,355,329,134,329],"score":1,"text":""},{"category_id":15,"poly":[1113,1020,1320,1020,1320,1057,1113,1057],"score":1,"text":""},{"category_id":15,"poly":[161,1887,834,1887,834,1921,161,1921],"score":1,"text":""},{"category_id":15,"poly":[133,1919,833,1919,833,1954,133,1954],"score":1,"text":""},{"category_id":15,"poly":[133,1954,835,1954,835,1987,133,1987],"score":1,"text":""},{"category_id":15,"poly":[132,1988,835,1988,835,2022,132,2022],"score":1,"text":""},{"category_id":15,"poly":[134,1350,835,1350,835,1382,134,1382],"score":1,"text":""},{"category_id":15,"poly":[132,1380,835,1380,835,1418,132,1418],"score":1,"text":""},{"category_id":15,"poly":[133,1415,836,1415,836,1449,133,1449],"score":1,"text":""},{"category_id":15,"poly":[137,1451,337,1451,337,1476,137,1476],"score":1,"text":""},{"category_id":15,"poly":[392,1451,735,1451,735,1476,392,1476],"score":1,"text":""},{"category_id":15,"poly":[828,1451,834,1451,834,1476,828,1476],"score":1,"text":""},{"category_id":15,"poly":[865,482,1560,482,1560,517,865,517],"score":1,"text":""},{"category_id":15,"poly":[863,518,1561,518,1561,548,863,548],"score":1,"text":""},{"category_id":15,"poly":[864,550,914,550,914,579,864,579],"score":1,"text":""}],"page_info":{"page_no":4,"height":2200,"width":1700}},{"layout_dets":[{"category_id":1,"poly":[133.59251403808594,158.80909729003906,843.0554809570312,158.80909729003906,843.0554809570312,1662.9813232421875,133.59251403808594,1662.9813232421875],"score":0.9999763369560242},{"category_id":15,"poly":[142,161,837,161,837,193,142,193],"score":1,"text":""},{"category_id":15,"poly":[184,188,839,188,839,220,184,220],"score":1,"text":""},{"category_id":15,"poly":[181,212,841,212,841,248,181,248],"score":1,"text":""},{"category_id":15,"poly":[184,238,409,238,409,265,184,265],"score":1,"text":""},{"category_id":15,"poly":[142,263,837,263,837,295,142,295],"score":1,"text":""},{"category_id":15,"poly":[179,285,839,285,839,324,179,324],"score":1,"text":""},{"category_id":15,"poly":[181,310,837,310,837,349,181,349],"score":1,"text":""},{"category_id":15,"poly":[184,340,287,340,287,367,184,367],"score":1,"text":""},{"category_id":15,"poly":[140,360,841,360,841,397,140,397],"score":1,"text":""},{"category_id":15,"poly":[183,385,839,385,839,420,183,420],"score":1,"text":""},{"category_id":15,"poly":[183,410,841,410,841,447,183,447],"score":1,"text":""},{"category_id":15,"poly":[181,435,655,435,655,472,181,472],"score":1,"text":""},{"category_id":15,"poly":[142,462,837,462,837,494,142,494],"score":1,"text":""},{"category_id":15,"poly":[181,484,839,484,839,522,181,522],"score":1,"text":""},{"category_id":15,"poly":[181,507,841,507,841,547,181,547],"score":1,"text":""},{"category_id":15,"poly":[179,536,444,536,444,567,179,567],"score":1,"text":""},{"category_id":15,"poly":[129,557,839,557,839,596,129,596],"score":1,"text":""},{"category_id":15,"poly":[179,584,837,584,837,623,179,623],"score":1,"text":""},{"category_id":15,"poly":[183,613,839,613,839,644,183,644],"score":1,"text":""},{"category_id":15,"poly":[181,634,842,634,842,671,181,671],"score":1,"text":""},{"category_id":15,"poly":[183,661,353,661,353,693,183,693],"score":1,"text":""},{"category_id":15,"poly":[130,684,841,684,841,721,130,721],"score":1,"text":""},{"category_id":15,"poly":[181,709,839,709,839,746,181,746],"score":1,"text":""},{"category_id":15,"poly":[177,735,410,735,410,768,177,768],"score":1,"text":""},{"category_id":15,"poly":[130,760,841,760,841,796,130,796],"score":1,"text":""},{"category_id":15,"poly":[181,781,842,781,842,822,181,822],"score":1,"text":""},{"category_id":15,"poly":[177,810,609,810,609,843,177,843],"score":1,"text":""},{"category_id":15,"poly":[129,831,841,831,841,872,129,872],"score":1,"text":""},{"category_id":15,"poly":[183,862,837,862,837,893,183,893],"score":1,"text":""},{"category_id":15,"poly":[181,883,839,883,839,920,181,920],"score":1,"text":""},{"category_id":15,"poly":[132,910,839,910,839,942,132,942],"score":1,"text":""},{"category_id":15,"poly":[183,935,837,935,837,967,183,967],"score":1,"text":""},{"category_id":15,"poly":[183,960,841,960,841,992,183,992],"score":1,"text":""},{"category_id":15,"poly":[179,984,462,984,462,1017,179,1017],"score":1,"text":""},{"category_id":15,"poly":[132,1010,837,1010,837,1042,132,1042],"score":1,"text":""},{"category_id":15,"poly":[181,1032,841,1032,841,1070,181,1070],"score":1,"text":""},{"category_id":15,"poly":[181,1059,841,1059,841,1095,181,1095],"score":1,"text":""},{"category_id":15,"poly":[181,1084,643,1084,643,1121,181,1121],"score":1,"text":""},{"category_id":15,"poly":[130,1109,841,1109,841,1146,130,1146],"score":1,"text":""},{"category_id":15,"poly":[181,1134,841,1134,841,1171,181,1171],"score":1,"text":""},{"category_id":15,"poly":[183,1157,841,1157,841,1194,183,1194],"score":1,"text":""},{"category_id":15,"poly":[177,1183,459,1183,459,1216,177,1216],"score":1,"text":""},{"category_id":15,"poly":[130,1207,837,1207,837,1243,130,1243],"score":1,"text":""},{"category_id":15,"poly":[183,1232,839,1232,839,1269,183,1269],"score":1,"text":""},{"category_id":15,"poly":[179,1254,839,1254,839,1296,179,1296],"score":1,"text":""},{"category_id":15,"poly":[180,1286,286,1286,286,1312,180,1312],"score":1,"text":""},{"category_id":15,"poly":[132,1309,839,1309,839,1341,132,1341],"score":1,"text":""},{"category_id":15,"poly":[183,1334,839,1334,839,1366,183,1366],"score":1,"text":""},{"category_id":15,"poly":[181,1358,679,1358,679,1395,181,1395],"score":1,"text":""},{"category_id":15,"poly":[132,1385,834,1385,834,1416,132,1416],"score":1,"text":""},{"category_id":15,"poly":[184,1410,837,1410,837,1441,184,1441],"score":1,"text":""},{"category_id":15,"poly":[184,1435,837,1435,837,1466,184,1466],"score":1,"text":""},{"category_id":15,"poly":[179,1455,839,1455,839,1495,179,1495],"score":1,"text":""},{"category_id":15,"poly":[183,1485,242,1485,242,1513,183,1513],"score":1,"text":""},{"category_id":15,"poly":[132,1506,841,1506,841,1543,132,1543],"score":1,"text":""},{"category_id":15,"poly":[179,1533,839,1533,839,1570,179,1570],"score":1,"text":""},{"category_id":15,"poly":[181,1558,285,1558,285,1590,181,1590],"score":1,"text":""},{"category_id":15,"poly":[134,1583,837,1583,837,1615,134,1615],"score":1,"text":""},{"category_id":15,"poly":[183,1607,842,1607,842,1643,183,1643],"score":1,"text":""},{"category_id":15,"poly":[181,1632,699,1632,699,1669,181,1669],"score":1,"text":""}],"page_info":{"page_no":5,"height":2200,"width":1700}}] \ No newline at end of file diff --git a/demo/magic_pdf_parse_main.py b/demo/magic_pdf_parse_main.py index 5f2b0fef..2f864011 100644 --- a/demo/magic_pdf_parse_main.py +++ b/demo/magic_pdf_parse_main.py @@ -1,146 +1,146 @@ -import os -import json -import copy - -from loguru import logger - -from magic_pdf.libs.draw_bbox import draw_layout_bbox, draw_span_bbox -from magic_pdf.pipe.UNIPipe import UNIPipe -from magic_pdf.pipe.OCRPipe import OCRPipe -from magic_pdf.pipe.TXTPipe import TXTPipe -from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter - - -# todo: 设备类型选择 (?) - -def json_md_dump( - pipe, - md_writer, - pdf_name, - content_list, - md_content, - orig_model_list, -): - # 写入模型结果到 model.json - - md_writer.write( - content=json.dumps(orig_model_list, ensure_ascii=False, indent=4), - path=f"{pdf_name}_model.json" - ) - - # 写入中间结果到 middle.json - md_writer.write( - content=json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4), - path=f"{pdf_name}_middle.json" - ) - - # text文本结果写入到 conent_list.json - md_writer.write( - content=json.dumps(content_list, ensure_ascii=False, indent=4), - path=f"{pdf_name}_content_list.json" - ) - - # 写入结果到 .md 文件中 - md_writer.write( - content=md_content, - path=f"{pdf_name}.md" - ) - - -# 可视化 -def draw_visualization_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name): - # 画布局框,附带排序结果 - draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name) - # 画 span 框 - draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name) - - -def pdf_parse_main( - pdf_path: str, - parse_method: str = 'auto', - model_json_path: str = None, - is_json_md_dump: bool = True, - is_draw_visualization_bbox: bool = True, - output_dir: str = None -): - """ - 执行从 pdf 转换到 json、md 的过程,输出 md 和 json 文件到 pdf 文件所在的目录 - - :param pdf_path: .pdf 文件的路径,可以是相对路径,也可以是绝对路径 - :param parse_method: 解析方法, 共 auto、ocr、txt 三种,默认 auto,如果效果不好,可以尝试 ocr - :param model_json_path: 已经存在的模型数据文件,如果为空则使用内置模型,pdf 和 model_json 务必对应 - :param is_json_md_dump: 是否将解析后的数据写入到 .json 和 .md 文件中,默认 True,会将不同阶段的数据写入到不同的 .json 文件中(共3个.json文件),md内容会保存到 .md 文件中 - :param output_dir: 输出结果的目录地址,会生成一个以 pdf 文件名命名的文件夹并保存所有结果 - """ - try: - pdf_name = os.path.basename(pdf_path).split(".")[0] - pdf_path_parent = os.path.dirname(pdf_path) - - if output_dir: - output_path = os.path.join(output_dir, pdf_name) - else: - output_path = os.path.join(pdf_path_parent, pdf_name) - - output_image_path = os.path.join(output_path, 'images') - - # 获取图片的父路径,为的是以相对路径保存到 .md 和 conent_list.json 文件中 - image_path_parent = os.path.basename(output_image_path) - - pdf_bytes = open(pdf_path, "rb").read() # 读取 pdf 文件的二进制数据 - - orig_model_list = [] - - if model_json_path: - # 读取已经被模型解析后的pdf文件的 json 原始数据,list 类型 - model_json = json.loads(open(model_json_path, "r", encoding="utf-8").read()) - orig_model_list = copy.deepcopy(model_json) - else: - model_json = [] - - # 执行解析步骤 - # image_writer = DiskReaderWriter(output_image_path) - image_writer, md_writer = DiskReaderWriter(output_image_path), DiskReaderWriter(output_path) - - # 选择解析方式 - # jso_useful_key = {"_pdf_type": "", "model_list": model_json} - # pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer) - if parse_method == "auto": - jso_useful_key = {"_pdf_type": "", "model_list": model_json} - pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer) - elif parse_method == "txt": - pipe = TXTPipe(pdf_bytes, model_json, image_writer) - elif parse_method == "ocr": - pipe = OCRPipe(pdf_bytes, model_json, image_writer) - else: - logger.error("unknown parse method, only auto, ocr, txt allowed") - exit(1) - - # 执行分类 - pipe.pipe_classify() - - # 如果没有传入模型数据,则使用内置模型解析 - if len(model_json) == 0: - pipe.pipe_analyze() # 解析 - orig_model_list = copy.deepcopy(pipe.model_list) - - # 执行解析 - pipe.pipe_parse() - - # 保存 text 和 md 格式的结果 - content_list = pipe.pipe_mk_uni_format(image_path_parent, drop_mode="none") - md_content = pipe.pipe_mk_markdown(image_path_parent, drop_mode="none") - - if is_json_md_dump: - json_md_dump(pipe, md_writer, pdf_name, content_list, md_content, orig_model_list) - - if is_draw_visualization_bbox: - draw_visualization_bbox(pipe.pdf_mid_data['pdf_info'], pdf_bytes, output_path, pdf_name) - - except Exception as e: - logger.exception(e) - - -# 测试 -if __name__ == '__main__': - pdf_path = r"D:\project\20240617magicpdf\Magic-PDF\demo\demo1.pdf" - pdf_parse_main(pdf_path) +import copy +import json +import os + +from loguru import logger + +from magic_pdf.data.data_reader_writer import FileBasedDataWriter +from magic_pdf.libs.draw_bbox import draw_layout_bbox, draw_span_bbox +from magic_pdf.pipe.OCRPipe import OCRPipe +from magic_pdf.pipe.TXTPipe import TXTPipe +from magic_pdf.pipe.UNIPipe import UNIPipe + +# todo: 设备类型选择 (?) + + +def json_md_dump( + pipe, + md_writer, + pdf_name, + content_list, + md_content, + orig_model_list, +): + # 写入模型结果到 model.json + + md_writer.write_string( + f'{pdf_name}_model.json', + json.dumps(orig_model_list, ensure_ascii=False, indent=4) + ) + + # 写入中间结果到 middle.json + md_writer.write_string( + f'{pdf_name}_middle.json', + json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4) + ) + + # text文本结果写入到 conent_list.json + md_writer.write_string( + f'{pdf_name}_content_list.json', + json.dumps(content_list, ensure_ascii=False, indent=4) + ) + + # 写入结果到 .md 文件中 + md_writer.write_string( + f'{pdf_name}.md', + md_content, + ) + + +# 可视化 +def draw_visualization_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name): + # 画布局框,附带排序结果 + draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name) + # 画 span 框 + draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name) + + +def pdf_parse_main( + pdf_path: str, + parse_method: str = 'auto', + model_json_path: str = None, + is_json_md_dump: bool = True, + is_draw_visualization_bbox: bool = True, + output_dir: str = None +): + """执行从 pdf 转换到 json、md 的过程,输出 md 和 json 文件到 pdf 文件所在的目录. + + :param pdf_path: .pdf 文件的路径,可以是相对路径,也可以是绝对路径 + :param parse_method: 解析方法, 共 auto、ocr、txt 三种,默认 auto,如果效果不好,可以尝试 ocr + :param model_json_path: 已经存在的模型数据文件,如果为空则使用内置模型,pdf 和 model_json 务必对应 + :param is_json_md_dump: 是否将解析后的数据写入到 .json 和 .md 文件中,默认 True,会将不同阶段的数据写入到不同的 .json 文件中(共3个.json文件),md内容会保存到 .md 文件中 + :param is_draw_visualization_bbox: 是否绘制可视化边界框,默认 True,会生成布局框和 span 框的图像 + :param output_dir: 输出结果的目录地址,会生成一个以 pdf 文件名命名的文件夹并保存所有结果 + """ + try: + pdf_name = os.path.basename(pdf_path).split('.')[0] + pdf_path_parent = os.path.dirname(pdf_path) + + if output_dir: + output_path = os.path.join(output_dir, pdf_name) + else: + output_path = os.path.join(pdf_path_parent, pdf_name) + + output_image_path = os.path.join(output_path, 'images') + + # 获取图片的父路径,为的是以相对路径保存到 .md 和 conent_list.json 文件中 + image_path_parent = os.path.basename(output_image_path) + + pdf_bytes = open(pdf_path, 'rb').read() # 读取 pdf 文件的二进制数据 + + orig_model_list = [] + + if model_json_path: + # 读取已经被模型解析后的pdf文件的 json 原始数据,list 类型 + model_json = json.loads(open(model_json_path, 'r', encoding='utf-8').read()) + orig_model_list = copy.deepcopy(model_json) + else: + model_json = [] + + # 执行解析步骤 + image_writer, md_writer = FileBasedDataWriter(output_image_path), FileBasedDataWriter(output_path) + + # 选择解析方式 + if parse_method == 'auto': + jso_useful_key = {'_pdf_type': '', 'model_list': model_json} + pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer) + elif parse_method == 'txt': + pipe = TXTPipe(pdf_bytes, model_json, image_writer) + elif parse_method == 'ocr': + pipe = OCRPipe(pdf_bytes, model_json, image_writer) + else: + logger.error('unknown parse method, only auto, ocr, txt allowed') + exit(1) + + # 执行分类 + pipe.pipe_classify() + + # 如果没有传入模型数据,则使用内置模型解析 + if len(model_json) == 0: + pipe.pipe_analyze() # 解析 + orig_model_list = copy.deepcopy(pipe.model_list) + + # 执行解析 + pipe.pipe_parse() + + # 保存 text 和 md 格式的结果 + content_list = pipe.pipe_mk_uni_format(image_path_parent, drop_mode='none') + md_content = pipe.pipe_mk_markdown(image_path_parent, drop_mode='none') + + if is_json_md_dump: + json_md_dump(pipe, md_writer, pdf_name, content_list, md_content, orig_model_list) + + if is_draw_visualization_bbox: + draw_visualization_bbox(pipe.pdf_mid_data['pdf_info'], pdf_bytes, output_path, pdf_name) + + except Exception as e: + logger.exception(e) + + +# 测试 +if __name__ == '__main__': + current_script_dir = os.path.dirname(os.path.abspath(__file__)) + demo_names = ['demo1', 'demo2', 'small_ocr'] + for name in demo_names: + file_path = os.path.join(current_script_dir, f'{name}.pdf') + pdf_parse_main(file_path) diff --git a/demo/small_ocr.json b/demo/small_ocr.json new file mode 100644 index 00000000..60c2c805 --- /dev/null +++ b/demo/small_ocr.json @@ -0,0 +1 @@ +[{"layout_dets":[{"category_id":1,"poly":[395.15179443359375,665.647705078125,2895.3388671875,665.647705078125,2895.3388671875,1069.8433837890625,395.15179443359375,1069.8433837890625],"score":0.9999968409538269},{"category_id":1,"poly":[400.7656555175781,2562.201904296875,2893.774658203125,2562.201904296875,2893.774658203125,2979.179931640625,400.7656555175781,2979.179931640625],"score":0.9999957084655762},{"category_id":2,"poly":[1333.9251708984375,469.05078125,1956.5269775390625,469.05078125,1956.5269775390625,540.6293334960938,1333.9251708984375,540.6293334960938],"score":0.9999939799308777},{"category_id":1,"poly":[374.78314208984375,1101.09521484375,2899.834228515625,1101.09521484375,2899.834228515625,2531.031005859375,374.78314208984375,2531.031005859375],"score":0.9999887347221375},{"category_id":2,"poly":[390.22503662109375,3074.9091796875,2898.39453125,3074.9091796875,2898.39453125,4304.73876953125,390.22503662109375,4304.73876953125],"score":0.9999833106994629},{"category_id":2,"poly":[487.03173828125,470.8531799316406,569.35693359375,470.8531799316406,569.35693359375,534.6068725585938,487.03173828125,534.6068725585938],"score":0.9998923540115356},{"category_id":1,"poly":[394.21929931640625,3073.115966796875,2899.8740234375,3073.115966796875,2899.8740234375,4301.3271484375,394.21929931640625,4301.3271484375],"score":0.2840508222579956},{"category_id":15,"poly":[402,681,2896,681,2896,770,402,770],"score":0.98,"text":"史的事情。(3)为有用物的量找到社会尺度,也是这样。商品的这些"},{"category_id":15,"poly":[399,828,2888,828,2888,914,399,914],"score":1,"text":"尺度之所以不同,部分是由于被计量的物的性质不同,部分是由"},{"category_id":15,"poly":[397,964,887,964,887,1070,397,1070],"score":1,"text":"于约定俗成。"},{"category_id":15,"poly":[582,2579,2884,2579,2884,2668,582,2668],"score":1,"text":"交换价值首先表现为量的关系,表现为不同种使用价值彼此"},{"category_id":15,"poly":[404,2722,2878,2722,2878,2819,404,2819],"score":0.97,"text":"相交换的比例(6),即随着时间和地点的不同而不断改变的关系。"},{"category_id":15,"poly":[412,2878,2873,2878,2873,2962,412,2962],"score":0.97,"text":"因此,交换价值好象是一种任意的、纯粹相对的东西;商品固有的、"},{"category_id":15,"poly":[1337,463,1542,463,1542,544,1337,544],"score":0.98,"text":"第一篇"},{"category_id":15,"poly":[1617,474,1946,474,1946,536,1617,536],"score":1,"text":"商品和货币"},{"category_id":15,"poly":[576,1113,2897,1113,2897,1211,576,1211],"score":0.99,"text":"物的有用性使物成为使用价值。(4)但这种有用性不是飘忽不"},{"category_id":15,"poly":[401,1262,2831,1262,2831,1355,401,1355],"score":1,"text":"定的。它决定于商品体的属性,离开了商品体就不存在。因此,"},{"category_id":15,"poly":[406,1411,2886,1411,2886,1498,406,1498],"score":1,"text":"商品体本身,例如铁、小麦、金钢石等等,就是使用价值。赋予"},{"category_id":15,"poly":[409,1560,2883,1560,2883,1639,409,1639],"score":0.99,"text":"商品体以这种性质的,不是人为了取得它的有用性质所耗费的劳"},{"category_id":15,"poly":[406,1703,2889,1703,2889,1791,406,1791],"score":1,"text":"动的多少。在谈到使用价值时,总是指一定的量而言,如一打"},{"category_id":15,"poly":[403,1847,2883,1847,2883,1934,403,1934],"score":0.98,"text":"表,一米布,一吨铁等等。商品的使用价值为商品学和商业成规"},{"category_id":15,"poly":[403,1988,2886,1988,2886,2083,403,2083],"score":0.99,"text":"这种专门的知识提供材料。(5)使用价值只是在使用或消费中得到"},{"category_id":15,"poly":[403,2137,2889,2137,2889,2229,403,2229],"score":1,"text":"实现。不论财富的社会形式如何,使用价值构成财富的物质。在"},{"category_id":15,"poly":[406,2286,2886,2286,2886,2373,406,2373],"score":1,"text":"我们所要考察的社会形式中,使用价值同时又是交换价值的物质"},{"category_id":15,"poly":[401,2426,712,2426,712,2528,401,2528],"score":1,"text":"承担者。"},{"category_id":15,"poly":[533,3093,2888,3093,2888,3163,533,3163],"score":0.99,"text":"(3)“物都有内在的长处(这是巴尔本用来表示使用价值的专门用语),这种长"},{"category_id":15,"poly":[403,3193,2888,3193,2888,3265,403,3265],"score":0.99,"text":"处在任何地方都具有同样的性质,如磁石吸铁的长处就是如此。”(尼古拉·巴尔本"},{"category_id":15,"poly":[400,3298,2886,3298,2886,3368,400,3368],"score":0.99,"text":"《新币轻铸论。答洛克先生关于提高货币价值的意见》1696年伦敦版第16页)磁石吸"},{"category_id":15,"poly":[405,3404,2052,3404,2052,3465,405,3465],"score":1,"text":"铁的属性只是在通过它发现了磁极性以后才成为有用的,"},{"category_id":15,"poly":[528,3495,2877,3495,2877,3578,528,3578],"score":0.99,"text":"(4)“物的自然价值产生于它能满足需要,或者给人类生活带来方便。”约翰·"},{"category_id":15,"poly":[400,3606,2883,3606,2883,3675,400,3675],"score":0.98,"text":"洛克:《论降低利虑的后果》(1691年)。在十七世纪,我们还常常看到英国著作家用"},{"category_id":15,"poly":[392,3700,2888,3700,2888,3783,392,3783],"score":0.93,"text":"Worth表示使用价值,用valuu)表示交换价值;这完全符合英语的精神,英语喜欢"},{"category_id":15,"poly":[405,3814,2524,3814,2524,3875,405,3875],"score":0.98,"text":"用日耳曼语源的词表示直接的东西,用罗马语源的词表示被反射的东西。"},{"category_id":15,"poly":[533,3911,2886,3911,2886,3980,533,3980],"score":0.97,"text":"(5)在资产阶级社会中“任何人都不能推托不知道法律”。~—按照经济法的"},{"category_id":15,"poly":[397,4016,1785,4016,1785,4082,397,4082],"score":1,"text":"假定,每个买者都具有百科全书般的商品知识。"},{"category_id":15,"poly":[530,4116,2886,4116,2886,4185,530,4185],"score":0.98,"text":"(6)“价值就是一物和另一物,一定量的这种产品和一定量的别种产品之间的"},{"category_id":15,"poly":[400,4215,2717,4215,2717,4290,400,4290],"score":0.98,"text":"交换关系。”(列特隆《论社会利益》,德尔编《重农学派》1846年巴黎版第889页)"},{"category_id":15,"poly":[488,469,570,469,570,539,488,539],"score":1,"text":"12"},{"category_id":15,"poly":[534,3089,2889,3089,2889,3164,534,3164],"score":1,"text":"(3)“物都有内在的长处(这是巴尔本用来表示使用价值的专门用语),这种长"},{"category_id":15,"poly":[404,3195,2889,3195,2889,3264,404,3264],"score":0.99,"text":"处在任何地方都具有同样的性质,如磁石吸铁的长处就是如此。”(尼古拉·巴尔本"},{"category_id":15,"poly":[393,3291,2889,3291,2889,3372,393,3372],"score":1,"text":"《新币轻铸论。答洛克先生关于提高货币价值的意见》1696年伦敦版第16页)磁石吸"},{"category_id":15,"poly":[404,3397,2054,3397,2054,3466,404,3466],"score":0.99,"text":"铁的属性只是在通过它发现了磁极性以后才成为有用的,"},{"category_id":15,"poly":[529,3499,2876,3499,2876,3574,529,3574],"score":0.99,"text":"(4)“物的自然价值产生于它能满足需要,或者给人类生活带来方便。”约翰·"},{"category_id":15,"poly":[396,3604,2884,3604,2884,3676,396,3676],"score":0.98,"text":"洛克:《论降低利虑的后果》(1691年)。在十七世纪,我们还常常看到英国著作家用"},{"category_id":15,"poly":[396,3704,2887,3704,2887,3778,396,3778],"score":0.96,"text":"worth表示使用价值,用valuu表示交换价值:这完全符合英语的精神,英语喜欢"},{"category_id":15,"poly":[404,3814,2523,3814,2523,3875,404,3875],"score":0.98,"text":"用日耳曼语源的词表示直接的东西,用罗马语源的词表示被反射的东西。"},{"category_id":15,"poly":[534,3908,2884,3908,2884,3977,534,3977],"score":0.98,"text":"(5)在资产阶级社会中“任何人都不能推托不知道法律”。~一按照经济法的"},{"category_id":15,"poly":[404,4016,1779,4016,1779,4077,404,4077],"score":1,"text":"假定,每个买者都具有百科全书般的商品知识。"},{"category_id":15,"poly":[534,4116,2884,4116,2884,4185,534,4185],"score":0.99,"text":"(6)“价值就是一物和另一物,一定量的这种产品和一定量的别种产品之间的"},{"category_id":15,"poly":[398,4215,2718,4215,2718,4293,398,4293],"score":0.99,"text":"交换关系。”(列特隆《论社会利益》,德尔编《重农学派》1846年巴黎版第889页)"}],"page_info":{"page_no":0,"height":5000,"width":3405}},{"layout_dets":[{"category_id":1,"poly":[344.1777038574219,678.7516479492188,2800.564453125,678.7516479492188,2800.564453125,930.7621459960938,344.1777038574219,930.7621459960938],"score":0.9999980926513672},{"category_id":1,"poly":[343.77142333984375,969.0947265625,2839.3525390625,969.0947265625,2839.3525390625,1523.2760009765625,343.77142333984375,1523.2760009765625],"score":0.999995231628418},{"category_id":1,"poly":[345.6445617675781,2574.56005859375,2837.068603515625,2574.56005859375,2837.068603515625,3266.256103515625,345.6445617675781,3266.256103515625],"score":0.9999947547912598},{"category_id":1,"poly":[509.7772521972656,3305.733642578125,2830.307373046875,3305.733642578125,2830.307373046875,3416.622802734375,509.7772521972656,3416.622802734375],"score":0.9999911785125732},{"category_id":1,"poly":[339.6177673339844,1550.982177734375,3060.858642578125,1550.982177734375,3060.858642578125,2542.067138671875,339.6177673339844,2542.067138671875],"score":0.9999850988388062},{"category_id":2,"poly":[338.4281005859375,4094.802978515625,2826.7080078125,4094.802978515625,2826.7080078125,4286.5654296875,338.4281005859375,4286.5654296875],"score":0.9997429251670837},{"category_id":2,"poly":[1289.113525390625,478.922119140625,1908.499755859375,478.922119140625,1908.499755859375,548.927734375,1289.113525390625,548.927734375],"score":0.9962558746337891},{"category_id":2,"poly":[2671.2412109375,482.0177917480469,2748.818115234375,482.0177917480469,2748.818115234375,542.70751953125,2671.2412109375,542.70751953125],"score":0.9902564883232117},{"category_id":2,"poly":[337.44989013671875,3525.9443359375,2818.002197265625,3525.9443359375,2818.002197265625,3919.84765625,337.44989013671875,3919.84765625],"score":0.939180314540863},{"category_id":2,"poly":[2871.44384765625,2162.59228515625,3076.815673828125,2162.59228515625,3076.815673828125,2233.8427734375,2871.44384765625,2233.8427734375],"score":0.8846070766448975},{"category_id":1,"poly":[338.0018005371094,3526.410888671875,2817.889404296875,3526.410888671875,2817.889404296875,3915.434814453125,338.0018005371094,3915.434814453125],"score":0.3099205493927002},{"category_id":13,"poly":[1056,1853,1200,1853,1200,1939,1056,1939],"score":0.82,"latex":"=a"},{"category_id":13,"poly":[1862,2008,1927,2008,1927,2085,1862,2085],"score":0.66,"latex":"a"},{"category_id":13,"poly":[469,4095,553,4095,553,4176,469,4176],"score":0.54,"latex":"[I]"},{"category_id":13,"poly":[2516,678,2635,678,2635,782,2516,782],"score":0.38,"latex":"\\textcircled{1}_{0}"},{"category_id":15,"poly":[342,686,2515,686,2515,785,342,785],"score":1,"text":"内在的交换价值似乎是经院哲学家所说的形容语的矛盾"},{"category_id":15,"poly":[2636,686,2796,686,2796,785,2636,785],"score":0.98,"text":"(7)"},{"category_id":15,"poly":[350,840,1532,840,1532,925,350,925],"score":0.99,"text":"现在我们进一步考察这个问题。"},{"category_id":15,"poly":[520,978,2830,978,2830,1070,520,1070],"score":1,"text":"某种特殊的商品,例如一夸特小麦,按各种极不相同的比例"},{"category_id":15,"poly":[345,1123,2827,1123,2827,1215,345,1215],"score":1,"text":"同别的商品交换。但是,它的交换价值,无论采用何种表现方"},{"category_id":15,"poly":[339,1271,2832,1271,2832,1364,339,1364],"score":0.93,"text":"式,X量鞋油、y量绸缎、z量金等等,都是不变的。因此,它"},{"category_id":15,"poly":[342,1417,2067,1417,2067,1509,342,1509],"score":1,"text":"必定有一种与这些不同的表现相区别的内容。"},{"category_id":15,"poly":[527,2584,2822,2584,2822,2681,527,2681],"score":1,"text":"用一个初级几何的例子就可以说明这一点。为了测量和比较"},{"category_id":15,"poly":[344,2730,2822,2730,2822,2827,344,2827],"score":1,"text":"各种直线形的面积,就把它们分成三角形,再把三角形化成与它"},{"category_id":15,"poly":[346,2879,2825,2879,2825,2970,346,2970],"score":0.98,"text":"的外形完全不同的表现一一底乘高的一半。各种商品的交换价值"},{"category_id":15,"poly":[346,3030,2814,3030,2814,3113,346,3113],"score":0.97,"text":"也同样要化成一种对它们来说是共同的东西,各自代表这种共同"},{"category_id":15,"poly":[346,3173,1091,3173,1091,3261,346,3261],"score":1,"text":"东西的多量或少量。"},{"category_id":15,"poly":[517,3314,2822,3314,2822,3411,517,3411],"score":0.97,"text":"这种共同东西不可能是商品的某种天然属性,几何的、物理"},{"category_id":15,"poly":[527,1560,2825,1560,2825,1659,527,1659],"score":0.98,"text":"我们再拿两种商品例奶小麦和铁来说。不管二者的交换比例"},{"category_id":15,"poly":[348,1713,2822,1713,2822,1802,348,1802],"score":1,"text":"怎样,总是可以用一个等式来表示:一定量的小麦等于若干量的"},{"category_id":15,"poly":[345,1855,1055,1855,1055,1949,345,1949],"score":0.99,"text":"铁,如1夸特小麦"},{"category_id":15,"poly":[1201,1855,2831,1855,2831,1949,1201,1949],"score":0.99,"text":"公斤铁。这个等式说明什么呢?它说明在"},{"category_id":15,"poly":[345,2003,1861,2003,1861,2097,345,2097],"score":1,"text":"两种不同的物里面,即在1夸特小麦和"},{"category_id":15,"poly":[1928,2003,2822,2003,2822,2097,1928,2097],"score":0.99,"text":"公斤铁里面,有一种共"},{"category_id":15,"poly":[345,2145,3066,2145,3066,2245,345,2245],"score":0.97,"text":"同的东西。因而这二者都等于第三种东西,后者本身既不是第一14(Ⅱ)"},{"category_id":15,"poly":[345,2293,2825,2293,2825,2387,345,2387],"score":1,"text":"种物,也不是第二种物。这二者中的每一个作为交换价值,都必"},{"category_id":15,"poly":[342,2438,1797,2438,1797,2532,342,2532],"score":1,"text":"定能不依赖另一个而化为第三种东西。"},{"category_id":15,"poly":[554,4099,2822,4099,2822,4190,554,4190],"score":0.96,"text":"形容语的矛盾的原文是《coatradictioin ajecto》,指“圆形的方”,“木制"},{"category_id":15,"poly":[339,4208,1248,4208,1248,4284,339,4284],"score":0.87,"text":"的铁”一类的矛盾。一—一译者注"},{"category_id":15,"poly":[1291,478,1630,478,1630,550,1291,550],"score":0.95,"text":"第一章商"},{"category_id":15,"poly":[1832,475,1904,475,1904,554,1832,554],"score":1,"text":"品"},{"category_id":15,"poly":[2671,480,2749,480,2749,545,2671,545],"score":1,"text":"13"},{"category_id":15,"poly":[473,3537,2820,3537,2820,3619,473,3619],"score":0.97,"text":"(7)“任何东西部不可能有内在的交换价值。”(尼·巴尔本《新币轻铸论。答洛"},{"category_id":15,"poly":[341,3640,2217,3640,2217,3714,341,3714],"score":0.96,"text":"克先生关了提高货币价值的意见》第16页):或者象巴特勒所说:"},{"category_id":15,"poly":[1130,3740,1446,3740,1446,3823,1130,3823],"score":0.99,"text":"“物的价值"},{"category_id":15,"poly":[1142,3848,2013,3848,2013,3920,1142,3920],"score":0.99,"text":"正好和它会换来的东西相等。”"},{"category_id":15,"poly":[2870,2165,3073,2165,3073,2232,2870,2232],"score":0.89,"text":"14(I)"},{"category_id":15,"poly":[474,3537,2821,3537,2821,3619,474,3619],"score":0.97,"text":"(7)“任创东西部不可能有内在的交换价值。”(尼·巴尔本《新币轻铸论。答洛"},{"category_id":15,"poly":[342,3641,2214,3641,2214,3713,342,3713],"score":0.98,"text":"克先生关于提高货币价值的意见》第16页):或者象巴特勒所说:"},{"category_id":15,"poly":[1132,3743,1443,3743,1443,3817,1132,3817],"score":0.99,"text":"“物的价值"},{"category_id":15,"poly":[1137,3845,2013,3845,2013,3922,1137,3922],"score":0.96,"text":"正好和它会换来的东西相等。”"}],"page_info":{"page_no":1,"height":5000,"width":3405}},{"layout_dets":[{"category_id":2,"poly":[1327.838623046875,477.8331604003906,1943.4556884765625,477.8331604003906,1943.4556884765625,553.0089721679688,1327.838623046875,553.0089721679688],"score":0.9999961853027344},{"category_id":1,"poly":[392.85247802734375,1842.046142578125,2879.21533203125,1842.046142578125,2879.21533203125,3421.4755859375,392.85247802734375,3421.4755859375],"score":0.9999904632568359},{"category_id":1,"poly":[385.5883483886719,3453.063232421875,2875.83349609375,3453.063232421875,2875.83349609375,3713.21484375,385.5883483886719,3713.21484375],"score":0.9999902248382568},{"category_id":1,"poly":[396.40093994140625,672.6717529296875,2878.79541015625,672.6717529296875,2878.79541015625,1815.5244140625,396.40093994140625,1815.5244140625],"score":0.9999882578849792},{"category_id":2,"poly":[477.78692626953125,479.1949157714844,561.9874267578125,479.1949157714844,561.9874267578125,543.1449584960938,477.78692626953125,543.1449584960938],"score":0.9999648928642273},{"category_id":2,"poly":[381.5726623535156,3891.904541015625,2870.3447265625,3891.904541015625,2870.3447265625,4294.64013671875,381.5726623535156,4294.64013671875],"score":0.9999456405639648},{"category_id":15,"poly":[1328,476,1535,476,1535,555,1328,555],"score":1,"text":"第一篇"},{"category_id":15,"poly":[1598,482,1935,482,1935,550,1598,550],"score":0.97,"text":"商品和货币"},{"category_id":15,"poly":[574,1864,2867,1864,2867,1949,574,1949],"score":0.98,"text":"如果把商品的使用价值撇开,商品就只剩下一个性质,即劳"},{"category_id":15,"poly":[393,2005,2870,2005,2870,2099,393,2099],"score":1,"text":"动产品这个性质。可是劳动产品不知不觉已经起了变化。如果我"},{"category_id":15,"poly":[396,2157,2870,2157,2870,2242,396,2242],"score":1,"text":"们把劳动产品的使用价值抽去,那么,赋予劳动产品以这种价值"},{"category_id":15,"poly":[396,2303,2821,2303,2821,2388,396,2388],"score":0.99,"text":"的一切物质要素和形式要素也就同时消失了。它们不再是桌子,"},{"category_id":15,"poly":[396,2449,2867,2449,2867,2535,396,2535],"score":0.98,"text":"房屋,纱或别的什么有用物;它们也不再是旋匠劳动、瓦匠劳"},{"category_id":15,"poly":[396,2598,2859,2598,2859,2676,396,2676],"score":0.99,"text":"动,或任何一定的生产劳动的产品了。随着劳动产品的特殊的有"},{"category_id":15,"poly":[396,2736,2864,2736,2864,2822,396,2822],"score":1,"text":"用性质的消失,包含在劳动产品中的各种劳动的有用性质也消失"},{"category_id":15,"poly":[396,2886,2864,2886,2864,2971,396,2971],"score":1,"text":"了,这些劳动相互区别的各种具体形式也消失了。因此,留下来"},{"category_id":15,"poly":[391,3029,2867,3029,2867,3118,391,3118],"score":1,"text":"的只是这些劳动的共同性质;这些劳动全都化为相同的人类劳"},{"category_id":15,"poly":[391,3173,2870,3173,2870,3264,391,3264],"score":1,"text":"动,化为与人类劳动力耗费的特殊形式无关的人类劳动力的耗"},{"category_id":15,"poly":[382,3316,523,3316,523,3421,382,3421],"score":1,"text":"费。"},{"category_id":15,"poly":[572,3473,2860,3473,2860,3552,572,3552],"score":1,"text":"现在我们来考察劳动产品剩下来的东西。它们中的每一个和"},{"category_id":15,"poly":[392,3608,2868,3608,2868,3707,392,3707],"score":1,"text":"另一个都完全相同。它们都具有同一的幽灵般的现实性。它们变"},{"category_id":15,"poly":[394,689,2820,689,2820,786,394,786],"score":1,"text":"的、化学的属性等等。商品的天然属性只是就它们使商品有用,"},{"category_id":15,"poly":[400,841,2874,841,2874,924,400,924],"score":1,"text":"从而使商品成为使用价值来说,才加以考虑。但是,另一方面很"},{"category_id":15,"poly":[397,985,2874,985,2874,1071,397,1071],"score":1,"text":"清楚,商品的使用价值在商品交换时被抽象掉了,而一切商品交"},{"category_id":15,"poly":[397,1133,2872,1133,2872,1219,397,1219],"score":1,"text":"换关系的特点正是这种抽象。在交换中,只要比例适当,一种使"},{"category_id":15,"poly":[394,1274,2874,1274,2874,1368,394,1368],"score":1,"text":"用价值就和其他任何一种使用价值完全相等。或者象老巴尔本说"},{"category_id":15,"poly":[400,1424,2869,1424,2869,1510,400,1510],"score":0.99,"text":"的:“只要交换价值相等,一种商品就同另一种商品一样;交换价"},{"category_id":15,"poly":[392,1560,2874,1560,2874,1662,392,1662],"score":0.98,"text":"值相等的物是没有任何差别或区别的。”(8)作为使用价值,商品"},{"category_id":15,"poly":[395,1712,2552,1712,2552,1804,395,1804],"score":0.99,"text":"首先有质的差别;作为交换价值,商品只能有量的差别。"},{"category_id":15,"poly":[479,472,566,472,566,553,479,553],"score":1,"text":"14"},{"category_id":15,"poly":[517,3904,2869,3904,2869,3983,517,3983],"score":0.99,"text":"(8)“只要交换价值相等,一种商品就同另一种商品一样;交换价值相等的物"},{"category_id":15,"poly":[385,4006,2866,4006,2866,4085,385,4085],"score":0.96,"text":"是没有任何差别或区别的。价值100锈的铅或铁与价值100铸的银和金具有相等的"},{"category_id":15,"poly":[390,4113,2861,4113,2861,4179,390,4179],"score":0.98,"text":"交换价值。”(尼·巴尔本《新币轻铸论。答洛克先生关于提高货币价值的意见》第7页"},{"category_id":15,"poly":[388,4213,684,4213,684,4281,388,4281],"score":0.99,"text":"和第53页)"}],"page_info":{"page_no":2,"height":5000,"width":3405}},{"layout_dets":[{"category_id":1,"poly":[306.7962951660156,1556.903564453125,2794.922607421875,1556.903564453125,2794.922607421875,2103.880859375,306.7962951660156,2103.880859375],"score":0.9999971389770508},{"category_id":1,"poly":[305.2056579589844,3451.38232421875,2790.525634765625,3451.38232421875,2790.525634765625,4295.9443359375,305.2056579589844,4295.9443359375],"score":0.9999949336051941},{"category_id":1,"poly":[305.8328857421875,671.9126586914062,3050.56884765625,671.9126586914062,3050.56884765625,1093.463623046875,305.8328857421875,1093.463623046875],"score":0.9999949336051941},{"category_id":1,"poly":[311.4427185058594,1120.2196044921875,2795.731201171875,1120.2196044921875,2795.731201171875,1525.5904541015625,311.4427185058594,1525.5904541015625],"score":0.9999923706054688},{"category_id":1,"poly":[304.9309387207031,2134.734130859375,2799.203369140625,2134.734130859375,2799.203369140625,3422.9482421875,304.9309387207031,3422.9482421875],"score":0.9999920725822449},{"category_id":2,"poly":[1254.085205078125,475.64703369140625,1868.686767578125,475.64703369140625,1868.686767578125,555.4613647460938,1254.085205078125,555.4613647460938],"score":0.999935507774353},{"category_id":2,"poly":[2639.77978515625,482.96240234375,2717.211181640625,482.96240234375,2717.211181640625,543.316650390625,2639.77978515625,543.316650390625],"score":0.9994043111801147},{"category_id":15,"poly":[485,1567,2790,1567,2790,1663,485,1663],"score":1,"text":"那么,它的价值量是怎样计量的呢?是用它所包含的“创造"},{"category_id":15,"poly":[313,1716,2782,1716,2782,1804,313,1804],"score":1,"text":"价值”的实体即劳动的量来计量。劳动本身的量是用劳动持续时"},{"category_id":15,"poly":[310,1860,2782,1860,2782,1948,310,1948],"score":0.99,"text":"间来计量,而劳动时间又是用一定的时间单位如小时,日等作尺"},{"category_id":15,"poly":[299,1996,450,1996,450,2102,299,2102],"score":1,"text":"度。"},{"category_id":15,"poly":[479,3463,2784,3463,2784,3559,479,3559],"score":1,"text":"生产商品的社会必要劳动时间是在一定社会的正常的条件"},{"category_id":15,"poly":[309,3610,2778,3610,2778,3699,309,3699],"score":1,"text":"下,在平均熟练程度和劳动强度下劳动所需要的时间。在英国采"},{"category_id":15,"poly":[309,3755,2778,3755,2778,3846,309,3846],"score":1,"text":"用蒸汽织布机以后,把一定量的纱织成布所需要的劳动可能比过"},{"category_id":15,"poly":[301,3897,2775,3897,2775,3994,301,3994],"score":1,"text":"去少一半。英国的手工织布工人把纱织成布仍旧要用以前那样多"},{"category_id":15,"poly":[304,4047,2770,4047,2770,4136,304,4136],"score":1,"text":"的劳动时间,但这时他一小时的个人劳动的产品只代表半小时的"},{"category_id":15,"poly":[298,4192,1841,4192,1841,4281,298,4281],"score":1,"text":"社会劳动,并且只提供以前价值的一半。"},{"category_id":15,"poly":[302,686,3052,686,3052,787,302,787],"score":0.97,"text":"成了同一的升华物,同一的无差别的劳动的样品。它们只是表 15(I)"},{"category_id":15,"poly":[311,847,2795,847,2795,936,311,936],"score":1,"text":"示,在它们的生产上耗费了人类劳动力,积累了人类劳动。这些"},{"category_id":15,"poly":[311,996,2214,996,2214,1080,311,1080],"score":1,"text":"物,作为这个共同的社会实体的结晶,就是价值。"},{"category_id":15,"poly":[490,1133,2794,1133,2794,1228,490,1228],"score":1,"text":"因此,在商品交换关系或商品的交换价值中表现出来的某种"},{"category_id":15,"poly":[312,1283,2786,1283,2786,1370,312,1370],"score":1,"text":"共同的东西,就是商品的价值;而使用价值或某种物品具有价"},{"category_id":15,"poly":[307,1425,1758,1425,1758,1515,307,1515],"score":1,"text":"值,只是因为有人类劳动物化在里面。"},{"category_id":15,"poly":[487,2152,2787,2152,2787,2244,487,2244],"score":1,"text":"可能会有人这样认为,既然商品的价值由生产商品所耗费的"},{"category_id":15,"poly":[308,2298,2781,2298,2781,2390,308,2390],"score":0.98,"text":"劳动量来决定,那么一个人越懒,越不熟练,他的商品就越有价"},{"category_id":15,"poly":[305,2442,2784,2442,2784,2534,305,2534],"score":1,"text":"值,因为他制造商品需要花费的时间越多。但是,形成商品价值"},{"category_id":15,"poly":[303,2585,2784,2585,2784,2683,303,2683],"score":1,"text":"实体的劳动是相同的无差别的劳动,是同一的力量的耗费。因"},{"category_id":15,"poly":[305,2735,2781,2735,2781,2824,305,2824],"score":1,"text":"此,体现在全部价值中的社会的全部劳动力,只是当作唯一的力"},{"category_id":15,"poly":[308,2878,2781,2878,2781,2968,308,2968],"score":1,"text":"量,虽然它是由无数单个劳动力构成的。每一个单个劳动力,同"},{"category_id":15,"poly":[308,3025,2781,3025,2781,3114,308,3114],"score":1,"text":"任何另一个单个劳动力是相同的,只要它具有社会平均的力量的"},{"category_id":15,"poly":[306,3168,2782,3168,2782,3261,306,3261],"score":1,"text":"性质,作为这种力量起作用,就是说,在商品的生产上只使用平"},{"category_id":15,"poly":[303,3317,1752,3317,1752,3410,303,3410],"score":0.99,"text":"均必要劳动时间或社会必要劳动时间。"},{"category_id":15,"poly":[1256,481,1597,481,1597,551,1256,551],"score":0.99,"text":"第一章商"},{"category_id":15,"poly":[1793,486,1860,486,1860,549,1793,549],"score":1,"text":"品"},{"category_id":15,"poly":[2637,480,2719,480,2719,550,2637,550],"score":1,"text":"15"}],"page_info":{"page_no":3,"height":5000,"width":3405}},{"layout_dets":[{"category_id":2,"poly":[1321.068603515625,487.19891357421875,1932.37744140625,487.19891357421875,1932.37744140625,561.1749267578125,1321.068603515625,561.1749267578125],"score":0.9999957084655762},{"category_id":1,"poly":[361.2233581542969,685.0840454101562,2871.822998046875,685.0840454101562,2871.822998046875,1525.35400390625,361.2233581542969,1525.35400390625],"score":0.9999942779541016},{"category_id":2,"poly":[362.17352294921875,3703.583740234375,2852.736083984375,3703.583740234375,2852.736083984375,4315.783203125,362.17352294921875,4315.783203125],"score":0.999991774559021},{"category_id":1,"poly":[379.93292236328125,1549.5421142578125,2873.397705078125,1549.5421142578125,2873.397705078125,3598.7412109375,379.93292236328125,3598.7412109375],"score":0.9999860525131226},{"category_id":2,"poly":[469.35284423828125,492.3908996582031,549.4078369140625,492.3908996582031,549.4078369140625,554.1589965820312,469.35284423828125,554.1589965820312],"score":0.9999639391899109},{"category_id":15,"poly":[1321,486,1523,486,1523,560,1321,560],"score":0.99,"text":"第一篇"},{"category_id":15,"poly":[1596,492,1921,492,1921,556,1596,556],"score":0.99,"text":"商品和货币"},{"category_id":15,"poly":[569,702,2872,702,2872,785,569,785],"score":1,"text":"可见,只是在一定社会内生产物品所必要的劳动量或劳动时"},{"category_id":15,"poly":[382,838,2867,838,2867,934,382,934],"score":0.98,"text":"间,决定该物品的价值量。(9)在这里,单个商品是当作该种商品"},{"category_id":15,"poly":[382,979,2872,979,2872,1084,382,1084],"score":0.98,"text":"的平均样品。(10)因此,含有等量劳动或能在同样时间内生产出来"},{"category_id":15,"poly":[385,1134,2864,1134,2864,1225,385,1225],"score":1,"text":"的商品,具有同样的价值。一种商品的价值同其他任何一种商品"},{"category_id":15,"poly":[387,1281,2867,1281,2867,1369,387,1369],"score":1,"text":"的价值的比例,就是生产前者的必要劳动时间同生产后者的必要"},{"category_id":15,"poly":[387,1431,1042,1431,1042,1516,387,1516],"score":1,"text":"劳动时间的比例。"},{"category_id":15,"poly":[498,3714,2851,3714,2851,3789,498,3789],"score":0.99,"text":"(9)“当有用物互相交换的时候,它们的价值取决于生产它们所必需的和通常"},{"category_id":15,"poly":[369,3809,2851,3809,2851,3903,369,3903],"score":0.97,"text":"所用掉的劳动量。\"(《对货币利息,特别是公债利息的一些看法》伦敦版第36页)上一"},{"category_id":15,"poly":[374,3923,2848,3923,2848,3995,374,3995],"score":0.99,"text":"世纪的这部值得注意的匿名著作没有注明出版日期。但从它的内容可以看出,该书"},{"category_id":15,"poly":[374,4026,1885,4026,1885,4095,374,4095],"score":0.98,"text":"是在乔治二世时代,大约1739年或1740年出版的。"},{"category_id":15,"poly":[504,4120,2845,4120,2845,4204,504,4204],"score":1,"text":"(10)“全部同类产品其实只是一个量,这个量的价格是整个地决定的,而不以"},{"category_id":15,"poly":[363,4226,1847,4226,1847,4301,363,4301],"score":0.97,"text":"特殊情况为转移。”(列特隆《论社会利益》第893页)"},{"category_id":15,"poly":[564,1571,2864,1571,2864,1666,564,1666],"score":1,"text":"显然,如果生产商品所需要的时间不变,商品的价值量也就"},{"category_id":15,"poly":[386,1719,2864,1719,2864,1813,386,1813],"score":1,"text":"不变。但是,生产商品所需要的时间随着劳动生产力的每一变动"},{"category_id":15,"poly":[383,1864,2864,1864,2864,1961,383,1961],"score":1,"text":"而变动,而劳动生产力是由多种情况决定的,其中包括:劳动者"},{"category_id":15,"poly":[383,2012,2861,2012,2861,2106,383,2106],"score":1,"text":"的平均熟练程度,科学的发展水平和它在工艺上应用的程度,生"},{"category_id":15,"poly":[381,2157,2807,2157,2807,2251,381,2251],"score":1,"text":"产的社会结合,生产资料的规模和效能,以及纯粹的自然条件。"},{"category_id":15,"poly":[386,2302,2858,2302,2858,2402,386,2402],"score":1,"text":"例如,同一劳动量在丰收年表现为8蒲式耳小麦,在相反的场合"},{"category_id":15,"poly":[383,2450,2858,2450,2858,2547,383,2547],"score":1,"text":"只表现为4蒲式耳。同一劳动量用在富矿比用在贫矿能提供更多"},{"category_id":15,"poly":[380,2600,2853,2600,2853,2689,380,2689],"score":1,"text":"的金属等等。金刚石在地壳中是很稀少的,因而发现金刚石平均"},{"category_id":15,"poly":[378,2748,2855,2748,2855,2837,378,2837],"score":1,"text":"要花很多劳动时间,因此很小一块金刚石就代表很多劳动。金是"},{"category_id":15,"poly":[378,2893,2853,2893,2853,2985,378,2985],"score":1,"text":"否按其全部价值支付过是值得怀疑的。至于金刚石,就更可以这"},{"category_id":15,"poly":[370,3035,2858,3035,2858,3132,370,3132],"score":0.99,"text":"样说了。厄什韦葛说过,到1823年,巴西金刚石矿八十年的总产"},{"category_id":15,"poly":[378,3183,2853,3183,2853,3275,378,3275],"score":1,"text":"量的价格还赶不上巴西甘蔗种植园或咖啡种植园一年半平均产量"},{"category_id":15,"poly":[380,3336,2853,3336,2853,3420,380,3420],"score":1,"text":"的价格,虽然前者代表的劳动多得多,从而价值也多得多。如果"},{"category_id":15,"poly":[378,3476,2847,3476,2847,3567,378,3567],"score":1,"text":"发现富矿,同一劳动量就会实现为更大量的金刚石,而金刚石的"},{"category_id":15,"poly":[468,492,551,492,551,559,468,559],"score":1,"text":"16"}],"page_info":{"page_no":4,"height":5000,"width":3405}},{"layout_dets":[{"category_id":1,"poly":[344.4116516113281,696.4637451171875,2834.3232421875,696.4637451171875,2834.3232421875,1563.0045166015625,344.4116516113281,1563.0045166015625],"score":0.999994158744812},{"category_id":1,"poly":[337.1441345214844,1579.0399169921875,2829.40234375,1579.0399169921875,2829.40234375,1834.083984375,337.1441345214844,1834.083984375],"score":0.9999927282333374},{"category_id":2,"poly":[449.9178161621094,4241.7216796875,2510.4609375,4241.7216796875,2510.4609375,4336.64892578125,449.9178161621094,4336.64892578125],"score":0.9999920725822449},{"category_id":1,"poly":[322.3527526855469,3628.9736328125,2817.54052734375,3628.9736328125,2817.54052734375,4192.1171875,322.3527526855469,4192.1171875],"score":0.9999861717224121},{"category_id":1,"poly":[331.0948791503906,1865.8778076171875,3028.783447265625,1865.8778076171875,3028.783447265625,3008.90966796875,331.0948791503906,3008.90966796875],"score":0.9999809265136719},{"category_id":0,"poly":[860.1250610351562,3276.212646484375,2263.005859375,3276.212646484375,2263.005859375,3440.292236328125,860.1250610351562,3440.292236328125],"score":0.9999785423278809},{"category_id":2,"poly":[1298.62646484375,502.2377014160156,1908.6483154296875,502.2377014160156,1908.6483154296875,574.3719482421875,1298.62646484375,574.3719482421875],"score":0.9984298944473267},{"category_id":2,"poly":[2679.096435546875,515.3965454101562,2752.3359375,515.3965454101562,2752.3359375,575.4978637695312,2679.096435546875,575.4978637695312],"score":0.9969415664672852},{"category_id":2,"poly":[2871.089599609375,2038.3990478515625,3068.003173828125,2038.3990478515625,3068.003173828125,2109.9892578125,2871.089599609375,2109.9892578125],"score":0.7686592936515808},{"category_id":15,"poly":[351,715,2833,715,2833,814,351,814],"score":1,"text":"价值就会降低。假如能用不多的劳动把煤变成金刚石,金刚石的"},{"category_id":15,"poly":[348,860,2828,860,2828,962,348,962],"score":1,"text":"价值就会低于砖的价值。总之,劳动生产力越高,生产一种物品"},{"category_id":15,"poly":[348,1003,2830,1003,2830,1105,348,1105],"score":1,"text":"所需要的时间就越少,凝结在该物品中的劳动量就越小,该物品"},{"category_id":15,"poly":[346,1143,2830,1143,2830,1253,346,1253],"score":1,"text":"的价值就越小。相反地,劳动生产力越低,生产一种物品的必要"},{"category_id":15,"poly":[346,1294,2825,1294,2825,1396,346,1396],"score":1,"text":"时间就越多,该物品的价值就越大。可见,商品的价值量与实现"},{"category_id":15,"poly":[338,1434,2598,1434,2598,1553,338,1553],"score":1,"text":"在商品中的劳动的成正比,与这一劳动的生产力成反比。"},{"category_id":15,"poly":[522,1584,2825,1584,2825,1696,522,1696],"score":1,"text":"现在我们知道:价值实体就是劳动;劳动量的尺度就是劳动"},{"category_id":15,"poly":[337,1728,738,1728,738,1832,337,1832],"score":1,"text":"持续时间。"},{"category_id":15,"poly":[458,4248,2499,4248,2499,4329,458,4329],"score":0.99,"text":"(11)卡尔·马克思《政治经济学批判》1859年柏林版第12、13等页。"},{"category_id":15,"poly":[313,4068,2805,4068,2805,4193,313,4193],"score":0.99,"text":"的这种二重性,是首先由我明确指出的。(11)这一点是政治经济学"},{"category_id":15,"poly":[496.75,3649.5,2801.75,3649.5,2801.75,3737.5,496.75,3737.5],"score":1,"text":"起初我们看到,商品是一种二重的东西,即使用价值和交换"},{"category_id":15,"poly":[320.75,3797,2801.75,3797,2801.75,3885.5,320.75,3885.5],"score":1,"text":"价值。后来我们看到,一旦生产使用价值的劳动表现为价值本"},{"category_id":15,"poly":[318.25,3942.5,2799.25,3942.5,2799.25,4030.5,318.25,4030.5],"score":1,"text":"身,那么,这种劳动的一切特点也就消失了。商品中包含的劳动"},{"category_id":15,"poly":[520,1872,2816,1872,2816,1986,520,1986],"score":1,"text":"一个物可以是使用价值而不是价值。这就使一个物可以对人"},{"category_id":15,"poly":[331,2018,3026,2018,3026,2132,331,2132],"score":0.98,"text":"有用而不必是人的劳动的产物。例如,空气,天然草地、处女16(I"},{"category_id":15,"poly":[334,2170,2819,2170,2819,2278,334,2278],"score":0.99,"text":"地、等等。一个物可以有用,而且是人类劳动产品,但不是商"},{"category_id":15,"poly":[334,2317,2813,2317,2813,2425,334,2425],"score":0.99,"text":"品。谁用自己的产品来满足自己的需要,他生产的就只是个人的"},{"category_id":15,"poly":[334,2466,2813,2466,2813,2571,334,2571],"score":1,"text":"使用价值。要生产商品,他不仅要生产使用价值,而且要为别人"},{"category_id":15,"poly":[331,2610,2813,2610,2813,2718,331,2718],"score":1,"text":"生产使用价值,即生产社会的使用价值。最后,没有一个物可以"},{"category_id":15,"poly":[334,2759,2810,2759,2810,2861,334,2861],"score":1,"text":"是价值而不是有用物。如果物没有用,那么其中包含的劳动也就"},{"category_id":15,"poly":[334,2905,1519,2905,1519,2998,334,2998],"score":1,"text":"白白耗费了,因此不创造价值。"},{"category_id":15,"poly":[868,3290,2249,3290,2249,3418,868,3418],"score":0.98,"text":"2.商品所体现的劳动的二重性"},{"category_id":15,"poly":[1300,502,1505,502,1505,577,1300,577],"score":1,"text":"第一章"},{"category_id":15,"poly":[1564,507,1637,507,1637,576,1564,576],"score":1,"text":"商"},{"category_id":15,"poly":[1838,501,1909,501,1909,582,1838,582],"score":1,"text":"品"},{"category_id":15,"poly":[2674,514,2758,514,2758,580,2674,580],"score":1,"text":"17"},{"category_id":15,"poly":[2864,2041,3066,2041,3066,2108,2864,2108],"score":0.95,"text":"16(1)"}],"page_info":{"page_no":5,"height":5000,"width":3405}},{"layout_dets":[{"category_id":1,"poly":[377.5026550292969,1256.7139892578125,2866.861083984375,1256.7139892578125,2866.861083984375,1951.9281005859375,377.5026550292969,1951.9281005859375],"score":0.9999935030937195},{"category_id":1,"poly":[374.8831481933594,1988.3514404296875,2867.05029296875,1988.3514404296875,2867.05029296875,2684.714599609375,374.8831481933594,2684.714599609375],"score":0.9999927282333374},{"category_id":1,"poly":[379.2370910644531,819.9422607421875,2869.646728515625,819.9422607421875,2869.646728515625,1219.536376953125,379.2370910644531,1219.536376953125],"score":0.9999918341636658},{"category_id":2,"poly":[1314.675537109375,479.0633239746094,1926.4168701171875,479.0633239746094,1926.4168701171875,553.719482421875,1314.675537109375,553.719482421875],"score":0.9999911189079285},{"category_id":2,"poly":[465.20361328125,481.85626220703125,546.4675903320312,481.85626220703125,546.4675903320312,542.8040771484375,465.20361328125,542.8040771484375],"score":0.9999901652336121},{"category_id":1,"poly":[365.0695495605469,3883.75,2853.8740234375,3883.75,2853.8740234375,4291.607421875,365.0695495605469,4291.607421875],"score":0.9999831914901733},{"category_id":1,"poly":[315.95550537109375,2719.0244140625,2862.50048828125,2719.0244140625,2862.50048828125,3851.922607421875,315.95550537109375,3851.922607421875],"score":0.999983012676239},{"category_id":1,"poly":[382.1902160644531,682.7503051757812,2113.547607421875,682.7503051757812,2113.547607421875,787.54052734375,382.1902160644531,787.54052734375],"score":0.9999698400497437},{"category_id":13,"poly":[2076,973,2241,973,2241,1066,2076,1066],"score":0.73,"latex":"\\frac{1}{20-10}=\\pi"},{"category_id":13,"poly":[2777,974,2870,974,2870,1057,2777,1057],"score":0.69,"latex":"="},{"category_id":13,"poly":[373,1121,521,1121,521,1220,373,1220],"score":0.27,"latex":"2x_{\\alpha}"},{"category_id":15,"poly":[559,1275,2865,1275,2865,1361,559,1361],"score":1,"text":"上衣是满足一种特殊需要的使用价值。上衣产生于一种特定"},{"category_id":15,"poly":[384,1421,2862,1421,2862,1507,384,1507],"score":0.97,"text":"种类的生产活动。这种生产活动是由它的目的、操作方式,对"},{"category_id":15,"poly":[378,1568,2857,1568,2857,1650,378,1650],"score":0.98,"text":"象,手段和结果决定的。表现为自己产品的有用性或使用价值的"},{"category_id":15,"poly":[381,1714,2865,1714,2865,1799,381,1799],"score":1,"text":"劳动,我们简称为有用劳动。从这个观点来看,劳动总是联系到"},{"category_id":15,"poly":[384,1863,1295,1863,1295,1940,384,1940],"score":0.99,"text":"它的有用效果来考察的。"},{"category_id":15,"poly":[559,2004,2855,2004,2855,2090,559,2090],"score":1,"text":"上衣和麻布是二种不同的有用物,同样,生产上衣的裁缝劳"},{"category_id":15,"poly":[375,2151,2860,2151,2860,2236,375,2236],"score":1,"text":"动和生产麻布的织工劳动也不相同。如果这些物不是不同质的使"},{"category_id":15,"poly":[381,2295,2860,2295,2860,2380,381,2380],"score":1,"text":"用价值,从而不是不同质的有用劳动的产品,它们就根本不能作"},{"category_id":15,"poly":[373,2438,2858,2438,2858,2532,373,2532],"score":1,"text":"为商品来互相对立。上衣不会与上衣交换,一种使用价值不会与"},{"category_id":15,"poly":[376,2582,1210,2582,1210,2676,376,2676],"score":1,"text":"同种的使用价值交换。"},{"category_id":15,"poly":[561,839,2865,839,2865,920,561,920],"score":0.99,"text":"我们就拿两种商品如1件上衣和10米麻布来说。假定前者"},{"category_id":15,"poly":[380,983,2075,983,2075,1066,380,1066],"score":1,"text":"的价值比后者的价值大一倍。假设10米麻布"},{"category_id":15,"poly":[2242,983,2776,983,2776,1066,2242,1066],"score":0.99,"text":",则1件上衣"},{"category_id":15,"poly":[1318,480,1522,480,1522,552,1318,552],"score":1,"text":"第一篇"},{"category_id":15,"poly":[1590,484,1917,484,1917,548,1590,548],"score":0.99,"text":"商品和货币"},{"category_id":15,"poly":[464,480,548,480,548,551,464,551],"score":1,"text":"18"},{"category_id":15,"poly":[547,3899,2849,3899,2849,3989,547,3989],"score":1,"text":"可见,每个商品的使用价值都包含着特殊的有用劳动或有"},{"category_id":15,"poly":[363,4045,2849,4045,2849,4132,363,4132],"score":0.98,"text":"特殊目的的生产活动。各种使用价值只有包含不同质的有用劳"},{"category_id":15,"poly":[366,4190,2849,4190,2849,4280,366,4280],"score":1,"text":"动,才能作为商品互相对立。在产品普遍采取商品形式的社会"},{"category_id":15,"poly":[557,2735,2799,2735,2799,2820,557,2820],"score":0.99,"text":"与各种使用价值的总和相对应的有同样多种的、按照属,"},{"category_id":15,"poly":[375,2883,2851,2883,2851,2960,375,2960],"score":0.98,"text":"种、科分类的有用劳动的总和,即社会分工。没有这种分工就没"},{"category_id":15,"poly":[373,3021,2846,3021,2846,3106,373,3106],"score":1,"text":"有商品生产,虽然不能反过来说商品生产对社会分工是不可缺少"},{"category_id":15,"poly":[370,3170,2851,3170,2851,3255,370,3255],"score":0.99,"text":"的。在古代印度公社中就有社会分工,但产品并不因此而成为商"},{"category_id":15,"poly":[375,3318,2788,3318,2788,3403,375,3403],"score":0.98,"text":"品。或者拿一个熟悉的例子来说,每个工厂内都有系统的分工,"},{"category_id":15,"poly":[370,3464,2848,3464,2848,3543,370,3543],"score":1,"text":"但是这种分工不是由于工人交换他们个人的产品而产生的。只有"},{"category_id":15,"poly":[367,3607,2848,3607,2848,3692,367,3692],"score":1,"text":"独立的互不依赖的私人劳动的产品,才表现为可以互相交换的商"},{"category_id":15,"poly":[362,3741,510,3741,510,3857,362,3857],"score":1,"text":"品。"},{"category_id":15,"poly":[385,690,2104,690,2104,777,385,777],"score":0.99,"text":"的枢纽,因此,在这里要较详细地加以说明。"}],"page_info":{"page_no":6,"height":5000,"width":3405}},{"layout_dets":[{"category_id":1,"poly":[332.3732604980469,665.1901245117188,2832.19189453125,665.1901245117188,2832.19189453125,1072.64501953125,332.3732604980469,1072.64501953125],"score":0.9999982714653015},{"category_id":1,"poly":[328.2882080078125,1100.2418212890625,2833.665771484375,1100.2418212890625,2833.665771484375,2522.64208984375,328.2882080078125,2522.64208984375],"score":0.9999918937683105},{"category_id":1,"poly":[322.688232421875,2550.721923828125,3052.0263671875,2550.721923828125,3052.0263671875,3394.32177734375,322.688232421875,3394.32177734375],"score":0.9999860525131226},{"category_id":2,"poly":[1286.9974365234375,463.7050476074219,1904.880859375,463.7050476074219,1904.880859375,538.1673583984375,1286.9974365234375,538.1673583984375],"score":0.9999286532402039},{"category_id":2,"poly":[318.3165283203125,3555.543701171875,2810.735107421875,3555.543701171875,2810.735107421875,4263.3212890625,318.3165283203125,4263.3212890625],"score":0.9999019503593445},{"category_id":2,"poly":[2672.804443359375,468.5804748535156,2750.83056640625,468.5804748535156,2750.83056640625,530.396484375,2672.804443359375,530.396484375],"score":0.9989616274833679},{"category_id":15,"poly":[339,676,2828,676,2828,771,339,771],"score":1,"text":"里,也就是在一切生产者都必定是商人的社会里,作为自由生产"},{"category_id":15,"poly":[339,832,2822,832,2822,913,339,913],"score":0.99,"text":"者的私事而各自独立进行的各种有用劳动的这种区别,发展成一"},{"category_id":15,"poly":[334,969,1609,969,1609,1064,334,1064],"score":1,"text":"个多支的体系,发展成社会分工。"},{"category_id":15,"poly":[509,1119,2823,1119,2823,1206,509,1206],"score":0.98,"text":"对上衣来说,无论是裁缝自已穿还是他的顾客穿,都是一样"},{"category_id":15,"poly":[335,1261,2818,1261,2818,1357,335,1357],"score":1,"text":"的。在这两种场合,它都是起使用价值的作用。同样,上衣和生"},{"category_id":15,"poly":[327,1407,2761,1407,2761,1499,327,1499],"score":1,"text":"产上衣的劳动之间的关系,也并不因为裁缝劳动成为专门职业,"},{"category_id":15,"poly":[330,1552,2766,1552,2766,1642,330,1642],"score":1,"text":"成为社会分工的一个环节就有所改变。自从人有了穿衣的需要,"},{"category_id":15,"poly":[324,1695,2815,1695,2815,1787,324,1787],"score":0.99,"text":"人已经缝了几千年的衣服,但并没有人因此而成为裁缝。但是,麻"},{"category_id":15,"poly":[324,1837,2813,1837,2813,1930,324,1930],"score":0.98,"text":"布、上衣以及任何一种不是天然存在的物质财富要素,总是必须"},{"category_id":15,"poly":[330,1983,2813,1983,2813,2078,330,2078],"score":1,"text":"通过某种旨在使自然物质适合于人类需要的特殊生产活动创造出"},{"category_id":15,"poly":[324,2128,2813,2128,2813,2221,324,2221],"score":0.99,"text":"来。劳动就它生产使用价值,就它是有用劳动而言,它与一切社"},{"category_id":15,"poly":[330,2273,2756,2273,2756,2366,330,2366],"score":1,"text":"会形式无关,是人类生存的不可缺少的条件,是永恒的必然性,"},{"category_id":15,"poly":[319,2416,1695,2416,1695,2511,319,2511],"score":1,"text":"是人和自然之间的物质循环的中介。"},{"category_id":15,"poly":[502,2562,2810,2562,2810,2662,502,2662],"score":0.99,"text":"上衣、麻布等等使用价值,即种种商品体,是物质和劳动这"},{"category_id":15,"poly":[328,2703,2807,2703,2807,2810,328,2810],"score":0.98,"text":"两种要素的结合。如果把上衣、麻布等等包含的各种不同的有用"},{"category_id":15,"poly":[325,2854,2807,2854,2807,2949,325,2949],"score":1,"text":"劳动的总和除外,总还剩有物质,剩有某种天然存在的,完全不"},{"category_id":15,"poly":[319,2998,2813,2998,2813,3099,319,3099],"score":1,"text":"依赖人的东西。人只能象自然本身那样发挥作用,就是说,只能"},{"category_id":15,"poly":[316,3134,3055,3134,3055,3246,316,3246],"score":0.97,"text":"改变物质的形态。(12)不仅如此,他在这种单纯改变形态的劳动中 17(I)"},{"category_id":15,"poly":[322,3291,2798,3291,2798,3382,322,3382],"score":1,"text":"还要经常依靠自然力的帮助。因此,劳动并不是它所生产的使用"},{"category_id":15,"poly":[1291,466,1633,466,1633,539,1291,539],"score":0.99,"text":"第一章商"},{"category_id":15,"poly":[1828,460,1905,460,1905,543,1828,543],"score":0.99,"text":"品"},{"category_id":15,"poly":[460,3564,2809,3564,2809,3651,460,3651],"score":0.99,"text":"(12)“宇宙的一切现象,不论是由人手创造的,还是由自然的一般规律引起"},{"category_id":15,"poly":[319,3668,2806,3668,2806,3749,319,3749],"score":1,"text":"的,都不是真正的创造,而只是物质的形态变化。结合和分离是人的智慧在分析再"},{"category_id":15,"poly":[319,3771,2803,3771,2803,3853,319,3853],"score":0.99,"text":"生产的观念时发现的唯一要素;土地、空气和水在田地上变成谷物,或者昆虫的分"},{"category_id":15,"poly":[317,3872,2801,3872,2801,3954,317,3954],"score":1,"text":"泌物经过人的手变成丝绸,或者通过金属原子的排列来制造金属,也是价值(指使用"},{"category_id":15,"poly":[317,3976,2801,3976,2801,4055,317,4055],"score":0.99,"text":"价值,尽管维里在这里同重农学派论战时自己也不清楚说的是哪一种价值)和财富的"},{"category_id":15,"poly":[317,4074,2801,4074,2801,4156,317,4156],"score":0.99,"text":"再生产。”(彼得罗·维里《政治经济学研究》1773年初版,载于库斯托第编《意大利政"},{"category_id":15,"poly":[319,4178,1731,4178,1731,4254,319,4254],"score":0.99,"text":"治经济学名家文集》现代部分,第15卷第22页)"},{"category_id":15,"poly":[2670,464,2754,464,2754,536,2670,536],"score":1,"text":"19"}],"page_info":{"page_no":7,"height":5000,"width":3405}}] \ No newline at end of file diff --git a/magic_pdf/data/data_reader_writer/filebase.py b/magic_pdf/data/data_reader_writer/filebase.py index 40e9e4ff..d758e675 100644 --- a/magic_pdf/data/data_reader_writer/filebase.py +++ b/magic_pdf/data/data_reader_writer/filebase.py @@ -55,5 +55,8 @@ def write(self, path: str, data: bytes) -> None: if not os.path.isabs(fn_path) and len(self._parent_dir) > 0: fn_path = os.path.join(self._parent_dir, path) + if not os.path.exists(os.path.dirname(fn_path)): + os.makedirs(os.path.dirname(fn_path), exist_ok=True) + with open(fn_path, 'wb') as f: f.write(data) diff --git a/projects/web_api/app.py b/projects/web_api/app.py index df093076..a51b72be 100644 --- a/projects/web_api/app.py +++ b/projects/web_api/app.py @@ -3,75 +3,79 @@ import os from tempfile import NamedTemporaryFile -import magic_pdf.model as model_config import uvicorn -from fastapi import FastAPI, File, UploadFile, Form +from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse from loguru import logger + +import magic_pdf.model as model_config +from magic_pdf.data.data_reader_writer import FileBasedDataWriter from magic_pdf.pipe.OCRPipe import OCRPipe from magic_pdf.pipe.TXTPipe import TXTPipe from magic_pdf.pipe.UNIPipe import UNIPipe -from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter model_config.__use_inside_model__ = True app = FastAPI() + def json_md_dump( - pipe, - md_writer, - pdf_name, - content_list, - md_content, + pipe, + md_writer, + pdf_name, + content_list, + md_content, ): # Write model results to model.json orig_model_list = copy.deepcopy(pipe.model_list) - md_writer.write( - content=json.dumps(orig_model_list, ensure_ascii=False, indent=4), - path=f"{pdf_name}_model.json" + md_writer.write_string( + f'{pdf_name}_model.json', + json.dumps(orig_model_list, ensure_ascii=False, indent=4), ) # Write intermediate results to middle.json - md_writer.write( - content=json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4), - path=f"{pdf_name}_middle.json" + md_writer.write_string( + f'{pdf_name}_middle.json', + json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4), ) # Write text content results to content_list.json - md_writer.write( - content=json.dumps(content_list, ensure_ascii=False, indent=4), - path=f"{pdf_name}_content_list.json" + md_writer.write_string( + f'{pdf_name}_content_list.json', + json.dumps(content_list, ensure_ascii=False, indent=4), ) # Write results to .md file - md_writer.write( - content=md_content, - path=f"{pdf_name}.md" + md_writer.write_string( + f'{pdf_name}.md', + md_content, ) -@app.post("/pdf_parse", tags=["projects"], summary="Parse PDF file") + +@app.post('/pdf_parse', tags=['projects'], summary='Parse PDF file') async def pdf_parse_main( - pdf_file: UploadFile = File(...), - parse_method: str = 'auto', - model_json_path: str = None, - is_json_md_dump: bool = True, - output_dir: str = "output" + pdf_file: UploadFile = File(...), + parse_method: str = 'auto', + model_json_path: str = None, + is_json_md_dump: bool = True, + output_dir: str = 'output', ): - """ - Execute the process of converting PDF to JSON and MD, outputting MD and JSON files to the specified directory + """Execute the process of converting PDF to JSON and MD, outputting MD and + JSON files to the specified directory. + :param pdf_file: The PDF file to be parsed :param parse_method: Parsing method, can be auto, ocr, or txt. Default is auto. If results are not satisfactory, try ocr :param model_json_path: Path to existing model data file. If empty, use built-in model. PDF and model_json must correspond - :param is_json_md_dump: Whether to write parsed data to .json and .md files. Default is True. Different stages of data will be written to different .json files (3 in total), md content will be saved to .md file + :param is_json_md_dump: Whether to write parsed data to .json and .md files. Default is True. Different stages of data will be written to different .json files (3 in total), md content will be saved to .md file # noqa E501 :param output_dir: Output directory for results. A folder named after the PDF file will be created to store all results """ try: # Create a temporary file to store the uploaded PDF - with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: + with NamedTemporaryFile(delete=False, suffix='.pdf') as temp_pdf: temp_pdf.write(await pdf_file.read()) temp_pdf_path = temp_pdf.name - pdf_name = os.path.basename(pdf_file.filename).split(".")[0] + pdf_name = os.path.basename(pdf_file.filename).split('.')[0] if output_dir: output_path = os.path.join(output_dir, pdf_name) @@ -83,28 +87,32 @@ async def pdf_parse_main( # Get parent path of images for relative path in .md and content_list.json image_path_parent = os.path.basename(output_image_path) - pdf_bytes = open(temp_pdf_path, "rb").read() # Read binary data of PDF file + pdf_bytes = open(temp_pdf_path, 'rb').read() # Read binary data of PDF file if model_json_path: # Read original JSON data of PDF file parsed by model, list type - model_json = json.loads(open(model_json_path, "r", encoding="utf-8").read()) + model_json = json.loads(open(model_json_path, 'r', encoding='utf-8').read()) else: model_json = [] # Execute parsing steps - image_writer, md_writer = DiskReaderWriter(output_image_path), DiskReaderWriter(output_path) + image_writer, md_writer = FileBasedDataWriter( + output_image_path + ), FileBasedDataWriter(output_path) # Choose parsing method - if parse_method == "auto": - jso_useful_key = {"_pdf_type": "", "model_list": model_json} + if parse_method == 'auto': + jso_useful_key = {'_pdf_type': '', 'model_list': model_json} pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer) - elif parse_method == "txt": + elif parse_method == 'txt': pipe = TXTPipe(pdf_bytes, model_json, image_writer) - elif parse_method == "ocr": + elif parse_method == 'ocr': pipe = OCRPipe(pdf_bytes, model_json, image_writer) else: - logger.error("Unknown parse method, only auto, ocr, txt allowed") - return JSONResponse(content={"error": "Invalid parse method"}, status_code=400) + logger.error('Unknown parse method, only auto, ocr, txt allowed') + return JSONResponse( + content={'error': 'Invalid parse method'}, status_code=400 + ) # Execute classification pipe.pipe_classify() @@ -114,28 +122,36 @@ async def pdf_parse_main( if model_config.__use_inside_model__: pipe.pipe_analyze() # Parse else: - logger.error("Need model list input") - return JSONResponse(content={"error": "Model list input required"}, status_code=400) + logger.error('Need model list input') + return JSONResponse( + content={'error': 'Model list input required'}, status_code=400 + ) # Execute parsing pipe.pipe_parse() # Save results in text and md format - content_list = pipe.pipe_mk_uni_format(image_path_parent, drop_mode="none") - md_content = pipe.pipe_mk_markdown(image_path_parent, drop_mode="none") + content_list = pipe.pipe_mk_uni_format(image_path_parent, drop_mode='none') + md_content = pipe.pipe_mk_markdown(image_path_parent, drop_mode='none') if is_json_md_dump: json_md_dump(pipe, md_writer, pdf_name, content_list, md_content) - data = {"layout": copy.deepcopy(pipe.model_list), "info": pipe.pdf_mid_data, "content_list": content_list,'md_content':md_content} + data = { + 'layout': copy.deepcopy(pipe.model_list), + 'info': pipe.pdf_mid_data, + 'content_list': content_list, + 'md_content': md_content, + } return JSONResponse(data, status_code=200) except Exception as e: logger.exception(e) - return JSONResponse(content={"error": str(e)}, status_code=500) + return JSONResponse(content={'error': str(e)}, status_code=500) finally: # Clean up the temporary file if 'temp_pdf_path' in locals(): os.unlink(temp_pdf_path) -# if __name__ == '__main__': -# uvicorn.run(app, host="0.0.0.0", port=8888) \ No newline at end of file + +if __name__ == '__main__': + uvicorn.run(app, host='0.0.0.0', port=8888) diff --git a/projects/web_demo/web_demo/api/analysis/pdf_ext.py b/projects/web_demo/web_demo/api/analysis/pdf_ext.py index 1796677a..0c6d5dd2 100644 --- a/projects/web_demo/web_demo/api/analysis/pdf_ext.py +++ b/projects/web_demo/web_demo/api/analysis/pdf_ext.py @@ -1,20 +1,23 @@ import json -import re import os import shutil import traceback from pathlib import Path + +from common.error_types import ApiException +from common.mk_markdown.mk_markdown import \ + ocr_mk_mm_markdown_with_para_and_pagination from flask import current_app, url_for -from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter -from magic_pdf.pipe.UNIPipe import UNIPipe +from loguru import logger + import magic_pdf.model as model_config +from magic_pdf.data.data_reader_writer import FileBasedDataWriter from magic_pdf.libs.json_compressor import JsonCompressor -from common.mk_markdown.mk_markdown import ocr_mk_mm_markdown_with_para_and_pagination +from magic_pdf.pipe.UNIPipe import UNIPipe + +from ..extensions import app, db from .ext import find_file -from ..extentions import app, db from .models import AnalysisPdf, AnalysisTask -from common.error_types import ApiException -from loguru import logger model_config.__use_inside_model__ = True @@ -22,51 +25,51 @@ def analysis_pdf(image_url_prefix, image_dir, pdf_bytes, is_ocr=False): try: model_json = [] # model_json传空list使用内置模型解析 - logger.info(f"is_ocr: {is_ocr}") + logger.info(f'is_ocr: {is_ocr}') if not is_ocr: - jso_useful_key = {"_pdf_type": "", "model_list": model_json} - image_writer = DiskReaderWriter(image_dir) + jso_useful_key = {'_pdf_type': '', 'model_list': model_json} + image_writer = FileBasedDataWriter(image_dir) pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer, is_debug=True) pipe.pipe_classify() else: - jso_useful_key = {"_pdf_type": "ocr", "model_list": model_json} - image_writer = DiskReaderWriter(image_dir) + jso_useful_key = {'_pdf_type': 'ocr', 'model_list': model_json} + image_writer = FileBasedDataWriter(image_dir) pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer, is_debug=True) """如果没有传入有效的模型数据,则使用内置model解析""" if len(model_json) == 0: if model_config.__use_inside_model__: pipe.pipe_analyze() else: - logger.error("need model list input") + logger.error('need model list input') exit(1) pipe.pipe_parse() pdf_mid_data = JsonCompressor.decompress_json(pipe.get_compress_pdf_mid_data()) - pdf_info_list = pdf_mid_data["pdf_info"] + pdf_info_list = pdf_mid_data['pdf_info'] md_content = json.dumps(ocr_mk_mm_markdown_with_para_and_pagination(pdf_info_list, image_url_prefix), ensure_ascii=False) bbox_info = get_bbox_info(pdf_info_list) return md_content, bbox_info - except Exception as e: + except Exception as e: # noqa: F841 logger.error(traceback.format_exc()) def get_bbox_info(data): bbox_info = [] for page in data: - preproc_blocks = page.get("preproc_blocks", []) - discarded_blocks = page.get("discarded_blocks", []) + preproc_blocks = page.get('preproc_blocks', []) + discarded_blocks = page.get('discarded_blocks', []) bbox_info.append({ - "preproc_blocks": preproc_blocks, - "page_idx": page.get("page_idx"), - "page_size": page.get("page_size"), - "discarded_blocks": discarded_blocks, + 'preproc_blocks': preproc_blocks, + 'page_idx': page.get('page_idx'), + 'page_size': page.get('page_size'), + 'discarded_blocks': discarded_blocks, }) return bbox_info def analysis_pdf_task(pdf_dir, image_dir, pdf_path, is_ocr, analysis_pdf_id): - """ - 解析pdf + """解析pdf. + :param pdf_dir: pdf解析目录 :param image_dir: 图片目录 :param pdf_path: pdf路径 @@ -75,8 +78,8 @@ def analysis_pdf_task(pdf_dir, image_dir, pdf_path, is_ocr, analysis_pdf_id): :return: """ try: - logger.info(f"start task: {pdf_path}") - logger.info(f"image_dir: {image_dir}") + logger.info(f'start task: {pdf_path}') + logger.info(f'image_dir: {image_dir}') if not Path(image_dir).exists(): Path(image_dir).mkdir(parents=True, exist_ok=True) else: @@ -96,26 +99,26 @@ def analysis_pdf_task(pdf_dir, image_dir, pdf_path, is_ocr, analysis_pdf_id): # ############ markdown ############# pdf_name = Path(pdf_path).name - full_md_content = "" + full_md_content = '' for item in json.loads(md_content): - full_md_content += item["md_content"] + "\n" + full_md_content += item['md_content'] + '\n' - full_md_name = "full.md" - with open(f"{pdf_dir}/{full_md_name}", "w", encoding="utf-8") as file: + full_md_name = 'full.md' + with open(f'{pdf_dir}/{full_md_name}', 'w', encoding='utf-8') as file: file.write(full_md_content) with app.app_context(): full_md_link = url_for('analysis.mdview', filename=full_md_name, as_attachment=False) - full_md_link = f"{full_md_link}&pdf={pdf_name}" + full_md_link = f'{full_md_link}&pdf={pdf_name}' md_link_list = [] with app.app_context(): for n, md in enumerate(json.loads(md_content)): - md_content = md["md_content"] + md_content = md['md_content'] md_name = f"{md.get('page_no', n)}.md" - with open(f"{pdf_dir}/{md_name}", "w", encoding="utf-8") as file: + with open(f'{pdf_dir}/{md_name}', 'w', encoding='utf-8') as file: file.write(md_content) md_url = url_for('analysis.mdview', filename=md_name, as_attachment=False) - md_link_list.append(f"{md_url}&pdf={pdf_name}") + md_link_list.append(f'{md_url}&pdf={pdf_name}') with app.app_context(): with db.auto_commit(): @@ -129,8 +132,8 @@ def analysis_pdf_task(pdf_dir, image_dir, pdf_path, is_ocr, analysis_pdf_id): analysis_task_object = AnalysisTask.query.filter_by(analysis_pdf_id=analysis_pdf_id).first() analysis_task_object.status = 1 db.session.add(analysis_task_object) - logger.info(f"finished!") - except Exception as e: + logger.info('finished!') + except Exception as e: # noqa: F841 logger.error(traceback.format_exc()) with app.app_context(): with db.auto_commit(): @@ -141,7 +144,7 @@ def analysis_pdf_task(pdf_dir, image_dir, pdf_path, is_ocr, analysis_pdf_id): analysis_task_object = AnalysisTask.query.filter_by(analysis_pdf_id=analysis_pdf_id).first() analysis_task_object.status = 1 db.session.add(analysis_task_object) - raise ApiException(code=500, msg="PDF parsing failed", msgZH="pdf解析失败") + raise ApiException(code=500, msg='PDF parsing failed', msgZH='pdf解析失败') finally: # 执行pending with app.app_context(): @@ -149,12 +152,12 @@ def analysis_pdf_task(pdf_dir, image_dir, pdf_path, is_ocr, analysis_pdf_id): AnalysisTask.update_date.asc()).first() if analysis_task_object: pdf_upload_folder = current_app.config['PDF_UPLOAD_FOLDER'] - upload_dir = f"{current_app.static_folder}/{pdf_upload_folder}" + upload_dir = f'{current_app.static_folder}/{pdf_upload_folder}' file_path = find_file(analysis_task_object.file_key, upload_dir) file_stem = Path(file_path).stem pdf_analysis_folder = current_app.config['PDF_ANALYSIS_FOLDER'] - pdf_dir = f"{current_app.static_folder}/{pdf_analysis_folder}/{file_stem}" - image_dir = f"{pdf_dir}/images" + pdf_dir = f'{current_app.static_folder}/{pdf_analysis_folder}/{file_stem}' + image_dir = f'{pdf_dir}/images' with db.auto_commit(): analysis_pdf_object = AnalysisPdf.query.filter_by(id=analysis_task_object.analysis_pdf_id).first() analysis_pdf_object.status = 0 @@ -164,4 +167,4 @@ def analysis_pdf_task(pdf_dir, image_dir, pdf_path, is_ocr, analysis_pdf_id): db.session.add(analysis_task_object) analysis_pdf_task(pdf_dir, image_dir, file_path, analysis_task_object.is_ocr, analysis_task_object.analysis_pdf_id) else: - logger.info(f"all task finished!") + logger.info('all task finished!') diff --git a/projects/web_demo/web_demo/api/extentions.py b/projects/web_demo/web_demo/api/extensions.py similarity index 76% rename from projects/web_demo/web_demo/api/extentions.py rename to projects/web_demo/web_demo/api/extensions.py index 0d5fcb01..2d1c35c4 100644 --- a/projects/web_demo/web_demo/api/extentions.py +++ b/projects/web_demo/web_demo/api/extensions.py @@ -1,14 +1,15 @@ +from contextlib import contextmanager + +from common.error_types import ApiException from flask import Flask, jsonify -from flask_restful import Api as _Api from flask_cors import CORS -from flask_sqlalchemy import SQLAlchemy as _SQLAlchemy -from flask_migrate import Migrate -from contextlib import contextmanager from flask_jwt_extended import JWTManager from flask_marshmallow import Marshmallow -from common.error_types import ApiException -from werkzeug.exceptions import HTTPException +from flask_migrate import Migrate +from flask_restful import Api as _Api +from flask_sqlalchemy import SQLAlchemy as _SQLAlchemy from loguru import logger +from werkzeug.exceptions import HTTPException class Api(_Api): @@ -21,23 +22,23 @@ def handle_error(self, e): elif isinstance(e, HTTPException): code = e.code msg = e.description - msgZH = "服务异常,详细信息请查看日志" + msgZH = '服务异常,详细信息请查看日志' error_code = e.code else: code = 500 msg = str(e) error_code = 500 - msgZH = "服务异常,详细信息请查看日志" + msgZH = '服务异常,详细信息请查看日志' # 使用 loguru 记录异常信息 - logger.opt(exception=e).error(f"An error occurred: {msg}") + logger.opt(exception=e).error(f'An error occurred: {msg}') return jsonify({ - "error": "Internal Server Error" if code == 500 else e.name, - "msg": msg, - "msgZH": msgZH, - "code": code, - "error_code": error_code + 'error': 'Internal Server Error' if code == 500 else e.name, + 'msg': msg, + 'msgZH': msgZH, + 'code': code, + 'error_code': error_code }), code @@ -59,4 +60,4 @@ def auto_commit(self): migrate = Migrate() jwt = JWTManager() ma = Marshmallow() -folder = app.config.get("REACT_APP_DIST") +folder = app.config.get('REACT_APP_DIST')