-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathappendix_maxSatExample.tex
380 lines (380 loc) · 17.1 KB
/
appendix_maxSatExample.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
%
\appendix{\maxSat\ Example: Details}%
%
%%
\gdef\maxSatClauses{\textcolor{red}{\ensuremath{k}}}%
\gdef\maxSatVariables{\textcolor{green}{\ensuremath{n}}}%
\gdef\maxSatVariable{\ensuremath{x}}%
\gdef\maxSatVariablei#1{\ensuremath{\maxSatVariable_{#1}}}%
\gdef\maxSatFormula{\ensuremath{B}}%
%%
\begin{frame}[label=maxSatDemoStart]%
\frametitle{\maxSat: Output and Analysis}%
\centering{\LARGE{\textbf{\alert{\maxSat: Output and Analysis}}}}%
\bigskip\begin{itemize}%
\item Here we discuss the details of the \maxSat\ example%
\item The following slides can replace the demo, if for some reason running the demo is not possible or did not work out\dots%
\item The evaluation aspects are part of this example.%
\end{itemize}\bigskip%
\begin{center}%
\scalebox{1.8}{\hyperlink{maxSatInteractiveDemoStart}{\beamergotobutton{go back to interactive demo slides}}}%
\end{center}%
\end{frame}%
%%
%
\begin{frame}[t]%
\frametitle{ECDF}%
\begin{itemize}%
\item We can plot the Empirical (Cumulative) Distribution Function (ECDF)\scitep{HAFR2012RPBBOBES,HS1998ELVAPAR,TH2004UAIAEEFSAFSAMS,WCTLTCMY2014BOAAOSFFTTSP} for us, which provides the fraction of runs that have found the solution for their respective problem at a given point in time.%
\end{itemize}%
%
\locateWithCaption{2-6}{%
\strut\vbox to 0.475\paperheight{\vfil%
\includegraphics[scale=0.425]{graphics/maxsat_example/ECDF_log_10_FEs_F_k_0/IEEEtran_ECDF_log_10_FEs_F_k_0}%
\strut\hfill\strut%
}%
}{%
The ECDF in over all 100 benchmark instances for time measure \measureFEs\ (log-scaled\only<6->{\alert{, optimized for \texttt{IEEEtran} and two figures per row}}).%
}{0.0375}{0.34}{0.925}%%
%
\locateWithCaption{7}{%
\strut\vbox to 0.475\paperheight{\vfil%
\includegraphics[scale=0.425]{graphics/maxsat_example/ECDF_log_10_FEs_F_k_0/LNCS_ECDF_log_10_FEs_F_k_0}%
\strut\hfill\strut}%
}{%
The ECDF in over all 100 benchmark instances (log-scaled, \alert{optimized for \texttt{LNCS} and two figures per row}).%
}{0.0375}{0.34}{0.925}%
%
\locateWithCaption{8}{%
\strut\vbox to 0.475\paperheight{\vfil%
\includegraphics[scale=0.425]{graphics/maxsat_example/ECDF_log_10_FEs_F_k_0/SigAlternate_ECDF_log_10_FEs_F_k_0}%
\strut\hfill\strut}%
}{%
The ECDF in over all 100 benchmark instances (log-scaled, \alert{optimized for \texttt{sig-alternate} and two figures per row}).%
}{0.0375}{0.34}{0.925}%
%
\locateWithCaption{9}{%
\strut\vbox to 0.475\paperheight{\vfil%
\includegraphics[width=0.6\paperwidth]{graphics/maxsat_example/ECDF_log_10_FEs_F_k_0/XHTML_ECDF_log_10_FEs_F_k_0}%
\strut\hfill\strut}%
}{%
The ECDF in over all 100 benchmark instances (log-scaled, \alert{optimized for \texttt{XHTML} and two figures per row}).%
}{0.0375}{0.34}{0.925}%
%
\locate{3-}{\parbox{0.35\paperwidth}{\small%
\begin{itemize}%
\item the methods with restarts solve more problems (up to 90\%!)%
\item<4-> plain $m$-flips are better than 2-flips are better than 1-flips%
\item<5-> oddly, for restart HCers, there is a tie between the $m$- and 1-flip versions
\end{itemize}%
}}{0.625}{0.3}%
%
\end{frame}%
%
\begin{frame}%
\frametitle{ECDF for Different Values of \scalebox{1.3}{\ensuremath{\mathbf{\maxSatVariables}}}}%
%
\locate{1-}{%
\parbox{0.234\paperwidth}{\raggedright\small{%
\only<-1>{We now look at the ECDF for different values of \maxSatVariables\ and a goal of 1\% unsatisfied clauses over \measureRuntime\ (log-scaled).}%
\only<2>{For $\maxSatVariables=20$, the methods with restarts are better.}%
\only<3>{But for $\maxSatVariables\geq 50$, those without reach the goal faster.}%
\only<4>{It seems that 1\% unsatisfied clauses can be reached with 1-flips and without restarts.}%
\only<5>{The 2-flip operator again performs worst.}%
\only<6>{It looks as if it gets easier to attain a 1\% error margin if \maxSatVariables\ increases (all ECDFs reach 1).}%
\only<7-8>{For small problems, 1-flip is slightly faster than $m$-flip.}%
\only<9>{For larger problems, $m$-flip becomes slightly faster.}%
\only<10>{All in all, similar behavior over all scales (reaching 1\% error seems to be easy).}%
\only<11->{Only required runtime increases by up to 100 times.}%
}}}{0.013}{0.187}%
%
\locate{1-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_legend}%
\\\scriptsize{legend}}%
}{0.259375}{0.18}%
%
\locate{2-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_20}%
\\\scriptsize{$\maxSatVariables=20$}}%
}{0.50625}{0.18}%
%
\locate{3-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_50}%
\\\scriptsize{$\maxSatVariables=50$}}%
}{0.753125}{0.18}%
%
\locate{4-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_75}%
\\\scriptsize{$\maxSatVariables=75$}}%
}{0.0125}{0.443333333333333}%
%
\locate{5-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_100}%
\\\scriptsize{$\maxSatVariables=100$}}%
}{0.259375}{0.443333333333333}%
%
\locate{6-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_125}%
\\\scriptsize{$\maxSatVariables=125$}}%
}{0.50625}{0.443333333333333}%
%
\locate{7-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_150}%
\\\scriptsize{$\maxSatVariables=150$}}%
}{0.753125}{0.443333333333333}%
%
\locate{8-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_175}%
\\\scriptsize{$\maxSatVariables=175$}}%
}{0.0125}{0.706666666666667}%
%
\locate{9-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_200}%
\\\scriptsize{$\maxSatVariables=200$}}%
}{0.259375}{0.706666666666667}%%
%
\locate{10-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_225}%
\\\scriptsize{$\maxSatVariables=225$}}%
}{0.50625}{0.706666666666667}%
%
\locate{11-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/ECDF_log_10_RT_F_k_0_01_distinct_n/SigAlternate_ECDF_log_10_RT_F_k_0_01_distinct_n_250}%
\\\scriptsize{$\maxSatVariables=250$}}%
}{0.753125}{0.706666666666667}%
%
\end{frame}%
%
%
\begin{frame}%
\frametitle{Progress for Different Values of \scalebox{1.3}{\ensuremath{\mathbf{\maxSatClauses}}}}%
%
\locate{1-}{%
\parbox{0.234\paperwidth}{\raggedright\small{%
\only<-1>{We now look at the progress curves (\measureObjectiveValue\ over \measureFEs\ divided by\footnote<1>{We normalize \measureFEs\ with \maxSatVariables\ in the hope to make the time measure comparable over different \maxSatVariables.} \maxSatVariables, log-scaled) for different values of \maxSatClauses.}%
\only<2>{For very small-scale problems, all algorithms behave similar.}%
\only<3>{But soon, two groups form: with and without restarts.}%
\only<4>{Algorithms using \emph{my example restart policy} seem to be slower.}%
\only<5>{The gap increases with rising \maxSatClauses}%
\only<6>{Thus, we find: algorithms with my restart policy are slower than those without\dots}%
\only<7>{{\dots}but from the ECDF we know they can solve more problems eventually.}%
\only<8>{For all scales, the initial random solutions, seem to have about 12\% of unsatisfied clauses (in median).}%
\only<9->{Convergence seems to happen between 100\maxSatVariables\ and 1000\maxSatVariables}%
}}}{0.013}{0.187}%
%
\locate{1-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_legend}%
\\\scriptsize{legend}}%
}{0.259375}{0.18}%
%
\locate{2-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_91}%
\\\scriptsize{$\maxSatClauses=91$}}%
}{0.50625}{0.18}%
%
\locate{3-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_218}%
\\\scriptsize{$\maxSatClauses=218$}}%
}{0.753125}{0.18}%
%
\locate{4-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_325}%
\\\scriptsize{$\maxSatClauses=325$}}%
}{0.0125}{0.443333333333333}%
%
\locate{5-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_430}%
\\\scriptsize{$\maxSatClauses=430$}}%
}{0.259375}{0.443333333333333}%
%
\locate{6-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_538}%
\\\scriptsize{$\maxSatClauses=538$}}%
}{0.50625}{0.443333333333333}%
%
\locate{7-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_645}%
\\\scriptsize{$\maxSatClauses=645$}}%
}{0.753125}{0.443333333333333}%
%
\locate{8-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_753}%
\\\scriptsize{$\maxSatClauses=753$}}%
}{0.0125}{0.706666666666667}%
%
\locate{9-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_860}%
\\\scriptsize{$\maxSatClauses=860$}}%
}{0.259375}{0.706666666666667}%%
%
\locate{10-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_960}%
\\\scriptsize{$\maxSatClauses=960$}}%
}{0.50625}{0.706666666666667}%
%
\locate{11-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_med_log_10_FEs_n_F_distinct_k/IEEEtran_med_med_log_10_FEs_n_F_distinct_k_1065}%
\\\scriptsize{$\maxSatClauses=1065$}}%
}{0.753125}{0.706666666666667}%
%
\end{frame}%
%
%
\begin{frame}%
\frametitle{StdDev of \measureObjectiveValue\ for Different Values of \scalebox{1.3}{\ensuremath{\mathbf{\maxSatVariables}}}}%
%
\locate{1-}{%
\parbox{0.234\paperwidth}{\raggedright\small{%
\only<-1>{Let's look at the standard deviation of the best objective value \measureObjectiveValue\ (divided by\footnote<1>{Since \measureObjectiveValue\ is always in $1\dots\maxSatClauses$, dividing it by \maxSatClauses\ normalizes it into $[0,1]$ and makes the values comparable for different \maxSatClauses\ or \maxSatVariables.} \maxSatClauses) found over \measureRuntime\ (log-scaled) for different values of \maxSatVariables.}%
\only<2>{For small-scale problems, the standard deviation seems to decrease steadily.}%
\only<3>{The reason is probably that the algorithms converge nicely.}%
\only<4>{For the methods with restarts, it reaches very close to 0.}%
\only<5>{For those without, it remains constant above 0 after some time.}%
\only<6>{These algorithms probably get stuck at different local optima in different runs.}%
\only<7>{For increasing scales, the standard deviation goes first down, then up, then farther down.}%
\only<8>{Maybe there is some kind of hard-to-attain improvement that some runs find earlier than others.}%
\only<9>{The time of convergence seems to increase for the methods with restarts with \maxSatVariables.}%
\only<10->{The early standard deviations are usually below 0.03 and highest for small \maxSatVariables.}%
}}}{0.013}{0.187}%
%
\locate{1-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_legend}%
\\\scriptsize{legend}}%
}{0.259375}{0.18}%
%
\locate{2-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_20}%
\\\scriptsize{$\maxSatVariables=20$}}%
}{0.50625}{0.18}%
%
\locate{3-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_50}%
\\\scriptsize{$\maxSatVariables=50$}}%
}{0.753125}{0.18}%
%
\locate{4-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_75}%
\\\scriptsize{$\maxSatVariables=75$}}%
}{0.0125}{0.443333333333333}%
%
\locate{5-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_100}%
\\\scriptsize{$\maxSatVariables=100$}}%
}{0.259375}{0.443333333333333}%
%
\locate{6-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_125}%
\\\scriptsize{$\maxSatVariables=125$}}%
}{0.50625}{0.443333333333333}%
%
\locate{7-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_150}%
\\\scriptsize{$\maxSatVariables=150$}}%
}{0.753125}{0.443333333333333}%
%
\locate{8-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_175}%
\\\scriptsize{$\maxSatVariables=175$}}%
}{0.0125}{0.706666666666667}%
%
\locate{9-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_200}%
\\\scriptsize{$\maxSatVariables=200$}}%
}{0.259375}{0.706666666666667}%%
%
\locate{10-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_225}%
\\\scriptsize{$\maxSatVariables=225$}}%
}{0.50625}{0.706666666666667}%
%
\locate{11-}{%
\parbox{0.234375\paperwidth}{\centering%
\includegraphics[width=0.234375\paperwidth]{graphics/maxsat_example/med_stddev_log_10_RT_F_k_distinct_n/LNCS_med_stddev_log_10_RT_F_k_distinct_n_250}%
\\\scriptsize{$\maxSatVariables=250$}}%
}{0.753125}{0.706666666666667}%
%
\end{frame}%
%
%%
%
\begin{frame}[t]%
\frametitle{Result}%
\only<-5>{%
\begin{itemize}%
\item The Evaluator will now produce report documents containing the requested information (and figures)%
\end{itemize}%
}%
\locate{6}{%
\parbox{\paperwidth}{%
\centering\scalebox{1.8}{\hyperlink{maxSatInteractiveDemoEnd}{\beamergotobutton{continue after end of interactive demo slides}}}%
}%
}{0}{0.16}%
%
\locateWithCaption{2-}{%
\strut\vbox to 0.475\paperheight{\vfil\fbox{%
\includegraphics[width=0.215\paperwidth,page=1]{graphics/maxsat_example/maxsat_example_reports/IEEEtran_report.pdf}%
}\strut\hfill\strut}%
}{%
first page of the report in \LaTeX\ for \texttt{IEEEtran}%
}{0.02}{0.255}{0.225}%
%
%
\locateWithCaption{3-}{%
\strut\vbox to 0.475\paperheight{\vfil\fbox{%
\includegraphics[width=0.215\paperwidth,page=1]{graphics/maxsat_example/maxsat_example_reports/LNCS_report.pdf}%
}\strut\hfill\strut}%
}{%
first page of the report in \LaTeX\ for \texttt{LNCS}%
}{0.265}{0.255}{0.225}%
%
\locateWithCaption{4-}{%
\strut\vbox to 0.475\paperheight{\vfil\fbox{%
\includegraphics[width=0.215\paperwidth,page=1]{graphics/maxsat_example/maxsat_example_reports/SigAlternate_report.pdf}%
}\strut\hfill\strut}%
}{%
first page of the report in \LaTeX\ for \texttt{sig-alternate}%
}{0.51}{0.255}{0.225}%
%
\locateWithCaption{5-}{%
\strut\vbox to 0.475\paperheight{\vfil\fbox{%
\includegraphics[width=0.215\paperwidth,page=1]{graphics/maxsat_example/maxsat_example_reports/XHTML_report.pdf}%
}\strut\hfill\strut}%
}{%
first page of the report in \texttt{XHTML}%
}{0.755}{0.255}{0.225}%
%
\end{frame}%
%
%