-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtype.go
1053 lines (945 loc) · 26.8 KB
/
type.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// DWARF type information structures.
// The format is heavily biased toward C, but for simplicity
// the String methods use a pseudo-Go syntax.
// Borrowed from golang.org/x/debug/dwarf/type.go
package godwarf
import (
"debug/dwarf"
"fmt"
"reflect"
"strconv"
"strings"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/util"
)
var _ = strings.HasPrefix
const (
AttrGoKind dwarf.Attr = 0x2900
AttrGoKey dwarf.Attr = 0x2901
AttrGoElem dwarf.Attr = 0x2902
AttrGoEmbeddedField dwarf.Attr = 0x2903
AttrGoRuntimeType dwarf.Attr = 0x2904
)
// Basic type encodings -- the value for AttrEncoding in a TagBaseType Entry.
const (
encAddress = 0x01
encBoolean = 0x02
encComplexFloat = 0x03
encFloat = 0x04
encSigned = 0x05
encSignedChar = 0x06
encUnsigned = 0x07
encUnsignedChar = 0x08
encImaginaryFloat = 0x09
)
const cyclicalTypeStop = "<cyclical>" // guard value printed for types with a cyclical definition, to avoid inifinite recursion in Type.String
type recCheck map[dwarf.Offset]struct{}
func (recCheck recCheck) acquire(off dwarf.Offset) (release func()) {
if _, rec := recCheck[off]; rec {
return nil
}
recCheck[off] = struct{}{}
return func() {
delete(recCheck, off)
}
}
// A Type conventionally represents a pointer to any of the
// specific Type structures (CharType, StructType, etc.).
//TODO: remove this use dwarf.Type
type Type interface {
Common() *CommonType
String() string
Size() int64
stringIntl(recCheck) string
sizeIntl(recCheck) int64
}
// A CommonType holds fields common to multiple types.
// If a field is not known or not applicable for a given type,
// the zero value is used.
type CommonType struct {
Index int // index supplied by caller of ReadType
ByteSize int64 // size of value of this type, in bytes
Name string // name that can be used to refer to type
ReflectKind reflect.Kind // the reflect kind of the type.
Offset dwarf.Offset // the offset at which this type was read
}
func (c *CommonType) Common() *CommonType { return c }
func (c *CommonType) Size() int64 { return c.ByteSize }
func (c *CommonType) sizeIntl(recCheck) int64 { return c.ByteSize }
// Basic types
// A BasicType holds fields common to all basic types.
type BasicType struct {
CommonType
BitSize int64
BitOffset int64
}
func (b *BasicType) Basic() *BasicType { return b }
func (t *BasicType) String() string { return t.stringIntl(nil) }
func (t *BasicType) stringIntl(recCheck) string {
if t.Name != "" {
return t.Name
}
return "?"
}
// A CharType represents a signed character type.
type CharType struct {
BasicType
}
// A UcharType represents an unsigned character type.
type UcharType struct {
BasicType
}
// An IntType represents a signed integer type.
type IntType struct {
BasicType
}
// A UintType represents an unsigned integer type.
type UintType struct {
BasicType
}
// A FloatType represents a floating point type.
type FloatType struct {
BasicType
}
// A ComplexType represents a complex floating point type.
type ComplexType struct {
BasicType
}
// A BoolType represents a boolean type.
type BoolType struct {
BasicType
}
// An AddrType represents a machine address type.
type AddrType struct {
BasicType
}
// An UnspecifiedType represents an implicit, unknown, ambiguous or nonexistent type.
type UnspecifiedType struct {
BasicType
}
// qualifiers
// A QualType represents a type that has the C/C++ "const", "restrict", or "volatile" qualifier.
type QualType struct {
CommonType
Qual string
Type Type
}
func (t *QualType) String() string { return t.stringIntl(make(recCheck)) }
func (t *QualType) stringIntl(recCheck recCheck) string {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return cyclicalTypeStop
}
defer release()
return t.Qual + " " + t.Type.stringIntl(recCheck)
}
func (t *QualType) Size() int64 { return t.sizeIntl(make(recCheck)) }
func (t *QualType) sizeIntl(recCheck recCheck) int64 {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return t.CommonType.ByteSize
}
defer release()
return t.Type.sizeIntl(recCheck)
}
// An ArrayType represents a fixed size array type.
type ArrayType struct {
CommonType
Type Type
StrideBitSize int64 // if > 0, number of bits to hold each element
Count int64 // if == -1, an incomplete array, like char x[].
}
func (t *ArrayType) String() string { return t.stringIntl(make(recCheck)) }
func (t *ArrayType) stringIntl(recCheck recCheck) string {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return cyclicalTypeStop
}
defer release()
return "[" + strconv.FormatInt(t.Count, 10) + "]" + t.Type.stringIntl(recCheck)
}
func (t *ArrayType) Size() int64 { return t.sizeIntl(make(recCheck)) }
func (t *ArrayType) sizeIntl(recCheck recCheck) int64 {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return t.CommonType.ByteSize
}
defer release()
return t.Count * t.Type.sizeIntl(recCheck)
}
// A VoidType represents the C void type.
type VoidType struct {
CommonType
}
func (t *VoidType) String() string { return t.stringIntl(nil) }
func (t *VoidType) stringIntl(recCheck) string { return "void" }
// A PtrType represents a pointer type.
type PtrType struct {
CommonType
Type Type
}
func (t *PtrType) String() string { return t.stringIntl(make(recCheck)) }
func (t *PtrType) stringIntl(recCheck recCheck) string {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return cyclicalTypeStop
}
defer release()
return "*" + t.Type.stringIntl(recCheck)
}
// A StructType represents a struct, union, or C++ class type.
type StructType struct {
CommonType
StructName string
Kind string // "struct", "union", or "class".
Field []*StructField
Incomplete bool // if true, struct, union, class is declared but not defined
}
// A StructField represents a field in a struct, union, or C++ class type.
type StructField struct {
Name string
Type Type
ByteOffset int64
ByteSize int64
BitOffset int64 // within the ByteSize bytes at ByteOffset
BitSize int64 // zero if not a bit field
Embedded bool
}
func (t *StructType) String() string { return t.stringIntl(make(recCheck)) }
func (t *StructType) stringIntl(recCheck recCheck) string {
if t.StructName != "" {
return t.Kind + " " + t.StructName
}
return t.Defn(recCheck)
}
func (t *StructType) Defn(recCheck recCheck) string {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return cyclicalTypeStop
}
defer release()
s := t.Kind
if t.StructName != "" {
s += " " + t.StructName
}
if t.Incomplete {
s += " /*incomplete*/"
return s
}
s += " {"
for i, f := range t.Field {
if i > 0 {
s += "; "
}
s += f.Name + " " + f.Type.stringIntl(recCheck)
s += "@" + strconv.FormatInt(f.ByteOffset, 10)
if f.BitSize > 0 {
s += " : " + strconv.FormatInt(f.BitSize, 10)
s += "@" + strconv.FormatInt(f.BitOffset, 10)
}
}
s += "}"
return s
}
// A SliceType represents a Go slice type. It looks like a StructType, describing
// the runtime-internal structure, with extra fields.
type SliceType struct {
StructType
ElemType Type
}
func (t *SliceType) String() string { return t.stringIntl(make(recCheck)) }
func (t *SliceType) stringIntl(recCheck recCheck) string {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return cyclicalTypeStop
}
defer release()
if t.Name != "" {
return t.Name
}
return "[]" + t.ElemType.stringIntl(recCheck)
}
// A StringType represents a Go string type. It looks like a StructType, describing
// the runtime-internal structure, but we wrap it for neatness.
type StringType struct {
StructType
}
func (t *StringType) String() string { return t.stringIntl(nil) }
func (t *StringType) stringIntl(recCheck recCheck) string {
if t.Name != "" {
return t.Name
}
return "string"
}
// An InterfaceType represents a Go interface.
type InterfaceType struct {
TypedefType
}
func (t *InterfaceType) String() string { return t.stringIntl(nil) }
func (t *InterfaceType) stringIntl(recCheck recCheck) string {
if t.Name != "" {
return t.Name
}
return "Interface"
}
// An EnumType represents an enumerated type.
// The only indication of its native integer type is its ByteSize
// (inside CommonType).
type EnumType struct {
CommonType
EnumName string
Val []*EnumValue
}
// An EnumValue represents a single enumeration value.
type EnumValue struct {
Name string
Val int64
}
func (t *EnumType) String() string { return t.stringIntl(nil) }
func (t *EnumType) stringIntl(recCheck recCheck) string {
s := "enum"
if t.EnumName != "" {
s += " " + t.EnumName
}
s += " {"
for i, v := range t.Val {
if i > 0 {
s += "; "
}
s += v.Name + "=" + strconv.FormatInt(v.Val, 10)
}
s += "}"
return s
}
// A FuncType represents a function type.
type FuncType struct {
CommonType
ReturnType Type
ParamType []Type
}
func (t *FuncType) String() string { return t.stringIntl(make(recCheck)) }
func (t *FuncType) stringIntl(recCheck recCheck) string {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return cyclicalTypeStop
}
defer release()
s := "func("
for i, t := range t.ParamType {
if i > 0 {
s += ", "
}
s += t.stringIntl(recCheck)
}
s += ")"
if t.ReturnType != nil {
s += " " + t.ReturnType.stringIntl(recCheck)
}
return s
}
// A DotDotDotType represents the variadic ... function parameter.
type DotDotDotType struct {
CommonType
}
func (t *DotDotDotType) String() string { return t.stringIntl(nil) }
func (t *DotDotDotType) stringIntl(recCheck recCheck) string { return "..." }
// A TypedefType represents a named type.
type TypedefType struct {
CommonType
Type Type
}
func (t *TypedefType) String() string { return t.stringIntl(nil) }
func (t *TypedefType) stringIntl(recCheck recCheck) string { return t.Name }
func (t *TypedefType) Size() int64 { return t.sizeIntl(make(recCheck)) }
func (t *TypedefType) sizeIntl(recCheck recCheck) int64 {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return t.CommonType.ByteSize
}
defer release()
if t.Type == nil {
fmt.Printf("t.Type is nil %T(%p) name:%q\n", t, t, t.Name)
}
return t.Type.sizeIntl(recCheck)
}
// A MapType represents a Go map type. It looks like a TypedefType, describing
// the runtime-internal structure, with extra fields.
type MapType struct {
TypedefType
KeyType Type
ElemType Type
}
func (t *MapType) String() string { return t.stringIntl(make(recCheck)) }
func (t *MapType) stringIntl(recCheck recCheck) string {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return cyclicalTypeStop
}
defer release()
if t.Name != "" {
return t.Name
}
return "map[" + t.KeyType.String() + "]" + t.ElemType.String()
}
// A ChanType represents a Go channel type.
type ChanType struct {
TypedefType
ElemType Type
}
func (t *ChanType) String() string { return t.stringIntl(make(recCheck)) }
func (t *ChanType) stringIntl(recCheck recCheck) string {
release := recCheck.acquire(t.CommonType.Offset)
if release == nil {
return cyclicalTypeStop
}
defer release()
if t.Name != "" {
return t.Name
}
return "chan " + t.ElemType.String()
}
// Type reads the type at off in the DWARF ``info'' section.
func ReadType(d *dwarf.Data, index int, off dwarf.Offset, typeCache map[dwarf.Offset]Type) (Type, error) {
typ, err := readType(d, "info", d.Reader(), off, typeCache)
if typ != nil {
typ.Common().Index = index
}
return typ, err
}
func getKind(e *dwarf.Entry) reflect.Kind {
integer, _ := e.Val(AttrGoKind).(int64)
return reflect.Kind(integer)
}
// readType reads a type from r at off of name using and updating a
// type cache.
func readType(d *dwarf.Data, name string, r *dwarf.Reader, off dwarf.Offset, typeCache map[dwarf.Offset]Type) (Type, error) {
if t, ok := typeCache[off]; ok {
switch uint32(off) {
case 0x4f2db, 0x4f1e2, 0x4ff21:
fmt.Printf("DEBUG typecache hit %x\n", off)
}
return t, nil
}
switch uint32(off) {
case 0x4f2db, 0x4f1e2, 0x4ff21:
fmt.Printf("DEBUG typecache miss %x\n", off)
}
r.Seek(off)
e, err := r.Next()
if err != nil {
return nil, err
}
addressSize := r.AddressSize()
if e == nil || e.Offset != off {
return nil, dwarf.DecodeError{name, off, "no type at offset"}
}
switch uint32(off) {
case 0x4f2db, 0x4f1e2, 0x4ff21:
fmt.Printf("DEBUG seek %x -> %q %s\n", off, e.Val(dwarf.AttrName).(string), e.Tag)
}
// Parse type from dwarf.Entry.
// Must always set typeCache[off] before calling
// d.Type recursively, to handle circular types correctly.
var typ Type
nextDepth := 0
// Get next child; set err if error happens.
next := func() *dwarf.Entry {
if !e.Children {
return nil
}
// Only return direct children.
// Skip over composite entries that happen to be nested
// inside this one. Most DWARF generators wouldn't generate
// such a thing, but clang does.
// See golang.org/issue/6472.
for {
kid, err1 := r.Next()
if err1 != nil {
err = err1
return nil
}
if kid.Tag == 0 {
if nextDepth > 0 {
nextDepth--
continue
}
return nil
}
if kid.Children {
nextDepth++
}
if nextDepth > 0 {
continue
}
return kid
}
}
// Get Type referred to by dwarf.Entry's attr.
// Set err if error happens. Not having a type is an error.
typeOf := func(e *dwarf.Entry, attr dwarf.Attr) Type {
tval := e.Val(attr)
var t Type
switch toff := tval.(type) {
case dwarf.Offset:
switch toff {
case 0x4f2db, 0x4ff21, 0x4f1e2:
fmt.Printf("DEBUG typeOf(entry=%8x attr=%s) e.Val=%x\n", e.Offset, attr, toff)
default:
fmt.Printf("DEBUG typeOf(entry=%8x, attr=%s) e.Val=%x, entry.Name=%q\n", e.Offset, attr, toff, e.Val(dwarf.AttrName))
}
if t, err = readType(d, name, d.Reader(), toff, typeCache); err != nil {
return nil
}
case uint64:
err = dwarf.DecodeError{name, e.Offset, "DWARFv4 section debug_types unsupported"}
return nil
default:
// It appears that no Type means "void".
return new(VoidType)
}
return t
}
switch e.Tag {
case dwarf.TagArrayType:
// Multi-dimensional array. (DWARF v2 §5.4)
// Attributes:
// AttrType:subtype [required]
// AttrStrideSize: distance in bits between each element of the array
// AttrStride: distance in bytes between each element of the array
// AttrByteSize: size of entire array
// Children:
// TagSubrangeType or TagEnumerationType giving one dimension.
// dimensions are in left to right order.
t := new(ArrayType)
t.Name, _ = e.Val(dwarf.AttrName).(string)
t.ReflectKind = getKind(e)
typ = t
typeCache[off] = t
if t.Type = typeOf(e, dwarf.AttrType); err != nil {
goto Error
}
if off == 0x4ff21 {
fmt.Printf("DEBUG [%8x] arrayType.Type=%T(%p, off=%x) arrayType=%q\n", e.Offset, t.Type, t.Type, e.Val(dwarf.AttrType), t.Name)
}
if bytes, ok := e.Val(dwarf.AttrStride).(int64); ok {
t.StrideBitSize = 8 * bytes
} else if bits, ok := e.Val(dwarf.AttrStrideSize).(int64); ok {
t.StrideBitSize = bits
} else {
// If there's no stride specified, assume it's the size of the
// array's element type.
t.StrideBitSize = 8 * t.Type.Size()
}
// Accumulate dimensions,
ndim := 0
for kid := next(); kid != nil; kid = next() {
// TODO(rsc): Can also be TagEnumerationType
// but haven't seen that in the wild yet.
switch kid.Tag {
case dwarf.TagSubrangeType:
count, ok := kid.Val(dwarf.AttrCount).(int64)
if !ok {
// Old binaries may have an upper bound instead.
count, ok = kid.Val(dwarf.AttrUpperBound).(int64)
if ok {
count++ // Length is one more than upper bound.
} else {
count = -1 // As in x[].
}
}
if ndim == 0 {
t.Count = count
} else {
// Multidimensional array.
// Create new array type underneath this one.
t.Type = &ArrayType{Type: t.Type, Count: count}
}
ndim++
case dwarf.TagEnumerationType:
err = dwarf.DecodeError{name, kid.Offset, "cannot handle enumeration type as array bound"}
goto Error
}
}
if ndim == 0 {
// LLVM generates this for x[].
t.Count = -1
}
case dwarf.TagBaseType:
// Basic type. (DWARF v2 §5.1)
// Attributes:
// AttrName: name of base type in programming language of the compilation unit [required]
// AttrEncoding: encoding value for type (encFloat etc) [required]
// AttrByteSize: size of type in bytes [required]
// AttrBitOffset: for sub-byte types, size in bits
// AttrBitSize: for sub-byte types, bit offset of high order bit in the AttrByteSize bytes
name, _ := e.Val(dwarf.AttrName).(string)
enc, ok := e.Val(dwarf.AttrEncoding).(int64)
if !ok {
err = dwarf.DecodeError{name, e.Offset, "missing encoding attribute for " + name}
goto Error
}
switch enc {
default:
err = dwarf.DecodeError{name, e.Offset, "unrecognized encoding attribute value"}
goto Error
case encAddress:
typ = new(AddrType)
case encBoolean:
typ = new(BoolType)
case encComplexFloat:
typ = new(ComplexType)
if name == "complex" {
// clang writes out 'complex' instead of 'complex float' or 'complex double'.
// clang also writes out a byte size that we can use to distinguish.
// See issue 8694.
switch byteSize, _ := e.Val(dwarf.AttrByteSize).(int64); byteSize {
case 8:
name = "complex float"
case 16:
name = "complex double"
}
}
case encFloat:
typ = new(FloatType)
case encSigned:
typ = new(IntType)
case encUnsigned:
typ = new(UintType)
case encSignedChar:
typ = new(CharType)
case encUnsignedChar:
typ = new(UcharType)
}
typeCache[off] = typ
t := typ.(interface {
Basic() *BasicType
}).Basic()
t.Name = name
t.BitSize, _ = e.Val(dwarf.AttrBitSize).(int64)
t.BitOffset, _ = e.Val(dwarf.AttrBitOffset).(int64)
t.ReflectKind = getKind(e)
case dwarf.TagClassType, dwarf.TagStructType, dwarf.TagUnionType:
// Structure, union, or class type. (DWARF v2 §5.5)
// Also Slices and Strings (Go-specific).
// Attributes:
// AttrName: name of struct, union, or class
// AttrByteSize: byte size [required]
// AttrDeclaration: if true, struct/union/class is incomplete
// AttrGoElem: present for slices only.
// Children:
// TagMember to describe one member.
// AttrName: name of member [required]
// AttrType: type of member [required]
// AttrByteSize: size in bytes
// AttrBitOffset: bit offset within bytes for bit fields
// AttrBitSize: bit size for bit fields
// AttrDataMemberLoc: location within struct [required for struct, class]
// There is much more to handle C++, all ignored for now.
t := new(StructType)
t.ReflectKind = getKind(e)
switch t.ReflectKind {
case reflect.Slice:
slice := new(SliceType)
typ = slice
typeCache[off] = slice
slice.ElemType = typeOf(e, AttrGoElem)
t = &slice.StructType
case reflect.String:
str := new(StringType)
t = &str.StructType
typ = str
default:
typ = t
}
typeCache[off] = typ
switch e.Tag {
case dwarf.TagClassType:
t.Kind = "class"
case dwarf.TagStructType:
t.Kind = "struct"
case dwarf.TagUnionType:
t.Kind = "union"
}
t.Name, _ = e.Val(dwarf.AttrName).(string)
t.StructName, _ = e.Val(dwarf.AttrName).(string)
t.Incomplete = e.Val(dwarf.AttrDeclaration) != nil
t.Field = make([]*StructField, 0, 8)
var lastFieldType Type
var lastFieldBitOffset int64
for kid := next(); kid != nil; kid = next() {
if kid.Tag == dwarf.TagMember {
f := new(StructField)
if f.Type = typeOf(kid, dwarf.AttrType); err != nil {
goto Error
}
switch loc := kid.Val(dwarf.AttrDataMemberLoc).(type) {
case []byte:
// TODO: Should have original compilation
// unit here, not unknownFormat.
if len(loc) == 0 {
// Empty exprloc. f.ByteOffset=0.
break
}
b := util.MakeBuf(d, util.UnknownFormat{}, "location", 0, loc)
op_ := op.Opcode(b.Uint8())
switch op_ {
case op.DW_OP_plus_uconst:
// Handle opcode sequence [DW_OP_plus_uconst <uleb128>]
f.ByteOffset = int64(b.Uint())
b.AssertEmpty()
case op.DW_OP_consts:
// Handle opcode sequence [DW_OP_consts <sleb128> DW_OP_plus]
f.ByteOffset = b.Int()
op_ = op.Opcode(b.Uint8())
if op_ != op.DW_OP_plus {
err = dwarf.DecodeError{name, kid.Offset, fmt.Sprintf("unexpected opcode 0x%x", op_)}
goto Error
}
b.AssertEmpty()
default:
err = dwarf.DecodeError{name, kid.Offset, fmt.Sprintf("unexpected opcode 0x%x", op_)}
goto Error
}
if b.Err != nil {
err = b.Err
goto Error
}
case int64:
f.ByteOffset = loc
}
haveBitOffset := false
f.Name, _ = kid.Val(dwarf.AttrName).(string)
f.ByteSize, _ = kid.Val(dwarf.AttrByteSize).(int64)
f.BitOffset, haveBitOffset = kid.Val(dwarf.AttrBitOffset).(int64)
f.BitSize, _ = kid.Val(dwarf.AttrBitSize).(int64)
f.Embedded, _ = kid.Val(AttrGoEmbeddedField).(bool)
t.Field = append(t.Field, f)
bito := f.BitOffset
if !haveBitOffset {
bito = f.ByteOffset * 8
}
if bito == lastFieldBitOffset && t.Kind != "union" {
// Last field was zero width. Fix array length.
// (DWARF writes out 0-length arrays as if they were 1-length arrays.)
zeroArray(lastFieldType)
}
lastFieldType = f.Type
lastFieldBitOffset = bito
}
}
if t.Kind != "union" {
b, ok := e.Val(dwarf.AttrByteSize).(int64)
if ok && b*8 == lastFieldBitOffset {
// Final field must be zero width. Fix array length.
zeroArray(lastFieldType)
}
}
case dwarf.TagConstType, dwarf.TagVolatileType, dwarf.TagRestrictType:
// Type modifier (DWARF v2 §5.2)
// Attributes:
// AttrType: subtype
t := new(QualType)
t.Name, _ = e.Val(dwarf.AttrName).(string)
t.ReflectKind = getKind(e)
typ = t
typeCache[off] = t
if t.Type = typeOf(e, dwarf.AttrType); err != nil {
goto Error
}
switch e.Tag {
case dwarf.TagConstType:
t.Qual = "const"
case dwarf.TagRestrictType:
t.Qual = "restrict"
case dwarf.TagVolatileType:
t.Qual = "volatile"
}
case dwarf.TagEnumerationType:
// Enumeration type (DWARF v2 §5.6)
// Attributes:
// AttrName: enum name if any
// AttrByteSize: bytes required to represent largest value
// Children:
// TagEnumerator:
// AttrName: name of constant
// AttrConstValue: value of constant
t := new(EnumType)
t.ReflectKind = getKind(e)
typ = t
typeCache[off] = t
t.Name, _ = e.Val(dwarf.AttrName).(string)
t.EnumName, _ = e.Val(dwarf.AttrName).(string)
t.Val = make([]*EnumValue, 0, 8)
for kid := next(); kid != nil; kid = next() {
if kid.Tag == dwarf.TagEnumerator {
f := new(EnumValue)
f.Name, _ = kid.Val(dwarf.AttrName).(string)
f.Val, _ = kid.Val(dwarf.AttrConstValue).(int64)
n := len(t.Val)
if n >= cap(t.Val) {
val := make([]*EnumValue, n, n*2)
copy(val, t.Val)
t.Val = val
}
t.Val = t.Val[0 : n+1]
t.Val[n] = f
}
}
case dwarf.TagPointerType:
// Type modifier (DWARF v2 §5.2)
// Attributes:
// AttrType: subtype [not required! void* has no AttrType]
// AttrAddrClass: address class [ignored]
t := new(PtrType)
t.Name, _ = e.Val(dwarf.AttrName).(string)
t.ReflectKind = getKind(e)
typ = t
typeCache[off] = t
if e.Val(dwarf.AttrType) == nil {
t.Type = &VoidType{}
break
}
t.Type = typeOf(e, dwarf.AttrType)
case dwarf.TagSubroutineType:
// Subroutine type. (DWARF v2 §5.7)
// Attributes:
// AttrType: type of return value if any
// AttrName: possible name of type [ignored]
// AttrPrototyped: whether used ANSI C prototype [ignored]
// Children:
// TagFormalParameter: typed parameter
// AttrType: type of parameter
// TagUnspecifiedParameter: final ...
t := new(FuncType)
t.Name, _ = e.Val(dwarf.AttrName).(string)
t.ReflectKind = getKind(e)
typ = t
typeCache[off] = t
if t.ReturnType = typeOf(e, dwarf.AttrType); err != nil {
goto Error
}
t.ParamType = make([]Type, 0, 8)
for kid := next(); kid != nil; kid = next() {
var tkid Type
switch kid.Tag {
default:
continue
case dwarf.TagFormalParameter:
if tkid = typeOf(kid, dwarf.AttrType); err != nil {
goto Error
}
case dwarf.TagUnspecifiedParameters:
tkid = &DotDotDotType{}
}
t.ParamType = append(t.ParamType, tkid)
}
case dwarf.TagTypedef:
// Typedef (DWARF v2 §5.3)
// Also maps and channels (Go-specific).
// Attributes:
// AttrName: name [required]
// AttrType: type definition [required]
// AttrGoKey: present for maps.
// AttrGoElem: present for maps and channels.
t := new(TypedefType)
t.ReflectKind = getKind(e)
if off == 0x4f2db {
fmt.Printf("DEBUG typedef [%8x] %p RefrectKind:%v\n", off, t, t.ReflectKind)
}
switch t.ReflectKind {
case reflect.Map:
m := new(MapType)
typ = m
typeCache[off] = typ
m.KeyType = typeOf(e, AttrGoKey)
m.ElemType = typeOf(e, AttrGoElem)
t = &m.TypedefType
case reflect.Chan:
c := new(ChanType)
typ = c
typeCache[off] = typ
c.ElemType = typeOf(e, AttrGoElem)
t = &c.TypedefType
case reflect.Interface:
it := new(InterfaceType)
typ = it
typeCache[off] = it
t = &it.TypedefType
default:
typ = t
}
typeCache[off] = typ
t.Name, _ = e.Val(dwarf.AttrName).(string)
if off == 0x4f2db {
fmt.Printf("DEBUG typedef [%8x] %p Name:%q, e.AttrType:%x(%T)\n", off, t, t.Name, e.Val(dwarf.AttrType), e.Val(dwarf.AttrType))
}
t.Type = typeOf(e, dwarf.AttrType)
case dwarf.TagUnspecifiedType:
// Unspecified type (DWARF v3 §5.2)
// Attributes:
// AttrName: name
t := new(UnspecifiedType)
typ = t
typeCache[off] = t
t.Name, _ = e.Val(dwarf.AttrName).(string)
}
switch uint32(off) {
case 0x4f2db, 0x4f1e2, 0x4ff21:
fmt.Printf("DEBUG readType(%8x) %s %q t:%p, err:%s\n", off, e.Tag, e.Val(dwarf.AttrName), typ, err)
}
if err != nil {
goto Error
}
typ.Common().Offset = off