-
Notifications
You must be signed in to change notification settings - Fork 563
/
Copy patheval_tf.py
207 lines (180 loc) · 5.67 KB
/
eval_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""
Script for evaluating trained model on TensorFlow (validate/test).
"""
import argparse
import tqdm
import time
import logging
from tensorpack.predict import PredictConfig, FeedfreePredictor
from tensorpack.utils.stats import RatioCounter
from tensorpack.input_source import QueueInput, StagingInput
# from common.logger_utils import initialize_logging
from cvutil.logger import initialize_logging
from tensorflow_.utils_tp import prepare_tf_context, prepare_model, get_data, calc_flops
def parse_args():
"""
Parse python script parameters.
Returns
-------
ArgumentParser
Resulted args.
"""
parser = argparse.ArgumentParser(
description="Evaluate a model for image classification (TensorFlow/TensorPack)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--data-dir",
type=str,
default="../imgclsmob_data/imagenet",
help="training and validation pictures to use")
parser.add_argument(
"--data-format",
type=str,
default="channels_last",
help="ordering of the dimensions in tensors. options are channels_last and channels_first")
parser.add_argument(
"--model",
type=str,
required=True,
help="type of model to use. see model_provider for options")
parser.add_argument(
"--use-pretrained",
action="store_true",
help="enable using pretrained model")
parser.add_argument(
"--resume",
type=str,
default="",
help="resume from previously saved parameters if not None")
parser.add_argument(
"--calc-flops",
dest="calc_flops",
action="store_true",
help="calculate FLOPs")
parser.add_argument(
"--input-size",
type=int,
default=224,
help="size of the input for model")
parser.add_argument(
"--resize-inv-factor",
type=float,
default=0.875,
help="inverted ratio for input image crop")
parser.add_argument(
"--num-gpus",
type=int,
default=0,
help="number of gpus to use")
parser.add_argument(
"-j",
"--num-data-workers",
dest="num_workers",
default=4,
type=int,
help="number of preprocessing workers")
parser.add_argument(
"--batch-size",
type=int,
default=512,
help="training batch size per device (CPU/GPU)")
parser.add_argument(
"--save-dir",
type=str,
default="",
help="directory of saved models and log-files")
parser.add_argument(
"--logging-file-name",
type=str,
default="train.log",
help="filename of training log")
parser.add_argument(
"--log-packages",
type=str,
default="tensorflow, tensorflow-gpu",
help="list of python packages for logging")
parser.add_argument(
"--log-pip-packages",
type=str,
default="tensorflow, tensorflow-gpu, tensorpack",
help="list of pip packages for logging")
args = parser.parse_args()
return args
def test(net,
session_init,
val_dataflow,
do_calc_flops=False,
extended_log=False):
"""
Main test routine.
Parameters
----------
net : obj
Model.
session_init : SessionInit
Session initializer.
do_calc_flops : bool, default False
Whether to calculate count of weights.
extended_log : bool, default False
Whether to log more precise accuracy values.
"""
pred_config = PredictConfig(
model=net,
session_init=session_init,
input_names=["input", "label"],
output_names=["wrong-top1", "wrong-top5"]
)
err_top1 = RatioCounter()
err_top5 = RatioCounter()
tic = time.time()
pred = FeedfreePredictor(pred_config, StagingInput(QueueInput(val_dataflow), device="/gpu:0"))
for _ in tqdm.trange(val_dataflow.size()):
err_top1_val, err_top5_val = pred()
batch_size = err_top1_val.shape[0]
err_top1.feed(err_top1_val.sum(), batch_size)
err_top5.feed(err_top5_val.sum(), batch_size)
err_top1_val = err_top1.ratio
err_top5_val = err_top5.ratio
if extended_log:
logging.info("Test: err-top1={top1:.4f} ({top1})\terr-top5={top5:.4f} ({top5})".format(
top1=err_top1_val, top5=err_top5_val))
else:
logging.info("Test: err-top1={top1:.4f}\terr-top5={top5:.4f}".format(
top1=err_top1_val, top5=err_top5_val))
logging.info("Time cost: {:.4f} sec".format(
time.time() - tic))
if do_calc_flops:
calc_flops(model=net)
def main():
"""
Main body of script.
"""
args = parse_args()
_, _ = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
main_script_path=__file__,
script_args=args)
batch_size = prepare_tf_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
net, inputs_desc = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
data_format=args.data_format)
val_dataflow = get_data(
is_train=False,
batch_size=batch_size,
data_dir_path=args.data_dir,
input_image_size=net.image_size,
resize_inv_factor=args.resize_inv_factor)
assert (args.use_pretrained or args.resume.strip())
test(
net=net,
session_init=inputs_desc,
val_dataflow=val_dataflow,
do_calc_flops=args.calc_flops,
extended_log=True)
if __name__ == "__main__":
main()