|
| 1 | +import osqp |
| 2 | +import numpy as np |
| 3 | +from scipy import sparse |
| 4 | + |
| 5 | +if __name__ == '__main__': |
| 6 | + # Define problem data |
| 7 | + P = sparse.csc_matrix([[4, 1], [1, 2]]) |
| 8 | + q = np.array([1, 1]) |
| 9 | + A = sparse.csc_matrix([[1, 1], [1, 0], [0, 1]]) |
| 10 | + l = np.array([1, 0, 0]) |
| 11 | + u = np.array([1, 0.7, 0.7]) |
| 12 | + |
| 13 | + # Create an OSQP object |
| 14 | + prob = osqp.OSQP() |
| 15 | + |
| 16 | + # Setup workspace |
| 17 | + prob.setup(P, q, A, l, u) |
| 18 | + |
| 19 | + # Solve problem |
| 20 | + res = prob.solve() |
| 21 | + |
| 22 | + # Update problem |
| 23 | + # IMPORTANT: The sparsity structure of P/A should remain the same, |
| 24 | + # so we only update Px and Ax |
| 25 | + # (i.e. the actual data values at indices with nonzero values) |
| 26 | + # NB: Update only upper triangular part of P |
| 27 | + P_new = sparse.csc_matrix([[5, 1.5], [1.5, 1]]) |
| 28 | + A_new = sparse.csc_matrix([[1.2, 1.1], [1.5, 0], [0, 0.8]]) |
| 29 | + prob.update(Px=sparse.triu(P_new).data, Ax=A_new.data) |
| 30 | + |
| 31 | + # Solve updated problem |
| 32 | + res = prob.solve() |
| 33 | + |
| 34 | + print('Status:', res.info.status) |
| 35 | + print('Objective value:', res.info.obj_val) |
| 36 | + print('Optimal solution x:', res.x) |
0 commit comments