-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
196 lines (164 loc) · 7.13 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import logging
import PyPDF2
from flask import Flask, request, jsonify, render_template, session
from werkzeug.utils import secure_filename
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain_community.chat_models import ChatOpenAI
from langchain.docstore.document import Document
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain, LLMChain
from langchain.chains import ConversationalRetrievalChain, LLMChain
app = Flask(__name__)
app.secret_key = os.urandom(24).hex() # Generate a random secret key
# Configuration
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = {'pdf'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# Set up logging
logging.basicConfig(filename='app.log', level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
# Global variables
vector_store = None
chat_history = []
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def extract_text_from_pdf(pdf_path):
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = []
for i, page in enumerate(reader.pages):
content = page.extract_text()
if content:
text.append((content, i + 1))
return text
def process_pdfs(pdf_paths):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
all_splits = []
for pdf_path in pdf_paths:
text_with_pages = extract_text_from_pdf(pdf_path)
for text, page_num in text_with_pages:
splits = text_splitter.split_text(text)
for i, split in enumerate(splits):
doc = Document(
page_content=split,
metadata={
"source": os.path.basename(pdf_path),
"page": page_num,
"chunk": i,
"text": text # Store full page text for context
}
)
all_splits.append(doc)
return all_splits
def create_vector_store(splits):
return FAISS.from_documents(splits, OpenAIEmbeddings())
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/set_api_key', methods=['POST'])
def set_api_key():
api_key = request.json.get('api_key')
if not api_key:
return jsonify({"error": "No API key provided"}), 400
session['openai_api_key'] = api_key
os.environ["OPENAI_API_KEY"] = api_key
logging.info("API key set successfully")
return jsonify({"message": "API key set successfully"}), 200
@app.route('/upload', methods=['POST'])
def upload_file():
global vector_store
if 'file' not in request.files:
logging.error("No file part in the request")
return jsonify({"error": "No file part"}), 400
files = request.files.getlist('file')
if not files or files[0].filename == '':
logging.error("No selected file")
return jsonify({"error": "No selected file"}), 400
pdf_paths = []
for file in files:
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(file_path)
pdf_paths.append(file_path)
splits = process_pdfs(pdf_paths)
vector_store = create_vector_store(splits)
logging.info(f"Processed {len(pdf_paths)} PDFs successfully")
return jsonify({"message": "Files uploaded and processed successfully"}), 200
@app.route('/ask', methods=['POST'])
def ask_question():
global vector_store, chat_history
if vector_store is None:
logging.error("No documents uploaded yet")
return jsonify({"error": "No documents uploaded yet"}), 400
question = request.json.get('question')
strict_pdf = request.json.get('strict_pdf', False)
if not question:
logging.error("No question provided")
return jsonify({"error": "No question provided"}), 400
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
condense_question_prompt = PromptTemplate.from_template("""
Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. If you don't know the answer, just say that you don't know. Don't try to make up an answer.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:""")
qa_prompt = PromptTemplate.from_template("""
You are an AI assistant for answering questions based on the given documents. You are given the following extracted parts of long documents and a question. Provide a conversational answer based on the context provided. If you don't know the answer, just say that you don't know. Don't try to make up an answer.
{context}
Question: {question}
Answer:""")
question_generator = LLMChain(llm=llm, prompt=condense_question_prompt)
doc_chain = load_qa_chain(llm, chain_type="stuff", prompt=qa_prompt)
qa_chain = ConversationalRetrievalChain(
retriever=vector_store.as_retriever(),
question_generator=question_generator,
combine_docs_chain=doc_chain,
return_source_documents=True
)
result = qa_chain({"question": question, "chat_history": chat_history})
answer = result['answer']
source_documents = result['source_documents']
sources = []
for doc in source_documents:
source = doc.metadata['source']
page = doc.metadata['page']
chunk = doc.metadata['chunk']
full_text = doc.metadata['text']
context = get_context(full_text, doc.page_content)
sources.append({
"source": source,
"page": page,
"chunk": chunk,
"context": context
})
chat_history.append((question, answer))
logging.info(f"Question answered successfully: {question[:50]}...")
return jsonify({"answer": answer, "sources": sources}), 200
# The get_context function remains the same
def get_context(full_text, chunk_text):
# Find the chunk in the full text and return some context around it
start_index = full_text.index(chunk_text)
context_start = max(0, start_index - 100)
context_end = min(len(full_text), start_index + len(chunk_text) + 100)
return full_text[context_start:context_end]
@app.route('/clear_history', methods=['POST'])
def clear_history():
global chat_history
chat_history = []
return jsonify({"message": "Chat history cleared successfully"}), 200
if __name__ == '__main__':
logging.info("Starting the application. Please open http://127.0.0.1:5000 in your web browser.")
app.run(debug=True)