You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
ENH: Add first and last aggregations to Rolling and Expanding (#60579)
* ENH: Add first and last aggregations to Rolling and Expanding
* Update reference doc
* Set 'See Also' section in doc
* Fix docstring
* Retry fixing docstring
* Fix missing period in docstring
* Another missing period
Copy file name to clipboardexpand all lines: doc/source/whatsnew/v3.0.0.rst
+1
Original file line number
Diff line number
Diff line change
@@ -57,6 +57,7 @@ Other enhancements
57
57
- :meth:`Series.cummin` and :meth:`Series.cummax` now supports :class:`CategoricalDtype` (:issue:`52335`)
58
58
- :meth:`Series.plot` now correctly handle the ``ylabel`` parameter for pie charts, allowing for explicit control over the y-axis label (:issue:`58239`)
59
59
- :meth:`DataFrame.plot.scatter` argument ``c`` now accepts a column of strings, where rows with the same string are colored identically (:issue:`16827` and :issue:`16485`)
60
+
- :class:`Rolling` and :class:`Expanding` now support aggregations ``first`` and ``last`` (:issue:`33155`)
60
61
- :func:`read_parquet` accepts ``to_pandas_kwargs`` which are forwarded to :meth:`pyarrow.Table.to_pandas` which enables passing additional keywords to customize the conversion to pandas, such as ``maps_as_pydicts`` to read the Parquet map data type as python dictionaries (:issue:`56842`)
61
62
- :meth:`.DataFrameGroupBy.transform`, :meth:`.SeriesGroupBy.transform`, :meth:`.DataFrameGroupBy.agg`, :meth:`.SeriesGroupBy.agg`, :meth:`.SeriesGroupBy.apply`, :meth:`.DataFrameGroupBy.apply` now support ``kurt`` (:issue:`40139`)
62
63
- :meth:`DataFrameGroupBy.transform`, :meth:`SeriesGroupBy.transform`, :meth:`DataFrameGroupBy.agg`, :meth:`SeriesGroupBy.agg`, :meth:`RollingGroupby.apply`, :meth:`ExpandingGroupby.apply`, :meth:`Rolling.apply`, :meth:`Expanding.apply`, :meth:`DataFrame.apply` with ``engine="numba"`` now supports positional arguments passed as kwargs (:issue:`58995`)
0 commit comments