Closed
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
print(pd.__version__)
df = pd.DataFrame({'foo': ['2025-04-23', '2025-04-22']})
df['bar'] = pd.to_datetime(df['foo'], format='%Y-%m-%d')
df.loc[:, 'bar'] = df.loc[:, 'bar'].dt.strftime('%Y%m%d')
print(df)
# Yields
# 2.2.3
# foo bar
# 0 2025-04-23 2025-04-23
# 1 2025-04-22 2025-04-22
Issue Description
I expect bar
to look like
20250423
20250422
instead of
2025-04-23
2025-04-22
Expected Behavior
bar
should look like
20250423
20250422
Installed Versions
[ins] In [2]: pd.show_versions()
INSTALLED VERSIONS
------------------
commit : 0691c5cf90477d3503834d983f69350f250a6ff7
python : 3.12.10
python-bits : 64
OS : Linux
OS-release : 4.18.0-372.32.1.el8_6.x86_64
Version : #1 SMP Fri Oct 7 12:35:10 EDT 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.3
numpy : 1.26.4
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : 3.0.12
sphinx : None
IPython : 8.35.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.3
blosc : None
bottleneck : 1.4.2
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.9.0
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : 5.3.2
matplotlib : 3.10.1
numba : 0.61.2
numexpr : 2.10.2
odfpy : None
openpyxl : 3.1.5
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 15.0.2
pyreadstat : None
pytest : 8.3.5
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.2
sqlalchemy : 2.0.39
tables : 3.9.2
tabulate : 0.9.0
xarray : 2025.3.1
xlrd : 2.0.1
xlsxwriter : 3.2.2
zstandard : 0.23.0
tzdata : 2025.2
qtpy : None
pyqt5 : None