Skip to content

Commit d848bfb

Browse files
Adding Pooling Algorithms (TheAlgorithms#5826)
* adding pooling algorithms * pooling.py: Adding pooling algorithms to computer vision pull_number= * pooling.py: Adding pooling algorithms to computer vision * pooling_functions.py: Adding pooling algorithms to computer vision * pooling.py: Adding Pooling Algorithms * pooling_functions.py Add and Update * Update pooling_functions.py * Update computer_vision/pooling_functions.py Co-authored-by: Christian Clauss <[email protected]> * Update computer_vision/pooling_functions.py Co-authored-by: Christian Clauss <[email protected]> * Update computer_vision/pooling_functions.py Co-authored-by: Christian Clauss <[email protected]> * Update computer_vision/pooling_functions.py Co-authored-by: Christian Clauss <[email protected]> * Update pooling_functions.py * Formatting pooling.py Co-authored-by: Christian Clauss <[email protected]>
1 parent 551c657 commit d848bfb

File tree

1 file changed

+135
-0
lines changed

1 file changed

+135
-0
lines changed

computer_vision/pooling_functions.py

+135
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,135 @@
1+
# Source : https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
2+
# Importing the libraries
3+
import numpy as np
4+
from PIL import Image
5+
6+
7+
# Maxpooling Function
8+
def maxpooling(arr: np.ndarray, size: int, stride: int) -> np.ndarray:
9+
"""
10+
This function is used to perform maxpooling on the input array of 2D matrix(image)
11+
Args:
12+
arr: numpy array
13+
size: size of pooling matrix
14+
stride: the number of pixels shifts over the input matrix
15+
Returns:
16+
numpy array of maxpooled matrix
17+
Sample Input Output:
18+
>>> maxpooling([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]], 2, 2)
19+
array([[ 6., 8.],
20+
[14., 16.]])
21+
>>> maxpooling([[147, 180, 122],[241, 76, 32],[126, 13, 157]], 2, 1)
22+
array([[241., 180.],
23+
[241., 157.]])
24+
"""
25+
arr = np.array(arr)
26+
if arr.shape[0] != arr.shape[1]:
27+
raise ValueError("The input array is not a square matrix")
28+
i = 0
29+
j = 0
30+
mat_i = 0
31+
mat_j = 0
32+
33+
# compute the shape of the output matrix
34+
maxpool_shape = (arr.shape[0] - size) // stride + 1
35+
# initialize the output matrix with zeros of shape maxpool_shape
36+
updated_arr = np.zeros((maxpool_shape, maxpool_shape))
37+
38+
while i < arr.shape[0]:
39+
if i + size > arr.shape[0]:
40+
# if the end of the matrix is reached, break
41+
break
42+
while j < arr.shape[1]:
43+
# if the end of the matrix is reached, break
44+
if j + size > arr.shape[1]:
45+
break
46+
# compute the maximum of the pooling matrix
47+
updated_arr[mat_i][mat_j] = np.max(arr[i : i + size, j : j + size])
48+
# shift the pooling matrix by stride of column pixels
49+
j += stride
50+
mat_j += 1
51+
52+
# shift the pooling matrix by stride of row pixels
53+
i += stride
54+
mat_i += 1
55+
56+
# reset the column index to 0
57+
j = 0
58+
mat_j = 0
59+
60+
return updated_arr
61+
62+
63+
# Averagepooling Function
64+
def avgpooling(arr: np.ndarray, size: int, stride: int) -> np.ndarray:
65+
"""
66+
This function is used to perform avgpooling on the input array of 2D matrix(image)
67+
Args:
68+
arr: numpy array
69+
size: size of pooling matrix
70+
stride: the number of pixels shifts over the input matrix
71+
Returns:
72+
numpy array of avgpooled matrix
73+
Sample Input Output:
74+
>>> avgpooling([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]], 2, 2)
75+
array([[ 3., 5.],
76+
[11., 13.]])
77+
>>> avgpooling([[147, 180, 122],[241, 76, 32],[126, 13, 157]], 2, 1)
78+
array([[161., 102.],
79+
[114., 69.]])
80+
"""
81+
arr = np.array(arr)
82+
if arr.shape[0] != arr.shape[1]:
83+
raise ValueError("The input array is not a square matrix")
84+
i = 0
85+
j = 0
86+
mat_i = 0
87+
mat_j = 0
88+
89+
# compute the shape of the output matrix
90+
avgpool_shape = (arr.shape[0] - size) // stride + 1
91+
# initialize the output matrix with zeros of shape avgpool_shape
92+
updated_arr = np.zeros((avgpool_shape, avgpool_shape))
93+
94+
while i < arr.shape[0]:
95+
# if the end of the matrix is reached, break
96+
if i + size > arr.shape[0]:
97+
break
98+
while j < arr.shape[1]:
99+
# if the end of the matrix is reached, break
100+
if j + size > arr.shape[1]:
101+
break
102+
# compute the average of the pooling matrix
103+
updated_arr[mat_i][mat_j] = int(np.average(arr[i : i + size, j : j + size]))
104+
# shift the pooling matrix by stride of column pixels
105+
j += stride
106+
mat_j += 1
107+
108+
# shift the pooling matrix by stride of row pixels
109+
i += stride
110+
mat_i += 1
111+
# reset the column index to 0
112+
j = 0
113+
mat_j = 0
114+
115+
return updated_arr
116+
117+
118+
# Main Function
119+
if __name__ == "__main__":
120+
from doctest import testmod
121+
122+
testmod(name="avgpooling", verbose=True)
123+
124+
# Loading the image
125+
image = Image.open("path_to_image")
126+
127+
# Converting the image to numpy array and maxpooling, displaying the result
128+
# Ensure that the image is a square matrix
129+
130+
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
131+
132+
# Converting the image to numpy array and averagepooling, displaying the result
133+
# Ensure that the image is a square matrix
134+
135+
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()

0 commit comments

Comments
 (0)