-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathMLP_Weka.groovy
50 lines (42 loc) · 1.76 KB
/
MLP_Weka.groovy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import weka.classifiers.AbstractClassifier
import weka.classifiers.Evaluation
import weka.core.Instances
import weka.core.Utils
import weka.core.WekaPackageManager
import weka.core.converters.CSVLoader
WekaPackageManager.loadPackages(true)
def file = getClass().classLoader.getResource('iris_data.csv').file as File
def loader = new CSVLoader(file: file)
def data = loader.dataSet
data.classIndex = 4
def options = Utils.splitOptions("-S 1 -numEpochs 10 -layer \"weka.dl4j.layers.OutputLayer -activation weka.dl4j.activations.ActivationSoftmax -lossFn weka.dl4j.lossfunctions.LossMCXENT\"")
AbstractClassifier myClassifier = Utils.forName(AbstractClassifier, "weka.classifiers.functions.Dl4jMlpClassifier", options)
// Stratify and split
Random rand = new Random(0)
Instances randData = new Instances(data)
randData.randomize(rand)
randData.stratify(3)
Instances train = randData.trainCV(3, 0)
Instances test = randData.testCV(3, 0)
// Build the classifier on the training data
myClassifier.buildClassifier(train)
// Evaluate the model on test data
Evaluation eval = new Evaluation(test)
eval.evaluateModel(myClassifier, test)
println eval.toSummaryString()
println eval.toMatrixString()