|
| 1 | +import ai.djl.Application |
| 2 | +import ai.djl.ndarray.NDArrays |
| 3 | +import ai.djl.ndarray.NDList |
| 4 | +import ai.djl.repository.zoo.Criteria |
| 5 | +import ai.djl.training.util.ProgressBar |
| 6 | +import ai.djl.translate.NoBatchifyTranslator |
| 7 | +import ai.djl.translate.TranslatorContext |
| 8 | +import smile.plot.swing.Heatmap |
| 9 | +import smile.plot.swing.Palette |
| 10 | + |
| 11 | +import static smile.math.MathEx.dot |
| 12 | + |
| 13 | +/* |
| 14 | + * An example of inference using an universal sentence encoder model from TensorFlow Hub. |
| 15 | + * For more info see: https://tfhub.dev/google/universal-sentence-encoder/4 |
| 16 | + * Inspired by: https://github.com/deepjavalibrary/djl/blob/master/examples/src/main/java/ai/djl/examples/inference/UniversalSentenceEncoder.java |
| 17 | + */ |
| 18 | + |
| 19 | +class MyTranslator implements NoBatchifyTranslator<String[], double[][]> { |
| 20 | + @Override |
| 21 | + NDList processInput(TranslatorContext ctx, String[] raw) { |
| 22 | + var factory = ctx.NDManager |
| 23 | + var inputs = new NDList(raw.collect(factory::create)) |
| 24 | + new NDList(NDArrays.stack(inputs)) |
| 25 | + } |
| 26 | + |
| 27 | + @Override |
| 28 | + double[][] processOutput(TranslatorContext ctx, NDList list) { |
| 29 | + long numOutputs = list.singletonOrThrow().shape.get(0) |
| 30 | + NDList result = [] |
| 31 | + for (i in 0..<numOutputs) { |
| 32 | + result << list.singletonOrThrow().get(i) |
| 33 | + } |
| 34 | + result*.toFloatArray() as double[][] |
| 35 | + } |
| 36 | +} |
| 37 | + |
| 38 | +def predict(String[] inputs) { |
| 39 | + String modelUrl = "https://storage.googleapis.com/tfhub-modules/google/universal-sentence-encoder/4.tar.gz" |
| 40 | + |
| 41 | + Criteria<String[], double[][]> criteria = |
| 42 | + Criteria.builder() |
| 43 | + .optApplication(Application.NLP.TEXT_EMBEDDING) |
| 44 | + .setTypes(String[], double[][]) |
| 45 | + .optModelUrls(modelUrl) |
| 46 | + .optTranslator(new MyTranslator()) |
| 47 | + .optEngine("TensorFlow") |
| 48 | + .optProgress(new ProgressBar()) |
| 49 | + .build() |
| 50 | + try (var model = criteria.loadModel() |
| 51 | + var predictor = model.newPredictor()) { |
| 52 | + predictor.predict(inputs) |
| 53 | + } |
| 54 | +} |
| 55 | +String[] inputs = [ |
| 56 | + "Cycling is low impact and great for cardio", |
| 57 | + "Swimming is low impact and good for fitness", |
| 58 | + "Palates is good for fitness and flexibility", |
| 59 | + "Weights are good for strength and fitness", |
| 60 | + "Orchids can be tricky to grow", |
| 61 | + "Sunflowers are fun to grow", |
| 62 | + "Radishes are easy to grow", |
| 63 | + "The taste of radishes grows on you after a while", |
| 64 | +] |
| 65 | +var k = inputs.size() |
| 66 | + |
| 67 | +var embeddings = predict(inputs) |
| 68 | + |
| 69 | +def z = new double[k][k] |
| 70 | +for (i in 0..<k) { |
| 71 | + println "Embedding for: ${inputs[i]}\n${Arrays.toString(embeddings[i])}" |
| 72 | + for (j in 0..<k) { |
| 73 | + z[i][j] = dot(embeddings[i], embeddings[j]) |
| 74 | + } |
| 75 | +} |
| 76 | + |
| 77 | +new Heatmap(inputs, inputs, z, Palette.heat(20).reverse()).canvas().with { |
| 78 | + title = 'Semantic textual similarity' |
| 79 | + setAxisLabels('', '') |
| 80 | + window() |
| 81 | +} |
0 commit comments