forked from Diceycle/C-Hero-Calc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
509 lines (451 loc) · 25.3 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <ctime>
#include <limits>
#include "inputProcessing.h"
#include "cosmosData.h"
#include "battleLogic.h"
using namespace std;
IOManager iomanager;
// Simulates fights with all armies against the target. The Fightresults are written to the corresponding structs in armies.
// If a solution is found, armies that are more expensive than that solution are ignored
void simulateMultipleFights(vector<Army> & armies, Instance & instance) {
bool newFound = false;
size_t armyAmount = armies.size();
if (!instance.hasWorldBoss) {
for (size_t i = 0; i < armyAmount; i++) {
if (armies[i].followerCost < instance.followerUpperBound) { // Ignore if a cheaper solution exists
if (simulateFight(armies[i], instance.target)) { // left (our side) wins:
if (!newFound) {
interface.suspendTimedOutputs(DETAILED_OUTPUT);
}
newFound = true;
instance.followerUpperBound = armies[i].followerCost;
instance.bestSolution = armies[i];
interface.outputMessage(instance.bestSolution.toString(), DETAILED_OUTPUT, 2);
}
}
}
if (newFound) {
interface.resumeTimedOutputs(DETAILED_OUTPUT);
}
} else {
for (size_t i = 0; i < armyAmount; i++) {
simulateFight(armies[i], instance.target);
if (instance.lowestBossHealth == -1 || armies[i].lastFightData.frontHealth < instance.lowestBossHealth) {
instance.bestSolution = armies[i];
instance.lowestBossHealth = armies[i].lastFightData.frontHealth;
}
}
}
}
// Take the data from oldArmies and write all armies into newArmies with an additional monster at the end.
// Armies that are dominated are ignored.
void expand(vector<Army> & newPureArmies, vector<Army> & newHeroArmies,
const vector<Army> & oldPureArmies, const vector<Army> & oldHeroArmies,
const size_t currentArmySize, const Instance & instance) {
FollowerCount remainingFollowers;
size_t availableMonstersSize = availableMonsters.size();
size_t availableHeroesSize = availableHeroes.size();
size_t oldPureArmiesSize = oldPureArmies.size();
size_t oldHeroArmiesSize = oldHeroArmies.size();
size_t i, m;
bool removeUseless = currentArmySize == (instance.maxCombatants-1) && !instance.hasWorldBoss;
bool instanceInvalid = instance.hasHeal || instance.hasAsymmetricAoe;
// Expansion for non-Hero Armies
for (i = 0; i < oldPureArmiesSize; i++) {
if (instance.followerUpperBound >= oldPureArmies[i].followerCost && !oldPureArmies[i].lastFightData.dominated) {
remainingFollowers = instance.followerUpperBound - oldPureArmies[i].followerCost;
// Add Normal Monsters. Check for Cost
for (m = 0; m < availableMonstersSize; m++) {
if (monsterReference[availableMonsters[m]].cost < remainingFollowers) {
if (!removeUseless || instance.monsterUsefulLast[availableMonsters[m]]) {
newPureArmies.push_back(oldPureArmies[i]);
newPureArmies.back().add(availableMonsters[m]);
newPureArmies.back().lastFightData.valid = !instanceInvalid;
}
}
}
// Add Hero. no check needed because it is the First Added
for (m = 0; m < availableHeroesSize; m++) {
if (!removeUseless || instance.monsterUsefulLast[availableHeroes[m]]) {
newHeroArmies.push_back(oldPureArmies[i]);
newHeroArmies.back().add(availableHeroes[m]);
newHeroArmies.back().lastFightData.valid = !instanceInvalid && !monsterReference[availableHeroes[m]].skill.violatesFightResults;
}
}
}
}
vector<bool> usedHeroes; usedHeroes.resize(monsterReference.size(), false);
HeroSkill currentSkill;
bool invalidSkill;
bool friendsInfluence;
bool rainbowInfluence;
for (i = 0; i < oldHeroArmiesSize; i++) {
if (instance.followerUpperBound >= oldHeroArmies[i].followerCost && !oldHeroArmies[i].lastFightData.dominated) {
remainingFollowers = instance.followerUpperBound - oldHeroArmies[i].followerCost;
friendsInfluence = false;
rainbowInfluence = false;
invalidSkill = false;
// Check for influences that can invalidate fightresults and gather used heroes
for (m = 0; m < currentArmySize; m++) {
currentSkill = monsterReference[oldHeroArmies[i].monsters[m]].skill;
invalidSkill |= currentSkill.hasHeal || currentSkill.hasAsymmetricAoe;
friendsInfluence |= currentSkill.skillType == FRIENDS;
rainbowInfluence |= currentSkill.skillType == RAINBOW && currentArmySize > m + 4; // Hardcoded number of elements required to activate rainbow
usedHeroes[oldHeroArmies[i].monsters[m]] = true;
}
// Add Normal Monster. No checks needed except cost
for (m = 0; m < availableMonstersSize && monsterReference[availableMonsters[m]].cost < remainingFollowers; m++) {
// In case of a draw this could casue problems if no more suitable units are available
if (!removeUseless || instance.monsterUsefulLast[availableMonsters[m]]) {
newHeroArmies.push_back(oldHeroArmies[i]);
newHeroArmies.back().add(availableMonsters[m]);
newHeroArmies.back().lastFightData.valid = !instanceInvalid &&
!friendsInfluence &&
!rainbowInfluence &&
!invalidSkill;
}
}
// Add Hero. Check if hero was used before.
for (m = 0; m < availableHeroesSize; m++) {
if (!usedHeroes[availableHeroes[m]]) {
if (!removeUseless || instance.monsterUsefulLast[availableHeroes[m]]) {
newHeroArmies.push_back(oldHeroArmies[i]);
newHeroArmies.back().add(availableHeroes[m]);
newHeroArmies.back().lastFightData.valid = !instanceInvalid &&
!monsterReference[availableHeroes[m]].skill.violatesFightResults &&
!rainbowInfluence &&
!(monsterReference[availableHeroes[m]].skill.skillType == DAMPEN && instance.hasAoe) &&
!invalidSkill;
}
}
// Clean up for the next army
usedHeroes[availableHeroes[m]] = false;
}
}
}
}
// Takes the armies sorts them and compares them with each other. Armies that are strictly worse than other armies or have no chance of winning get dominated
void calculateDominance(Instance & instance, bool optimizable,
vector<Army> & pureMonsterArmies, vector<Army> & heroMonsterArmies,
size_t armySize, size_t firstDominance) {
size_t i, j, si, sj;
size_t pureMonsterArmiesSize = pureMonsterArmies.size();
size_t heroMonsterArmiesSize = heroMonsterArmies.size();
FollowerCount leftFollowerCost;
FightResult * currentFightResult;
// First Check dominance for non-Hero setups
interface.timedOutput("Calculating Dominance for non-heroes... ", DETAILED_OUTPUT, 1, firstDominance == armySize);
// Preselection based on the information that no monster can beat 2 monsters alone if optimizable is true
if (armySize == (instance.maxCombatants - 1) && optimizable) { // Must be optimizable and the last expansion
for (i = 0; i < pureMonsterArmiesSize; i++) {
pureMonsterArmies[i].lastFightData.dominated = pureMonsterArmies[i].lastFightData.monstersLost < (int) (instance.targetSize - 2);
}
}
sort(pureMonsterArmies.begin(), pureMonsterArmies.end(), hasFewerFollowers);
for (i = 0; i < pureMonsterArmiesSize; i++) {
leftFollowerCost = pureMonsterArmies[i].followerCost;
currentFightResult = &pureMonsterArmies[i].lastFightData;
if (currentFightResult->dominated || leftFollowerCost > instance.followerUpperBound) {
break; // All dominated results are in the back
}
// Another pureResults got farther with a less costly lineup
for (j = i+1; j < pureMonsterArmiesSize; j++) {
if (leftFollowerCost < pureMonsterArmies[j].followerCost) {
break;
} else if (*currentFightResult <= pureMonsterArmies[j].lastFightData) { // currentFightResult has more followers implicitly
currentFightResult->dominated = true;
break;
}
}
}
// Domination for setups with heroes
interface.timedOutput("Calculating Dominance for heroes... ", DETAILED_OUTPUT, 1);
// Preselection based on the information that no monster can beat 2 monsters alone if optimizable is true
// Like the rest of dominance this is unreliable because an aoe hero could easily affect earlier rounds
if (armySize == (instance.maxCombatants - 1) && optimizable) { // Must be optimizable and the last expansion
for (i = 0; i < heroMonsterArmiesSize; i++) {
currentFightResult = &heroMonsterArmies[i].lastFightData;
currentFightResult->dominated = currentFightResult->rightAoeDamage == 0 && // make sure there is no interference to the optimized calculation
currentFightResult->monstersLost < (int) (instance.targetSize - 2); // Army left at least 2 enemies alive
}
}
sort(heroMonsterArmies.begin(), heroMonsterArmies.end(), hasFewerFollowers);
vector<bool> leftMonsterSet; leftMonsterSet.resize(monsterReference.size());
size_t leftMonsterSetSize = leftMonsterSet.size();
bool usedHeroSubset;
for (i = 0; i < leftMonsterSetSize; i++) { // prepare monsterlist
leftMonsterSet[i] = monsterReference[i].rarity != NO_HERO; // Normal Monsters are true by default
}
for (i = 0; i < heroMonsterArmiesSize; i++) {
leftFollowerCost = heroMonsterArmies[i].followerCost;
currentFightResult = &heroMonsterArmies[i].lastFightData;
if (currentFightResult->dominated || leftFollowerCost > instance.followerUpperBound) {
break; // All dominated results are in the back
}
for (si = 0; si < armySize; si++) {
leftMonsterSet[heroMonsterArmies[i].monsters[si]] = true; // Add lefts monsters to set
}
// Proper dominance check
if (!currentFightResult->dominated) {
// if i costs more followers and got less far than j, then i is dominated
for (j = i+1; j < heroMonsterArmiesSize; j++) {
if (leftFollowerCost < heroMonsterArmies[j].followerCost) {
break;
} else if (*currentFightResult <= heroMonsterArmies[j].lastFightData) { // i has more followers implicitly
usedHeroSubset = true; // If j doesn't use a strict subset of the heroes i used, it cannot dominate i
for (sj = 0; sj < armySize; sj++) { // for every hero in j there must be the same hero in i
if (!leftMonsterSet[heroMonsterArmies[j].monsters[sj]]) {
usedHeroSubset = false;
break;
}
}
if (usedHeroSubset) {
currentFightResult->dominated = true;
break;
}
}
}
}
// Clean up monster set for next iteration
for (si = 0; si < armySize; si++) {
leftMonsterSet[heroMonsterArmies[i].monsters[si]] = monsterReference[heroMonsterArmies[i].monsters[si]].rarity == NO_HERO; // Remove only heroes from the set
}
}
}
// Use a greedy method to get a first upper bound on follower cost for the solution
// Greedy approach for 4 or less monsters is obsolete, as bruteforce is still fast enough
void getQuickSolutions(Instance & instance) {
Army tempArmy;
vector<MonsterIndex> greedy;
vector<MonsterIndex> greedyHeroes;
vector<MonsterIndex> greedyTemp;
bool invalid = false;
interface.outputMessage("Trying to find solutions greedily...", DETAILED_OUTPUT);
// Create Army that kills as many monsters as the army is big
if (instance.targetSize <= instance.maxCombatants) {
for (size_t i = 0; i < instance.maxCombatants; i++) {
for (size_t m = 0; m < availableMonsters.size(); m++) {
tempArmy = Army(greedy);
tempArmy.add(availableMonsters[m]);
if (simulateFight(tempArmy, instance.target) || (tempArmy.lastFightData.monstersLost > (int) i && i+1 < instance.maxCombatants)) { // the last monster has to win the encounter
greedy.push_back(availableMonsters[m]);
break;
}
}
invalid = greedy.size() < instance.maxCombatants; // if true it didnt find a monster that drew position i
}
if (!invalid) {
if (instance.followerUpperBound > tempArmy.followerCost) {
instance.bestSolution = tempArmy;
instance.followerUpperBound = tempArmy.followerCost;
}
// Try to replace monsters in the setup with heroes to save followers
greedyHeroes = greedy;
for (size_t m = 0; m < availableHeroes.size(); m++) {
for (size_t i = 0; i < greedyHeroes.size(); i++) {
greedyTemp = greedyHeroes;
greedyTemp[i] = availableHeroes[m];
tempArmy = Army(greedyTemp);
if (simulateFight(tempArmy, instance.target)) { // Setup still needs to win
greedyHeroes = greedyTemp;
break;
}
}
}
tempArmy = Army(greedyHeroes);
if (instance.followerUpperBound > tempArmy.followerCost) {
instance.bestSolution = tempArmy;
instance.followerUpperBound = tempArmy.followerCost;
}
}
}
}
// Main method for solving an instance.
void solveInstance(Instance & instance, size_t firstDominance) {
Army tempArmy;
time_t startTime;
size_t i;
// Get first Upper limit on followers with agreedy algorithm
if (instance.maxCombatants > ARMY_MAX_BRUTEFORCEABLE_SIZE) {
getQuickSolutions(instance);
}
// Fill two vectors with armies each containing exactly one unique available hero or monster
vector<Army> pureMonsterArmies;
vector<Army> heroMonsterArmies;
for (i = 0; i < availableMonsters.size(); i++) {
if (monsterReference[availableMonsters[i]].cost <= instance.followerUpperBound) {
pureMonsterArmies.push_back(Army( {availableMonsters[i]} ));
}
}
for (i = 0; i < availableHeroes.size(); i++) { // Ignore checking for Hero Cost
heroMonsterArmies.push_back(Army( {availableHeroes[i]} ));
}
// Check if a single monster can beat the last two monsters of the target. If not, solutions that can only beat n-2 monsters need not be expanded later
bool optimizable = (instance.targetSize > ARMY_MAX_BRUTEFORCEABLE_SIZE && instance.targetSize > 3);
if (optimizable) {
tempArmy = Army({instance.target.monsters[instance.targetSize - 2], instance.target.monsters[instance.targetSize - 1]}); // Make an army from the last two monsters
}
if (optimizable) { // Check with normal Mobs
for (i = 0; i < pureMonsterArmies.size(); i++) {
if (simulateFight(pureMonsterArmies[i], tempArmy)) { // Monster won the fight
optimizable = false;
break;
}
}
}
if (optimizable) { // Check with Heroes
for (i = 0; i < heroMonsterArmies.size(); i++) {
if (simulateFight(heroMonsterArmies[i], tempArmy)) { // Hero won the fight
optimizable = false;
break;
}
}
}
// Run the Bruteforce Loop
startTime = time(NULL);
for (size_t armySize = 1; armySize <= instance.maxCombatants; armySize++) {
// Output Debug Information
interface.outputMessage("Starting loop for armies of size " + to_string(armySize), BASIC_OUTPUT);
// Run Fights for non-Hero setups
interface.timedOutput("Simulating " + to_string(pureMonsterArmies.size()) + " non-hero Fights... ", DETAILED_OUTPUT, 1, true);
simulateMultipleFights(pureMonsterArmies, instance);
// Run fights for setups with heroes
interface.timedOutput("Simulating " + to_string(heroMonsterArmies.size()) + " hero Fights... ", DETAILED_OUTPUT, 1);
simulateMultipleFights(heroMonsterArmies, instance);
// If we have a valid solution with 0 followers there is no need to continue
if (!instance.hasWorldBoss && instance.bestSolution.monsterAmount > 0 && instance.bestSolution.followerCost == 0) { break; }
// Start Expansion routine if there is still room
if (armySize < instance.maxCombatants) {
// Manage output format
if (armySize == firstDominance && config.outputLevel == BASIC_OUTPUT && config.autoAdjustOutputLevel) {
config.outputLevel = DETAILED_OUTPUT; // Switch output level after pure brutefore is exhausted
}
if (armySize == firstDominance) {
if (!config.autoAdjustOutputLevel) {
interface.finishTimedOutput(DETAILED_OUTPUT);
}
interface.outputMessage("", DETAILED_OUTPUT);
if (!instance.bestSolution.isEmpty()) {
interface.outputMessage("Best Solution so far:", DETAILED_OUTPUT);
interface.outputMessage(instance.bestSolution.toString(), DETAILED_OUTPUT, 1);
if (instance.hasWorldBoss) {
interface.outputMessage("Damage Done: " + to_string(WORLDBOSS_HEALTH - instance.lowestBossHealth), DETAILED_OUTPUT, 1);
}
} else {
interface.outputMessage("Could not find a solution yet!", DETAILED_OUTPUT);
}
if (!iomanager.askYesNoQuestion("Continue calculation?", DETAILED_OUTPUT, TOKENS.YES)) {return;}
startTime = time(NULL);
interface.outputMessage("\nPreparing to work on loop for armies of size " + to_string(armySize+1), DETAILED_OUTPUT);
interface.outputMessage("Currently considering " + to_string(pureMonsterArmies.size()) + " normal and " + to_string(heroMonsterArmies.size()) + " hero armies.", DETAILED_OUTPUT);
}
// Calculate which results are strictly better than others (dominance)
if (firstDominance <= armySize && availableMonsters.size() > 0) {
calculateDominance(instance, optimizable, pureMonsterArmies, heroMonsterArmies, armySize, firstDominance);
}
// now we expand to add the next monster to all non-dominated armies
interface.timedOutput("Expanding Lineups by one... ", DETAILED_OUTPUT, 1);
vector<Army> nextPureArmies;
vector<Army> nextHeroArmies;
expand(nextPureArmies, nextHeroArmies, pureMonsterArmies, heroMonsterArmies, armySize, instance);
interface.timedOutput("Moving Data... ", DETAILED_OUTPUT, 1);
pureMonsterArmies = move(nextPureArmies);
heroMonsterArmies = move(nextHeroArmies);
}
interface.finishTimedOutput(DETAILED_OUTPUT);
}
instance.calculationTime = time(NULL) - startTime;
}
void outputSolution(Instance instance) {
instance.bestSolution.lastFightData.valid = false;
bool leftWins = simulateFight(instance.bestSolution, instance.target); // Sanity check on the solution
bool sane;
sane = !instance.hasWorldBoss && (leftWins || instance.bestSolution.isEmpty());
sane |= instance.hasWorldBoss && instance.bestSolution.lastFightData.frontHealth == instance.lowestBossHealth;
if (config.JSONOutput) {
interface.outputMessage(makeJSONFromInstance(instance, sane), SOLUTION_OUTPUT);
} else {
interface.outputMessage(makeStringFromInstance(instance, sane, config.showReplayStrings), SOLUTION_OUTPUT);
}
}
int main(int argc, char** argv) {
// Declare Variables
FollowerCount minimumMonsterCost;
FollowerCount userFollowerUpperBound;
vector<Instance> instances;
bool userWantsContinue;
if (argc >= 3 && (string) argv[2] == "-server") {
config.showQueries = false;
config.ignoreQuestions = true;
config.JSONOutput = true;
config.outputLevel = SOLUTION_OUTPUT;
config.ignoreExecutionHalt = true;
config.allowConfig = false;
}
interface.outputMessage(welcomeMessage, NOTIFICATION_OUTPUT);
interface.outputMessage(helpMessage + "\n", NOTIFICATION_OUTPUT);
// Check if the user provided a filename to be used as an inputfile
if (argc >= 2) {
iomanager.loadInputFiles(argv[1]);
} else {
iomanager.loadInputFiles("");
}
interface.outputMessage("", NOTIFICATION_OUTPUT);
iomanager.getConfiguration();
// Initialize global Data
initGameData();
// -------------------------------------------- Program Start --------------------------------------------
if (config.individualBattles) {
interface.outputMessage("Simulating individual Figths", NOTIFICATION_OUTPUT);
while (true) {
Army left = iomanager.takeInstanceInput("Enter friendly lineup: ")[0].target;
Army right = iomanager.takeInstanceInput("Enter hostile lineup: ")[0].target;
bool leftWins = simulateFight(left, right, true);
interface.outputMessage(to_string(leftWins) + " " + to_string(left.followerCost) + " " + to_string(right.followerCost), SOLUTION_OUTPUT);
if (!iomanager.askYesNoQuestion("Simulate another Fight?", NOTIFICATION_OUTPUT, TOKENS.NO)) {
break;
}
}
return EXIT_SUCCESS;
}
// Collect the Data via Command Line
availableHeroes = iomanager.takeHerolevelInput();
int64_t minFollowerTemp = parseInt(iomanager.getResistantInput("Set a lower follower limit on monsters used: ", integer)[0]);
int64_t maxFollowerTemp = parseInt(iomanager.getResistantInput("Set an upper follower limit that you want to use: ", integer)[0]);
if (minFollowerTemp < 0) {
minimumMonsterCost = numeric_limits<FollowerCount>::max();
} else {
minimumMonsterCost = (FollowerCount) minFollowerTemp; // should not overflow due to parseInt
}
if (maxFollowerTemp < 0) {
userFollowerUpperBound = numeric_limits<FollowerCount>::max();
} else {
userFollowerUpperBound = (FollowerCount) maxFollowerTemp; // should not overflow due to parseInt
}
// Fill monster arrays with relevant monsters
filterMonsterData(minimumMonsterCost, userFollowerUpperBound);
do {
instances = iomanager.takeInstanceInput("Enter Enemy Lineup(s): ");
interface.outputMessage("\nCalculating with " + to_string(availableMonsters.size()) + " available Monsters and " + to_string(availableHeroes.size()) + " enabled Heroes.", BASIC_OUTPUT);
if (config.outputLevel == DETAILED_OUTPUT && config.autoAdjustOutputLevel) {
config.outputLevel = BASIC_OUTPUT;
}
if (config.outputLevel == BASIC_OUTPUT && instances.size() > 1 && config.autoAdjustOutputLevel) {
config.outputLevel = SOLUTION_OUTPUT;
}
for (size_t i = 0; i < instances.size(); i++) {
totalFightsSimulated = &(instances[i].totalFightsSimulated);
instances[i].followerUpperBound = userFollowerUpperBound;
solveInstance(instances[i], config.firstDominance);
outputSolution(instances[i]);
}
userWantsContinue = iomanager.askYesNoQuestion("Do you want to calculate more lineups?", NOTIFICATION_OUTPUT, TOKENS.NO);
} while (userWantsContinue);
interface.outputMessage("", NOTIFICATION_OUTPUT);
interface.haltExecution();
return EXIT_SUCCESS;
}