-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmontage-workflow.py
executable file
·423 lines (346 loc) · 15.5 KB
/
montage-workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python3
'''
Pegasus wf generator for the Montage toolkit. The generated
workflow will support multiple bands and colors to produce
a color image.
# Copyright 2020 University Of Southern California
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
import os
import argparse
import re
import subprocess
import sys
#Insert this directory in our search path
os.sys.path.insert(0, os.getcwd())
from astropy.io import ascii
from Pegasus.api import *
common_files = {}
def which(file):
for path in os.environ['PATH'].split(os.pathsep):
if os.path.exists(os.path.join(path, file)):
return os.path.join(path, file)
return None
def repl_base_dir():
'''
In general, this is os.getcwd(), but for containers we might have to
override the replica base dir
'''
pass
def build_transformation_catalog(tc_target, wf):
'''
Some transformations in Montage uses multiple executables
'''
tc = TransformationCatalog()
trans = {}
exes = {}
full_path = which('mProject')
if full_path is None:
raise RuntimeError('mProject is not in the $PATH')
base_dir = os.path.dirname(full_path)
container = None
if tc_target == 'container':
container = Container('montage',
Container.SINGULARITY,
'https://data.isi.edu/montage/images/montage-workflow-v3.sif'
).add_env(MONTAGE_HOME='/opt/Montage')
tc.add_containers(container)
for fname in os.listdir(base_dir):
transformation = None
if fname[0] == '.':
continue
if tc_target == 'regular':
transformation = Transformation(fname,
site='local',
pfn=os.path.join(base_dir, fname),
is_stageable=True)
transformation.add_env(PATH='/usr/bin:/bin:.')
else:
# container
transformation = Transformation(fname,
site='insidecontainer',
pfn=os.path.join(base_dir, fname),
container=container,
is_stageable=False)
# memory requirement
transformation.add_profiles(Namespace.CONDOR, 'request_memory', '1 GB')
# some transformations can be clustered for effiency
if fname in ['gmProject', 'mDiff', 'mDiffFit', 'mBackground']:
transformation.add_profiles(Namespace.PEGASUS, 'clusters.size', '3')
# keep a handle to added ones, for use later
trans[fname] = transformation
tc.add_transformations(transformation)
# some Montage tools depend on other tools
trans['mDiffFit'].add_requirement(trans['mDiff'])
trans['mDiffFit'].add_requirement(trans['mFitplane'])
wf.add_transformation_catalog(tc)
def generate_region_hdr(wf, rc, center, degrees):
global common_files
(crval1, crval2) = center.split()
crval1 = float(crval1)
crval2 = float(crval2)
cdelt = 0.000277778
naxis = int((float(degrees) / cdelt) + 0.5)
crpix = (naxis + 1) / 2.0
f = open('data/region.hdr', 'w')
f.write('SIMPLE = T\n')
f.write('BITPIX = -64\n')
f.write('NAXIS = 2\n')
f.write('NAXIS1 = %d\n' %(naxis))
f.write('NAXIS2 = %d\n' %(naxis))
f.write('CTYPE1 = \'RA---TAN\'\n')
f.write('CTYPE2 = \'DEC--TAN\'\n')
f.write('CRVAL1 = %.6f\n' %(crval1))
f.write('CRVAL2 = %.6f\n' %(crval2))
f.write('CRPIX1 = %.6f\n' %(crpix))
f.write('CRPIX2 = %.6f\n' %(crpix))
f.write('CDELT1 = %.9f\n' %(-cdelt))
f.write('CDELT2 = %.9f\n' %(cdelt))
f.write('CROTA2 = %.6f\n' %(0.0))
f.write('EQUINOX = %d\n' %(2000))
f.write('END\n')
f.close()
common_files['region.hdr'] = File('region.hdr')
rc.add_replica('local', common_files['region.hdr'], 'file://' + os.getcwd() + '/data/region.hdr')
# we also need an oversized region which will be used in the first part of the
# workflow to get the background correction correct
f = open('data/region-oversized.hdr', 'w')
f.write('SIMPLE = T\n')
f.write('BITPIX = -64\n')
f.write('NAXIS = 2\n')
f.write('NAXIS1 = %d\n' %(naxis + 3000))
f.write('NAXIS2 = %d\n' %(naxis + 3000))
f.write('CTYPE1 = \'RA---TAN\'\n')
f.write('CTYPE2 = \'DEC--TAN\'\n')
f.write('CRVAL1 = %.6f\n' %(crval1))
f.write('CRVAL2 = %.6f\n' %(crval2))
f.write('CRPIX1 = %.6f\n' %(crpix + 1500))
f.write('CRPIX2 = %.6f\n' %(crpix + 1500))
f.write('CDELT1 = %.9f\n' %(-cdelt))
f.write('CDELT2 = %.9f\n' %(cdelt))
f.write('CROTA2 = %.6f\n' %(0.0))
f.write('EQUINOX = %d\n' %(2000))
f.write('END\n')
f.close()
common_files['region-oversized.hdr'] = File('region-oversized.hdr')
rc.add_replica('local', common_files['region-oversized.hdr'], 'file://' + os.getcwd() + '/data/region-oversized.hdr')
def add_band(wf, rc, band_id, center, degrees, survey, band, color):
band_id = str(band_id)
print('\nAdding band %s (%s %s -> %s)' %(band_id, survey, band, color))
# data find - go a little bit outside the box - see mExec implentation
degrees_datafind = str(float(degrees) * 1.42)
cmd = 'mArchiveList %s %s \'%s\' %s %s data/%s-images.tbl' \
%(survey, band, center, degrees_datafind, degrees_datafind, band_id)
print('Running sub command: ' + cmd)
if subprocess.call(cmd, shell=True) != 0:
print('Command failed!')
sys.exit(1)
rc.add_replica('local', '%s-images.tbl' %(band_id), 'file://' + os.getcwd() + '/data/%s-images.tbl' %(band_id))
# image tables
raw_tbl = File('%s-raw.tbl' %(band_id))
rc.add_replica('local', raw_tbl, 'file://' + os.getcwd() + '/data/' + raw_tbl.lfn)
projected_tbl = File('%s-projected.tbl' %(band_id))
rc.add_replica('local', projected_tbl, 'file://' + os.getcwd() + '/data/' + projected_tbl.lfn)
corrected_tbl = File('%s-corrected.tbl' %(band_id))
rc.add_replica('local', corrected_tbl, 'file://' + os.getcwd() + '/data/' + corrected_tbl.lfn)
cmd = 'cd data && mDAGTbls %s-images.tbl region-oversized.hdr %s %s %s' \
%(band_id, raw_tbl.lfn, projected_tbl.lfn, corrected_tbl.lfn)
print('Running sub command: ' + cmd)
if subprocess.call(cmd, shell=True) != 0:
print('Command failed!')
sys.exit(1)
# diff table
cmd = 'cd data && mOverlaps %s-raw.tbl %s-diffs.tbl' \
%(band_id, band_id)
print('Running sub command: ' + cmd)
if subprocess.call(cmd, shell=True) != 0:
print('Command failed!')
sys.exit(1)
# statfile table
t = ascii.read('data/%s-diffs.tbl' %(band_id))
# make sure we have a wide enough column
t['stat'] = ' '
for row in t:
base_name = re.sub('(diff\.|\.fits.*)', '', row['diff'])
row['stat'] = '%s-fit.%s.txt' %(band_id, base_name)
ascii.write(t, 'data/%s-stat.tbl' %(band_id), format='ipac')
rc.add_replica('local', '%s-stat.tbl' %(band_id), 'file://' + os.getcwd() + '/data/%s-stat.tbl' %(band_id))
# for all the input images in this band, and them to the rc, and
# add reproject tasks
data = ascii.read('data/%s-images.tbl' %(band_id))
for row in data:
base_name = re.sub('\.fits.*', '', row['file'])
# add an entry to the replica catalog
rc.add_replica('ipac', base_name + '.fits', row['URL'])
# projection job
j = Job('mProject')
in_fits = File(base_name + '.fits')
projected_fits = File('p' + base_name + '.fits')
area_fits = File('p' + base_name + '_area.fits')
j.add_inputs(common_files['region-oversized.hdr'], in_fits)
j.add_outputs(projected_fits, area_fits, stage_out=False)
j.add_args('-X', in_fits, projected_fits, common_files['region-oversized.hdr'])
wf.add_jobs(j)
fit_txts = []
data = ascii.read('data/%s-diffs.tbl' %(band_id))
for row in data:
base_name = re.sub('(diff\.|\.fits.*)', '', row['diff'])
# mDiffFit job
j = Job('mDiffFit')
plus = File('p' + row['plus'])
plus_area = File(re.sub('\.fits', '_area.fits', plus.lfn))
minus = File('p' + row['minus'])
minus_area = File(re.sub('\.fits', '_area.fits', minus.lfn))
fit_txt = File('%s-fit.%s.txt' %(band_id, base_name))
diff_fits = File('%s-diff.%s.fits' %(band_id, base_name))
j.add_inputs(plus, plus_area, minus, minus_area, common_files['region-oversized.hdr'])
j.add_outputs(fit_txt, stage_out=False)
j.add_args('-d', '-s', fit_txt, plus, minus, diff_fits, common_files['region-oversized.hdr'])
wf.add_jobs(j)
fit_txts.append(fit_txt)
# mConcatFit
j = Job('mConcatFit')
stat_tbl = File('%s-stat.tbl' %(band_id))
j.add_inputs(stat_tbl)
for fit_txt in fit_txts:
j.add_inputs(fit_txt)
fits_tbl = File('%s-fits.tbl' %(band_id))
j.add_outputs(fits_tbl, stage_out=False)
j.add_args(stat_tbl, fits_tbl, '.')
wf.add_jobs(j)
# mBgModel
j = Job('mBgModel')
images_tbl = File('%s-images.tbl' %(band_id))
corrections_tbl = File('%s-corrections.tbl' %(band_id))
j.add_inputs(images_tbl, fits_tbl)
j.add_outputs(corrections_tbl, stage_out=False)
j.add_args('-i', '100000', images_tbl, fits_tbl, corrections_tbl)
wf.add_jobs(j)
# mBackground
data = ascii.read('data/%s-raw.tbl' %(band_id))
for row in data:
base_name = re.sub('(diff\.|\.fits.*)', '', row['file'])
# mBackground job
j = Job('mBackground')
projected_fits = File('p' + base_name + '.fits')
projected_area = File('p' + base_name + '_area.fits')
corrected_fits = File('c' + base_name + '.fits')
corrected_area = File('c' + base_name + '_area.fits')
j.add_inputs(projected_fits, projected_area, projected_tbl, corrections_tbl)
j.add_outputs(corrected_fits, corrected_area, stage_out=False)
j.add_args('-t', projected_fits, corrected_fits, projected_tbl, corrections_tbl)
wf.add_jobs(j)
# mImgtbl - we need an updated corrected images table because the pixel offsets and sizes need
# to be exactly right and the original is only an approximation
j = Job('mImgtbl')
updated_corrected_tbl = File('%s-updated-corrected.tbl' %(band_id))
j.add_inputs(corrected_tbl)
j.add_outputs(updated_corrected_tbl, stage_out=False)
j.add_args('.', '-t', corrected_tbl, updated_corrected_tbl)
data = ascii.read('data/%s-corrected.tbl' %(band_id))
for row in data:
base_name = re.sub('(diff\.|\.fits.*)', '', row['file'])
projected_fits = File(base_name + '.fits')
j.add_inputs(projected_fits)
wf.add_jobs(j)
# mAdd
j = Job('mAdd')
mosaic_fits = File('%s-mosaic.fits' %(band_id))
mosaic_area = File('%s-mosaic_area.fits' %(band_id))
j.add_inputs(updated_corrected_tbl, common_files['region.hdr'])
j.add_outputs(mosaic_fits, mosaic_area, stage_out=True)
j.add_args('-e', updated_corrected_tbl, common_files['region.hdr'], mosaic_fits)
data = ascii.read('data/%s-corrected.tbl' %(band_id))
for row in data:
base_name = re.sub('(diff\.|\.fits.*)', '', row['file'])
corrected_fits = File(base_name + '.fits')
corrected_area = File(base_name + '_area.fits')
j.add_inputs(corrected_fits, corrected_area)
wf.add_jobs(j)
# mViewer - Make the JPEG for this channel
j = Job('mViewer')
mosaic_png = File('%s-mosaic.png' %(band_id))
j.add_inputs(mosaic_fits)
j.add_outputs(mosaic_png, stage_out=True)
j.add_args('-ct', '1', '-gray', mosaic_fits, '-1s', 'max', 'gaussian', \
'-png', mosaic_png)
wf.add_jobs(j)
def color_png(wf, rc, red_id, green_id, blue_id):
red_id = str(red_id)
green_id = str(green_id)
blue_id = str(blue_id)
# mJPEG - Make the JPEG for this channel
j = Job('mViewer')
mosaic_png = File('mosaic-color.png')
red_fits = File('%s-mosaic.fits' %(red_id))
green_fits = File('%s-mosaic.fits' %(green_id))
blue_fits = File('%s-mosaic.fits' %(blue_id))
j.add_inputs(red_fits, green_fits, blue_fits)
j.add_outputs(mosaic_png, stage_out=True)
j.add_args( \
'-red', red_fits, '-0.5s', 'max', 'gaussian-log', \
'-green', green_fits, '-0.5s', 'max', 'gaussian-log', \
'-blue', blue_fits, '-0.5s', 'max', 'gaussian-log', \
'-png', mosaic_png)
wf.add_jobs(j)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--work-dir', action = 'store', dest = 'work_dir',
help = 'Work directory to chdir to')
parser.add_argument('--center', action = 'store', dest = 'center',
help = 'Center of the output, for example M17 or 56.5 23.75')
parser.add_argument('--degrees', action = 'store', dest = 'degrees',
help = 'Number of degrees of side of the output')
parser.add_argument('--band', action = 'append', dest = 'bands',
help = 'Band definition. Example: dss:DSS2B:red')
parser.add_argument('--tc-target', action = 'store', dest = 'tc_target',
help = 'Transformation catalog: regular or container')
args = parser.parse_args()
if args.work_dir:
os.chdir(args.work_dir)
if args.tc_target is None:
args.tc_target = 'regular'
if os.path.exists('data'):
print('data/ directory already exists')
sys.exit(1)
os.mkdir('data')
wf = Workflow('montage', infer_dependencies=True)
rc = ReplicaCatalog()
# FIXME
# email notificiations for when the state of the workflow changes
#share_dir = subprocess.Popen('pegasus-config --sh-dump | grep ^PEGASUS_SHARE_DIR= | sed -e 's/.*=//' -e 's/\'//g'',
# shell=True,
# stdout=subprocess.PIPE).communicate()[0]
#share_dir = share_dir.strip()
#wf.invoke('start', share_dir + '/notification/email')
#wf.invoke('on_error', share_dir + '/notification/email')
#wf.invoke('on_success', share_dir + '/notification/email --report=pegasus-statistics')
build_transformation_catalog(args.tc_target, wf)
# region.hdr is the template for the ouput area
generate_region_hdr(wf, rc, args.center, args.degrees)
band_id = 0
color_band = {}
for band_def in args.bands:
band_id += 1
(survey, band, color) = band_def.split(':')
add_band(wf, rc, band_id, args.center, args.degrees, survey, band, color)
color_band[color] = band_id
# if we have 3 bands in red, blue, green, try to create a color jpeg
if 'red' in color_band and 'green' in color_band and 'blue' in color_band:
color_png(wf, rc, color_band['red'], color_band['green'], color_band['blue'])
# write out the workflow and catalogs
wf.add_replica_catalog(rc)
wf.write('data/montage-workflow.yml')
if __name__ == '__main__':
main()