-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcsv.py
executable file
·230 lines (203 loc) · 7.31 KB
/
csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""
manipulate .csv files
Clean advertisement detection trainging set file
Peter
16/05/2010
"""
import copy,os,time
from math import *
from operator import itemgetter
def validateMatrix(matrix):
"Check that all rows in matrix and same length"
assert(len(matrix) > 0)
assert(len(matrix[0]) > 0)
for i in range(1, len(matrix)):
assert(len(matrix[i]) == len(matrix[0]))
def validateMatrix2(matrix):
"Check that all rows in matrix and same length and non-empty"
validateMatrix(matrix)
for i,row in enumerate(matrix):
for j,val in enumerate(row):
if len(val) == 0:
print 'empty cell', i, j
def readCsvRaw(filename):
"Reads a CSV file into a 2d array"
lines = file(filename).read().strip().split('\n')
entries = [[e for e in l.strip().split(',')] for l in lines]
print 'readCsvRaw:', filename, len(entries), len(entries[0])
validateMatrix(entries)
return entries
def readCsvFloat2(filename, has_header):
"Reads a CSV file into a header and 2d array of float"
header = None
entries = readCsvRaw(filename)
if has_header:
header = entries[0]
matrix = [[float(e) for e in row] for row in entries[1:]]
print 'readCsvFloat:', filename, len(entries[1:]), len(entries[1])
else:
matrix = [[float(e) for e in row] for row in entries]
return (matrix, header)
def readCsvFloat(filename):
"Reads a CSV file into a 2d array of float"
matrix, header = readCsvFloat2(filename, False)
return matrix
def writeCsv(filename, in_matrix, header = None):
"Writes a 2d array to a CSV file"
matrix = [header] + in_matrix if header else in_matrix
print 'writeCsv:', filename, len(matrix), len(matrix[0])
file(filename, 'w').write('\n'.join(map(lambda row: ','.join(map(str,row)), matrix)) + '\n')
def modifyCsvRaw(in_filename,out_filename,modify_func):
"Read in_filename into a 2d array, apply modify_func to it and write result to out_filename"
in_entries = readCsvRaw(in_filename)
out_entries = modify_func(in_entries)
writeCsv(out_filename,out_entries)
def swapMatrixColumn(matrix, i, j):
n = len(matrix[0])
if i < 0: i = n + i
if j < 0: j = n + j
if i > j: i,j = j,i
for v in matrix:
x = v[i]
for k in range(i+1, j+1):
v[k-1] = v[k]
v[j] = x
"""
height: continuous. | possibly missing
width: continuous. | possibly missing
aratio: continuous. | possibly missing
local: 0,1.
| 457 features from url terms, each of the form "url*term1+term2...";
| for example:
url*images+buttons: 0,1.
...
| 495 features from origurl terms, in same form; for example:
origurl*labyrinth: 0,1.
...
| 472 features from ancurl terms, in same form; for example:
ancurl*search+direct: 0,1.
...
| 111 features from alt terms, in same form; for example:
alt*your: 0,1.
...
| 19 features from caption terms
caption*and: 0,1.
...
"""
def makeHeader():
"Make a header row based on the above comments"
h = ['' for i in range(1559)]
h[0] = 'height'
h[1] = 'width'
h[2] = 'aratio'
h[3] = 'local'
n = 4
def addRange(n, span, prefix):
for i in range(span):
h[n+i] = prefix + '%03d' % (i+1)
print n, span, prefix, n+span
return n + span
n = addRange(n, 457, 'url')
n = addRange(n, 495, 'org')
n = addRange(n, 472, 'anc')
n = addRange(n, 111, 'alt')
n = addRange(n, 19, 'cap')
assert(n == 1558)
h[1558] = 'Advert'
return h
def isMissingValue(e):
"User defined function for detecting missing value"
return e.strip() == '?'
def replaceMissingValues(matrix):
"Replace missing values in a 2d matrix with average or mode"
width = len(matrix[0])
height = len(matrix)
h = matrix[0]
for i in range(width):
num_missing = 0
for v in matrix[1:]:
if isMissingValue(v[i]):
num_missing = num_missing +1
if num_missing > 0:
frac_missing = float(num_missing)/float(height)
head = '"' + h[i] + '"'
print 'column', '%3d'%i, '%3d'%num_missing, '%.2f'%frac_missing, '%8s'%head,
uniques = []
for v in matrix[1:]:
if not v[i] in uniques:
uniques.append(v[i])
number_each = [0 for j in range(len(uniques))]
for j in range(len(uniques)):
number_each[j] = 0
for v in matrix[1:]:
if uniques[j] == v[i]:
number_each[j] = number_each[j] + 1
if len(uniques) <= 3: # if there a few values then replace wih mode
j = max(enumerate(number_each), key=itemgetter(1))[0]
replacement = uniques[j]
assert(not isMissingValue(v[i]))
else: # if there are many values then replace with average
remaining = [float(v[i]) for v in matrix[1:] if not isMissingValue(v[i])]
replacement = sum(remaining)/float(len(remaining))
print 'replacement', replacement
for v in matrix[1:]:
if isMissingValue(v[i]):
v[i] = replacement
#
# The data we are working on
#
# Data directory
data_dir = 'C:\\dev\\5167assigment1'
# Input data - Don't touch this
raw_name = os.path.join(data_dir,'ad1.csv')
# Input data with header. Needs to be generated once
headered_name = os.path.join(data_dir,'ad1_header.csv')
#Input data with header and pre-processing
headered_name_pp = os.path.join(data_dir,'ad1_header_pp.csv')
# PCA on headered_name_pp
headered_name_pca = headered_name_pp + '.pca.csv'
# PCA data normalized to stdev == 1
headered_name_pca_norm = os.path.join(data_dir,'ad1_header.pp.pca.norm.csv')
# PCA data normalized to stdev == 1 by correlation with outcome
headered_name_pca_corr = os.path.join(data_dir,'ad1_header.pp.pca.norm.corr_order.csv')
def makePath(name):
return os.path.join(data_dir, name)
def makeCsvPath(name):
return makePath(name + '.csv')
def makeTempPath(base_name):
count_fn = os.path.join(data_dir, 'temp', 'count.txt')
count = 0
num_retries = 10
for i in range(num_retries):
try:
contents = file(count_fn).read().strip()
if len(contents) > 0:
count = int(contents)
break
except IOError:
time.sleep(0.1)
try:
os.mkdir(os.path.join(data_dir, 'temp'))
except WindowsError:
pass
for i in range(num_retries):
try:
file(count_fn, 'w').write(str(count+1))
break
except IOError:
time.sleep(0.11)
return os.path.join(data_dir, 'temp', base_name + ('%06d' % count))
def prepareData():
"Prepare data by adding a header row and replacing missing values"
header = makeHeader()
data = readCsvRaw(raw_name)
hdata = [header] + data
assert(len(hdata)==len(data)+1)
validateMatrix(hdata)
#swapMatrixColumn(data, 3, -1)
writeCsv(headered_name, hdata)
h2data = readCsvRaw(headered_name)
replaceMissingValues(hdata)
writeCsv(headered_name_pp, hdata)
if __name__ == '__main__':
prepareData()