-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefault.py
557 lines (481 loc) · 26.9 KB
/
default.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import argparse
import math
from typing import Optional, List
from code_generator_base import CodeGeneratorBase
from helpers import assert_uint, environ_or_default
class Axis(object):
def __init__(self):
# current position
self.pos_current_mm: float = 0
self.segment_current_idx: int = 0
# context
self.direction_increment: bool = True
# position boundaries
self.pos_min_mm: float = 0
self.pos_max_mm: float = 0
self.pos_travel_mm: float = 0
# segment boundaries
self.segment_count: int = 0
self.segment_effective_count: int = 0
self.segment_length_mm: int = 0
self.segment_min_idx: int = 0
self.segment_max_idx: int = 0
# movement boundaries
self.movement_segment_start_idx: int = 0
self.movement_segment_stop_idx: int = 0
@property
def _is_max_pos_mm(self) -> bool:
return self.pos_current_mm >= self.pos_max_mm
@property
def _is_min_pos_mm(self) -> bool:
return self.pos_current_mm <= self.pos_max_mm
@property
def _is_min_or_max_pos_mm(self) -> bool:
return self._is_min_pos_mm or self._is_max_pos_mm
@property
def is_max_pos_segment(self) -> bool:
return self.segment_current_idx >= self.movement_segment_stop_idx
@property
def is_min_pos_segment(self) -> bool:
return self.segment_current_idx <= self.movement_segment_start_idx
@property
def is_min_or_max_pos_segment(self) -> bool:
return self.is_min_pos_segment or self.is_max_pos_segment
def update(self) -> None:
assert (self.segment_count > 0)
self.pos_travel_mm = self.pos_max_mm - self.pos_min_mm
assert (self.pos_travel_mm > 0)
self.segment_length_mm = self.pos_travel_mm / self.segment_count
self.segment_min_idx = 0
self.segment_max_idx = self.segment_count - 1
assert (self.movement_segment_start_idx >= self.segment_min_idx)
assert (self.movement_segment_stop_idx <= self.segment_max_idx)
assert (self.movement_segment_start_idx <= self.movement_segment_stop_idx)
self.segment_effective_count = self.movement_segment_stop_idx - self.movement_segment_start_idx + 1
def compute_next_position(self) -> None:
raise NotImplementedError()
class LinearAxis(Axis):
def update(self) -> None:
super(LinearAxis, self).update()
def compute_next_position(self):
"""
Movement oscillates from min to max and vice versa.
"""
if self.is_min_pos_segment:
self.direction_increment = True
elif self.is_max_pos_segment:
self.direction_increment = False
direction = 1 if self.direction_increment else -1
self.segment_current_idx += direction
self.pos_current_mm += direction * self.segment_length_mm
class CircularAxis(Axis):
def __init__(self):
super().__init__()
self.radius_mm: int = 0
self.perimeter_mm: float = 0
self.increment_direction: int = 1
def update(self) -> None:
assert (self.radius_mm > 0)
self.perimeter_mm = (math.pi + math.pi) * self.radius_mm
self.pos_min_mm = 0
self.pos_max_mm = self.perimeter_mm
super(CircularAxis, self).update()
def compute_next_position(self):
"""
If num_segments_to_move = segments_count -> move forward only
If num_segments_to_move < segments_count -> oscillate from min to max and vice versa
if num_segments_to_move > segments_count -> assert(False)
"""
if self.is_closed_circle:
if self.is_max_pos_segment:
self.segment_current_idx = 0
self.pos_current_mm = 0
return
else:
if self.is_max_pos_segment:
self.increment_direction = -1
elif self.is_min_pos_segment:
self.increment_direction = 1
self.segment_current_idx += self.increment_direction
self.pos_current_mm += self.increment_direction * self.segment_length_mm
@property
def is_closed_circle(self):
return self.segment_count == (self.movement_segment_stop_idx - self.movement_segment_start_idx + 1)
class Axes(object):
def __init__(self):
self.circular = CircularAxis()
self.elevation = LinearAxis()
def update(self):
self.circular.update()
self.elevation.update()
class Servo(object):
def __init__(self):
self.pos_release: int = 0
self.pos_actuate: int = 0
self.pre_actuate_delay_s: float = 0
self.actuate_delay_s: float = 0
self.post_actuate_delay_s: float = 0
def update(self):
pass
class MachineParameter(object):
def __init__(self):
self.axes: Axes = Axes()
self.servo: Servo = Servo()
self.feed_rate_mm_m = 0 # for combined moves which may involve multipla axes
self.feed_rate_x_mm_m = 0
self.feed_rate_z_mm_m = 0
self.acceleration_x_mm_s2 = 0
self.acceleration_z_mm_s2 = 0
self.steps_per_mm_x = 0
self.steps_per_mm_z = 0
self.homing_seek_rate = 0
self.homing_rate = 0
def update(self):
self.axes.update()
self.servo.update()
class CodeGenerator(CodeGeneratorBase):
def __init__(self, arg_parser: argparse.ArgumentParser):
super().__init__(arg_parser)
self.machine: MachineParameter = MachineParameter()
uint = lambda x: assert_uint(x)
g = arg_parser.add_argument_group("Machine settings")
g.add_argument("--feed_rate",
help="max feed rate [mm/minute] for travel (may involve multiple axes); if 0 falls back to machine defaults; env: FEED_RATE",
default=environ_or_default("FEED_RATE", 20000), type=uint)
g.add_argument("--feed_rate_circular",
help="feed rate [mm/minute] in circular direction (X-axis); if 0 falls back to machine defaults; env: FEED_RATE_CIRCULAR",
default=environ_or_default("FEED_RATE_CIRCULAR", 20000), type=uint)
g.add_argument("--feed_rate_elevation",
help="max feed rate [mm/minute] in elevation direction (Z-axis); if 0 falls back to machine defaults; env: FEED_RATE_ELEVATION",
default=environ_or_default("FEED_RATE_ELEVATION", 800), type=uint)
g.add_argument("--acceleration_circular",
help="max feed rate [mm/s²] in circular direction (X-axis); if 0 falls back to machine defaults; env: ACCELERATION_CIRCULAR",
default=environ_or_default("ACCELERATION_CIRCULAR", 300), type=uint)
g.add_argument("--acceleration_elevation",
help="max feed rate [mm/s²] in elevation direction (Z-axis); if 0 falls back to machine defaults; env: ACCELERATION_ELEVATION",
default=environ_or_default("ACCELERATION_ELEVATION", 7), type=uint)
g.add_argument("--steps_per_mm_circular",
help="steps per [steps/mm] in circular direction (X-axis); (steps_revolution*micro_steps)/(2*r*Pi); if 0 falls back to machine defaults; env: STEPS_PER_MM_CIRCULAR",
default=environ_or_default("STEPS_PER_MM_CIRCULAR", (200.0 * 16) / (2.0 * 36.5 * 3.14159)), type=uint)
g.add_argument("--steps_per_mm_elevation",
help="steps per [steps/mm] in circular direction (X-axis); steps_revolution*micro_steps)/pitch; if 0 falls back to machine defaults; env: STEPS_PER_MM_ELEVATION",
default=environ_or_default("STEPS_PER_MM_CIRCULAR", (200.0 * 16.0) / 1.25), type=uint)
g.add_argument("--homing_seek_rate",
help="speed [mm/minute] for seeking home; seeking is the fast process, homing (slow process) will be homing_seek_rate/2; "
"if 0 falls back to machine defaults; env: HOMING_SEEK_RATE",
default=environ_or_default("HOMING_SEEK_RATE", 600), type=uint)
g = arg_parser.add_argument_group("Circular settings")
g.add_argument("--circle_radius",
help="circle radius in [mm]; env: CIRCLE_RADIUS",
default=environ_or_default("CIRCLE_RADIUS", 489), type=uint)
g.add_argument("--circle_segments",
help="segments per circle perimeter, range [1,n]; env: CIRCLE_SEGMENTS",
default=environ_or_default("CIRCLE_SEGMENTS", 4), type=uint)
g.add_argument("--circle_segment_start",
help="segment to start at, range [1,circle_segments-1]; env: CIRCLE_SEGMENT_START",
default=environ_or_default("CIRCLE_SEGMENT_START", 0), type=uint)
g.add_argument("--circle_segment_stop",
help="last segment to move to, range -1 (all segments) or [0,elevation_segments-1] value >= elevation_segment_start; env: CIRCLE_SEGMENT_STOP",
default=environ_or_default("CIRCLE_SEGMENT_STOP", -1), type=int)
g = arg_parser.add_argument_group("Elevation settings")
g.add_argument("--elevation_min",
help="min position along z-axis in [mm]; approximate value; does not correlate with any angle to XY plane or height above Z=0; env: ELEVATION_MIN",
default=environ_or_default("ELEVATION_MIN", 0), type=int)
g.add_argument("--elevation_max",
help="max position along z-axis in [mm]; approximate value; does not correlate with any angle to XY plane or height above Z=0; env: ELEVATION_MAX",
default=environ_or_default("ELEVATION_MAX", 400), type=int)
g.add_argument("--elevation_segments",
help="segments per elevation travel, range [1,n]; env: ELEVATION_SEGMENTS",
default=environ_or_default("ELEVATION_SEGMENTS", 3), type=uint)
g.add_argument("--elevation_segment_start",
help="segment to start at, range [1,elevation_segments-1]; env: ELEVATION_SEGMENT_START",
default=environ_or_default("ELEVATION_SEGMENT_START", 0), type=uint)
g.add_argument("--elevation_segment_stop",
help="last segment to move to, range -1 (all segments) or [0,elevation_segments-1] value >= elevation_segment_start; env: ELEVATION_SEGMENT_STOP",
default=environ_or_default("ELEVATION_SEGMENT_STOP", -1), type=int)
g = arg_parser.add_argument_group("Servo settings")
g.add_argument("--servo_position_release",
help="servo position when not actuating, range [0-1000]; 0=servo_off, 1=servo_min, 1000=servo_max; env: SERVO_POSITION_RELEASE",
default=environ_or_default("SERVO_POSITION_RELEASE", 1000), type=uint)
g.add_argument("--servo_position_actuate",
help="servo position when actuating, range [0-1000]; 0=servo_off, 1=servo_min, 1000=servo_max; env: SERVO_POSITION_ACTUATE",
default=environ_or_default("SERVO_POSITION_ACTUATE", 1), type=uint)
g.add_argument("--servo_pre_actuate_dwell",
help=" delay in [s] to wait before actuating, range [0.0,n]; env: SERVO_PRE_ACTUATE_DWELL",
default=environ_or_default("SERVO_PRE_ACTUATE_DWELL", 0.2), type=float)
g.add_argument("--servo_actuate_dwell",
help=" delay in [s] to wait while actuated, range [0.0,n]; env: SERVO_ACTUATE_DWELL",
default=environ_or_default("SERVO_ACTUATE_DWELL", 0.2), type=float)
g.add_argument("--servo_post_actuate_dwell",
help=" delay in [s] to wait after released, range [0.0,n]; env: SERVO_POST_ACTUATE_DWELL",
default=environ_or_default("SERVO_POST_ACTUATE_DWELL", 0.2), type=float)
def setup(self, args: Optional[argparse.Namespace]):
# machine args
self.machine.feed_rate_mm_m = args.feed_rate
self.machine.feed_rate_x_mm_m = args.feed_rate_circular
self.machine.feed_rate_z_mm_m = args.feed_rate_elevation
self.machine.acceleration_x_mm_s2 = args.acceleration_circular
self.machine.acceleration_z_mm_s2 = args.acceleration_elevation
self.machine.steps_per_mm_x = args.steps_per_mm_circular
self.machine.steps_per_mm_z = args.steps_per_mm_elevation
self.machine.homing_seek_rate = args.homing_seek_rate
self.machine.homing_rate = int(self.machine.homing_seek_rate / 2)
# x-axis
self.machine.axes.circular.radius_mm = args.circle_radius
self.machine.axes.circular.segment_count = args.circle_segments
self.machine.axes.circular.segment_current_idx = args.circle_segment_start
self.machine.axes.circular.movement_segment_start_idx = args.circle_segment_start
self.machine.axes.circular.movement_segment_stop_idx = args.circle_segment_stop if args.circle_segment_stop >= 0 else args.circle_segments - 1
# z-axis
self.machine.axes.elevation.pos_min_mm = args.elevation_min
self.machine.axes.elevation.pos_max_mm = args.elevation_max
self.machine.axes.elevation.segment_count = args.elevation_segments
self.machine.axes.elevation.segment_current_idx = args.elevation_segment_start
self.machine.axes.elevation.movement_segment_start_idx = args.elevation_segment_start
self.machine.axes.elevation.movement_segment_stop_idx = args.elevation_segment_stop if args.elevation_segment_stop >= 0 else args.elevation_segments - 1
# shutter servo
self.machine.servo.pos_release = args.servo_position_release
self.machine.servo.pos_actuate = args.servo_position_actuate
self.machine.servo.pre_actuate_delay_s = args.servo_pre_actuate_dwell
self.machine.servo.actuate_delay_s = args.servo_actuate_dwell
self.machine.servo.post_actuate_delay_s = args.servo_post_actuate_dwell
self.machine.update()
print(self.settings)
@property
def suggested_file_name(self):
# Note: microcontroller file system will not support long file names
return f"{self.name}-f{self.machine.feed_rate_mm_m}-fx{self.machine.feed_rate_x_mm_m}-fz{self.machine.feed_rate_z_mm_m}" \
f"-ax{self.machine.acceleration_x_mm_s2}-az{self.machine.acceleration_z_mm_s2}" \
f"-circ_seg_{self.machine.axes.circular.segment_min_idx}_to_{self.machine.axes.circular.segment_max_idx}_from_{self.machine.axes.circular.segment_count}" \
f"-elev_seg_{self.machine.axes.elevation.segment_min_idx}_to_{self.machine.axes.elevation.segment_max_idx}_from_{self.machine.axes.elevation.segment_count}" \
f".g"
@property
def settings(self):
return f"""Generator: {self.name}
{self.description}
Machine settings
max feed rate [mm/min]
travel: {self.machine.feed_rate_mm_m}
circular: {self.machine.feed_rate_x_mm_m}
elevation: {self.machine.feed_rate_z_mm_m}
acceleration [mm/s²]
circular: {self.machine.acceleration_x_mm_s2}
elevation: {self.machine.acceleration_z_mm_s2}
homing [mm/min]
seek rate (fast): {self.machine.homing_seek_rate}
homing rate (slow): {self.machine.homing_rate}
Circular info
x-axis [mm]
min (soft limit): {self.machine.axes.circular.pos_min_mm}
max (soft limit): {self.machine.axes.circular.pos_max_mm}
travel (perimeter): {self.machine.axes.circular.perimeter_mm}
radius: {self.machine.axes.circular.radius_mm}
segment(s): {self.machine.axes.circular.segment_count}
length [mm]: {self.machine.axes.circular.segment_length_mm}
start index: {self.machine.axes.circular.movement_segment_start_idx}
stop index: {self.machine.axes.circular.movement_segment_stop_idx}
is circle: {"true" if self.machine.axes.circular.is_closed_circle else "false"}
Elevation info
z-axis [mm]
min: {self.machine.axes.elevation.pos_min_mm}
max: {self.machine.axes.elevation.pos_max_mm}
travel: {self.machine.axes.elevation.pos_travel_mm}
segment(s): {self.machine.axes.elevation.segment_count}
length [mm]: {self.machine.axes.elevation.segment_length_mm}
start index: {self.machine.axes.elevation.movement_segment_start_idx}
stop index: {self.machine.axes.elevation.movement_segment_stop_idx}
Servo info
position
release: {self.machine.servo.pos_release}
actuate: {self.machine.servo.pos_actuate}
actuate delay [s]
pre actuate: {"{:.1f}".format(self.machine.servo.pre_actuate_delay_s)}
while actuating: {"{:.1f}".format(self.machine.servo.actuate_delay_s)}
post actuate: {"{:.1f}".format(self.machine.servo.post_actuate_delay_s)}
"""
@property
def name(self) -> str:
return "circular-first-then-elevation"
@property
def description(self) -> str:
return "Moves through circular segments (min to max and vice vesa) and advances one elevation step (min to max) at each circular boundary. Repeats until elevation max is reached."
def get_preamble(self) -> List[str]:
print("compute preamble ...")
nl = '\n'
preamble = f"""; >>>>> info >>>>>
{nl.join([f"; {l}" for l in self.settings.splitlines()])}
; <<<<< info <<<<<
; >>>>> preamble >>>>>
; steps per mm
{f'$100={round(self.machine.steps_per_mm_x, 2)}' if self.machine.steps_per_mm_x > 0 else ''}
{f'$102={round(self.machine.steps_per_mm_z, 2)}' if self.machine.steps_per_mm_z > 0 else ''}
; acceleration
{f'$120={self.machine.acceleration_x_mm_s2}' if self.machine.acceleration_x_mm_s2 > 0 else ''}
{f'$122={self.machine.acceleration_z_mm_s2}' if self.machine.acceleration_z_mm_s2 > 0 else ''}
; axis feed rates
{f'$110={self.machine.feed_rate_x_mm_m}' if self.machine.feed_rate_x_mm_m > 0 else ''}
{f'$112={self.machine.feed_rate_z_mm_m}' if self.machine.feed_rate_z_mm_m > 0 else ''}
; homing feed rate
{f'$24={self.machine.homing_rate}' if self.machine.homing_rate > 0 else ''}
{f'$25={self.machine.homing_seek_rate}' if self.machine.homing_seek_rate > 0 else ''}
; home
$H
; unit is mm
G21
; work in machine coordinates
G53
; set current position manually to (X,Z)=(0,0)
G92 X0 Y0 Z0
; absolute positioning
G90
; stop spindle/servo
M5
; disable servo signal
S0
; travel feed rate
{f'F{self.machine.feed_rate_mm_m}' if self.machine.feed_rate_mm_m > 0 else ''}
; move to position (0,0): eliminates one GRBL error message
G1 X0 Z0
; enable spindle/servo
M3
; move servo to min pos
S{self.machine.servo.pos_release}
; disable stepper driver idling
$1=255
; go to Z-start position
Z{self.machine.axes.elevation.pos_current_mm}
; <<<<< preamble <<<<<
""".splitlines()
print("compute preamble: done")
return preamble
def _generate_code_for_current_position(self,
with_reset_circular_position: bool = False,
with_circular_movement: bool = False,
with_elevation_movement: bool = False,
with_servo_actuation: bool = True) -> List[str]:
code = list()
if with_reset_circular_position:
code.append("; reset current position manually to X=0")
code.append(f"G92 X0")
code.append(f"\n; segment (circular,elevation)=({self.machine.axes.circular.segment_current_idx},{self.machine.axes.elevation.segment_current_idx})")
code.append(f"X{'{:.1f}'.format(self.machine.axes.circular.pos_current_mm)}")
if with_circular_movement and with_elevation_movement:
code.append(f"\n; circular + elevation (circular,elevation)=({self.machine.axes.circular.segment_current_idx},{self.machine.axes.elevation.segment_current_idx})")
code.append("X{:.1f} Z{:.1f}".format(self.machine.axes.circular.pos_current_mm, self.machine.axes.elevation.pos_current_mm))
elif with_circular_movement:
code.append(f"\n; circular (circular,elevation)=({self.machine.axes.circular.segment_current_idx},{self.machine.axes.elevation.segment_current_idx})")
code.append(f"X{'{:.1f}'.format(self.machine.axes.circular.pos_current_mm)}")
elif with_elevation_movement:
code.append(f"\n; elevation (circular,elevation)=({self.machine.axes.circular.segment_current_idx},{self.machine.axes.elevation.segment_current_idx})")
code.append(f"Z{'{:.1f}'.format(self.machine.axes.elevation.pos_current_mm)}")
if with_servo_actuation:
actuation = f"""G4 P{"{:.1f}".format(self.machine.servo.pre_actuate_delay_s)}
S{self.machine.servo.pos_actuate}
G4 P{"{:.1f}".format(self.machine.servo.actuate_delay_s)}
S{self.machine.servo.pos_release}
G4 P{"{:.1f}".format(self.machine.servo.post_actuate_delay_s)}
"""
code.extend(actuation.splitlines())
return code
def _log_current_iteration(self,
reset_circular: bool = False,
circular_move: bool = False,
elevation_move: bool = False,
servo_actuation: bool = False,
prefix=""):
print(f"{prefix}segment: (cric, elev)=({self.machine.axes.circular.segment_current_idx}, {self.machine.axes.elevation.segment_current_idx}), "
f"max ({self.machine.axes.circular.movement_segment_stop_idx}, {self.machine.axes.elevation.movement_segment_stop_idx}) | "
f"position: (circ, elev)=({round(self.machine.axes.circular.pos_current_mm, 2)}, {round(self.machine.axes.elevation.pos_current_mm, 2)}) | action:"
f"{' reset_circular' if reset_circular else ''}"
f"{' circular' if circular_move else ''}"
f"{' elevation' if elevation_move else ''}"
f"{' actuation' if servo_actuation else ''}")
def _compute_next_position_full_circle_mode(self) -> List[str]:
program: List[str] = list()
reset_circular = True
circular_move = False
elevation_move = True
servo_actuation = False
self._log_current_iteration(reset_circular, circular_move, elevation_move, servo_actuation, prefix="(init ) ")
program.extend(self._generate_code_for_current_position(reset_circular, circular_move, elevation_move, servo_actuation))
reset_circular = False
circular_move = True
elevation_move = False
servo_actuation = True
for _elevation_segment_counter in range(0, self.machine.axes.elevation.segment_effective_count):
for _circular_segment_counter in range(0, self.machine.axes.circular.segment_effective_count - 1):
reset_circular = self.machine.axes.circular.is_min_pos_segment
self._log_current_iteration(reset_circular, circular_move, elevation_move, servo_actuation, prefix="(stepA) ")
program.extend(self._generate_code_for_current_position(reset_circular, circular_move, elevation_move, servo_actuation))
circular_move = True
elevation_move = False
self.machine.axes.circular.compute_next_position()
self._log_current_iteration(reset_circular, circular_move, elevation_move, servo_actuation, prefix="(stepB) ")
program.extend(self._generate_code_for_current_position(reset_circular, circular_move, elevation_move, servo_actuation))
elevation_move = True
circular_move = False
self.machine.axes.elevation.compute_next_position()
return program
def _compute_next_position_arc_mode(self) -> List[str]:
program: List[str] = list()
reset_circular = True
circular_move = False
elevation_move = True
servo_actuation = False
self._log_current_iteration(reset_circular, circular_move, elevation_move, servo_actuation, prefix="(init ) ")
program.extend(self._generate_code_for_current_position(reset_circular, circular_move, elevation_move, servo_actuation))
for _elevation_segment_counter in range(0, self.machine.axes.elevation.segment_effective_count):
seen_min = False
seen_max = False
while not seen_min and not seen_max:
reset_circular = False
servo_actuation = True
self._log_current_iteration(reset_circular, circular_move, elevation_move, servo_actuation, prefix="(stepA) ")
program.extend(self._generate_code_for_current_position(reset_circular, circular_move, elevation_move, servo_actuation))
circular_move = True
elevation_move = False
self.machine.axes.circular.compute_next_position()
seen_min = True if self.machine.axes.circular.is_min_pos_segment else seen_min
seen_max = True if self.machine.axes.circular.is_max_pos_segment else seen_max
if self.machine.axes.circular.is_min_or_max_pos_segment:
reset_circular = False
circular_move = True
elevation_move = False
servo_actuation = True
self._log_current_iteration(reset_circular, circular_move, elevation_move, servo_actuation, prefix="(stepB) ")
program.extend(self._generate_code_for_current_position(reset_circular, circular_move, elevation_move, servo_actuation))
circular_move = False
elevation_move = True
self.machine.axes.elevation.compute_next_position()
return program
def get_program(self) -> List[str]:
effective_circular_segments_count = self.machine.axes.circular.segment_effective_count
effective_elevation_segments_count = self.machine.axes.elevation.segment_effective_count
total_segments = effective_circular_segments_count * effective_elevation_segments_count
print(f"compute program in {'circular' if self.machine.axes.circular.is_closed_circle else 'arc'}-mode "
f"(circular_segments={effective_circular_segments_count}, elevation_segments={effective_elevation_segments_count}, total={total_segments}) ...")
program: List[str] = list()
program.extend(["; >>>>> program >>>>>"])
if self.machine.axes.circular.is_closed_circle:
program.extend(self._compute_next_position_full_circle_mode())
else:
program.extend(self._compute_next_position_arc_mode())
program.extend(["; <<<<< program <<<<<", ""])
print("compute program: done")
return program
def get_postamble(self) -> List[str]:
print("compute postamble ...")
postamble = f"""; >>>>> postamble >>>>>
; re-enable stepper driver idling of 25ms and request movement of 0mm to activate new parameter
$1=25
G90
Z0.01
Z0
; stop servo signal, stop spindle, end program
S0
M5
M2
; <<<<< postamble <<<<<
""".splitlines()
print("compute postamble: done")
return postamble