Skip to content

Latest commit

 

History

History
214 lines (159 loc) · 5.56 KB

tick-formatting.md

File metadata and controls

214 lines (159 loc) · 5.56 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.3
1.14.1
display_name language name
Python 3
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.8.8
description display_as language layout name order permalink thumbnail
How to format axes ticks in Python with Plotly.
file_settings
python
base
Formatting Ticks
12
python/tick-formatting/
thumbnail/tick-formatting.gif

Tickmode - Linear

If "linear", the placement of the ticks is determined by a starting position tick0 and a tick step dtick

import plotly.graph_objects as go

fig = go.Figure(go.Scatter(
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
    y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
))

fig.update_layout(
    xaxis = dict(
        tickmode = 'linear',
        tick0 = 0.5,
        dtick = 0.75
    )
)

fig.show()

Tickmode - Array

If "array", the placement of the ticks is set via tickvals and the tick text is ticktext.

import plotly.graph_objects as go

fig = go.Figure(go.Scatter(
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
    y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
))

fig.update_layout(
    xaxis = dict(
        tickmode = 'array',
        tickvals = [1, 3, 5, 7, 9, 11],
        ticktext = ['One', 'Three', 'Five', 'Seven', 'Nine', 'Eleven']
    )
)

fig.show()

Dynamic tickmode in Dash

Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash, click "Download" to get the code and run python app.py.

Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.

from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'tick-formatting', width='100%', height=1200)

Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.

Using Tickformat Attribute

For more formatting types, see: https://github.com/d3/d3-format/blob/master/README.md#locale_format

import plotly.graph_objects as go

fig = go.Figure(go.Scatter(
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
    y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
))

fig.update_layout(yaxis_tickformat = '%')

fig.show()

Using Tickformat Attribute - Date/Time

For more date/time formatting types, see: https://github.com/d3/d3-time-format/blob/master/README.md

import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')

fig = go.Figure(go.Scatter(
    x = df['Date'],
    y = df['AAPL.High'],
))

fig.update_layout(
    title = 'Time Series with Custom Date-Time Format',
    xaxis_tickformat = '%d %B (%a)<br>%Y'
)

fig.show()

Using Exponentformat Attribute

import plotly.graph_objects as go

fig = go.Figure(go.Scatter(
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
    y = [68000, 52000, 60000, 20000, 95000, 40000, 60000, 79000, 74000, 42000, 20000, 90000]
))

fig.update_layout(
    yaxis = dict(
        showexponent = 'all',
        exponentformat = 'e'
    )
)

fig.show()

Tickformatstops to customize for different zoom levels

import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')

fig = go.Figure(go.Scatter(
    x = df['Date'],
    y = df['mavg']
))

fig.update_layout(
    xaxis_tickformatstops = [
        dict(dtickrange=[None, 1000], value="%H:%M:%S.%L ms"),
        dict(dtickrange=[1000, 60000], value="%H:%M:%S s"),
        dict(dtickrange=[60000, 3600000], value="%H:%M m"),
        dict(dtickrange=[3600000, 86400000], value="%H:%M h"),
        dict(dtickrange=[86400000, 604800000], value="%e. %b d"),
        dict(dtickrange=[604800000, "M1"], value="%e. %b w"),
        dict(dtickrange=["M1", "M12"], value="%b '%y M"),
        dict(dtickrange=["M12", None], value="%Y Y")
    ]
)

fig.show()

Placing ticks and gridlines between categories

import plotly.graph_objects as go

fig = go.Figure(go.Bar(
    x = ["apples", "oranges", "pears"],
    y = [1, 2, 3]
))

fig.update_xaxes(
    showgrid=True,
    ticks="outside",
    tickson="boundaries",
    ticklen=20
)

fig.show()

Reference

See https://plotly.com/python/reference/layout/xaxis/ for more information and chart attribute options!