jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
If "linear"
, the placement of the ticks is determined by a starting position tick0
and a tick step dtick
import plotly.graph_objects as go
fig = go.Figure(go.Scatter(
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
))
fig.update_layout(
xaxis = dict(
tickmode = 'linear',
tick0 = 0.5,
dtick = 0.75
)
)
fig.show()
If "array"
, the placement of the ticks is set via tickvals
and the tick text is ticktext
.
import plotly.graph_objects as go
fig = go.Figure(go.Scatter(
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
))
fig.update_layout(
xaxis = dict(
tickmode = 'array',
tickvals = [1, 3, 5, 7, 9, 11],
ticktext = ['One', 'Three', 'Five', 'Seven', 'Nine', 'Eleven']
)
)
fig.show()
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'tick-formatting', width='100%', height=1200)
Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.
For more formatting types, see: https://github.com/d3/d3-format/blob/master/README.md#locale_format
import plotly.graph_objects as go
fig = go.Figure(go.Scatter(
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
))
fig.update_layout(yaxis_tickformat = '%')
fig.show()
For more date/time formatting types, see: https://github.com/d3/d3-time-format/blob/master/README.md
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
fig = go.Figure(go.Scatter(
x = df['Date'],
y = df['AAPL.High'],
))
fig.update_layout(
title = 'Time Series with Custom Date-Time Format',
xaxis_tickformat = '%d %B (%a)<br>%Y'
)
fig.show()
import plotly.graph_objects as go
fig = go.Figure(go.Scatter(
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
y = [68000, 52000, 60000, 20000, 95000, 40000, 60000, 79000, 74000, 42000, 20000, 90000]
))
fig.update_layout(
yaxis = dict(
showexponent = 'all',
exponentformat = 'e'
)
)
fig.show()
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
fig = go.Figure(go.Scatter(
x = df['Date'],
y = df['mavg']
))
fig.update_layout(
xaxis_tickformatstops = [
dict(dtickrange=[None, 1000], value="%H:%M:%S.%L ms"),
dict(dtickrange=[1000, 60000], value="%H:%M:%S s"),
dict(dtickrange=[60000, 3600000], value="%H:%M m"),
dict(dtickrange=[3600000, 86400000], value="%H:%M h"),
dict(dtickrange=[86400000, 604800000], value="%e. %b d"),
dict(dtickrange=[604800000, "M1"], value="%e. %b w"),
dict(dtickrange=["M1", "M12"], value="%b '%y M"),
dict(dtickrange=["M12", None], value="%Y Y")
]
)
fig.show()
import plotly.graph_objects as go
fig = go.Figure(go.Bar(
x = ["apples", "oranges", "pears"],
y = [1, 2, 3]
))
fig.update_xaxes(
showgrid=True,
ticks="outside",
tickson="boundaries",
ticklen=20
)
fig.show()
See https://plotly.com/python/reference/layout/xaxis/ for more information and chart attribute options!