Skip to content

Commit 77922d3

Browse files
Merge pull request #3409 from plotly/bio-docs
dash-bio docs posts
2 parents a0941bf + bab1653 commit 77922d3

File tree

12 files changed

+360
-14
lines changed

12 files changed

+360
-14
lines changed

CHANGELOG.md

+11
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,17 @@
22
All notable changes to this project will be documented in this file.
33
This project adheres to [Semantic Versioning](http://semver.org/).
44

5+
## [next] - ???
6+
7+
### Added
8+
- dash-bio posts in /doc/python/{alignment-chart.md,circos.md,clustergram.md,molecular-visualizations.md,volacano-plot.md}
9+
10+
### Fixed
11+
- Fixed error when serializing dict with mix of string and non-string keys [#3380](https://github.com/plotly/plotly.py/issues/3380)
12+
13+
### Updated
14+
- The JSON serialization engines no longer sort their keys [#3380](https://github.com/plotly/plotly.py/issues/3380)
15+
516
## [5.3.1] - 2021-08-31
617

718
### Updated

doc/python/bio-alignment-chart.md

+62
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,62 @@
1+
---
2+
jupyter:
3+
jupytext:
4+
notebook_metadata_filter: all
5+
text_representation:
6+
extension: .md
7+
format_name: markdown
8+
format_version: '1.3'
9+
jupytext_version: 1.13.0
10+
kernelspec:
11+
display_name: Python 3 (ipykernel)
12+
language: python
13+
name: python3
14+
language_info:
15+
codemirror_mode:
16+
name: ipython
17+
version: 3
18+
file_extension: .py
19+
mimetype: text/x-python
20+
name: python
21+
nbconvert_exporter: python
22+
pygments_lexer: ipython3
23+
version: 3.9.7
24+
plotly:
25+
display_as: bio
26+
language: python
27+
layout: base
28+
name: Alignment Chart
29+
order: 1
30+
page_type: u-guide
31+
permalink: python/alignment-chart/
32+
thumbnail: thumbnail/alignment-chart.png
33+
---
34+
35+
## Alignment Viewer (link to dash alignment section below)
36+
37+
The Alignment Viewer (MSA) component is used to align multiple genomic or proteomic sequences from a FASTA or Clustal file. Among its extensive set of features, the multiple sequence alignment viewer can display multiple subplots showing gap and conservation info, alongside industry standard colorscale support and consensus sequence. No matter what size your alignment is, Alignment Viewer is able to display your genes or proteins snappily thanks to the underlying WebGL architecture powering the component. You can quickly scroll through your long sequence with a slider or a heatmap overview.
38+
39+
Note that the AlignmentChart only returns a chart of the sequence, while AlignmentViewer has integrated controls for colorscale, heatmaps, and subplots allowing you to interactively control your sequences.
40+
41+
## Bar Chart for conservation visualization
42+
43+
```python
44+
import plotly.express as px
45+
import pandas as pd
46+
47+
df = (pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Genetic/gene_conservation.csv')
48+
.set_index('0')
49+
.loc[['consensus','conservation']]
50+
.T)
51+
52+
fig = px.bar(df, labels={ 'index': 'base' }, hover_name='consensus', y='conservation')
53+
fig.show()
54+
```
55+
56+
## Alignment Chart in dash_bio
57+
58+
```python no_display=true
59+
from IPython.display import IFrame
60+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
61+
IFrame(snippet_url + 'bio-alignmentchart', width='100%', height=630)
62+
```

doc/python/bio-clustergram.md

+114
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,114 @@
1+
---
2+
jupyter:
3+
jupytext:
4+
notebook_metadata_filter: all
5+
text_representation:
6+
extension: .md
7+
format_name: markdown
8+
format_version: '1.3'
9+
jupytext_version: 1.13.0
10+
kernelspec:
11+
display_name: Python 3 (ipykernel)
12+
language: python
13+
name: python3
14+
language_info:
15+
codemirror_mode:
16+
name: ipython
17+
version: 3
18+
file_extension: .py
19+
mimetype: text/x-python
20+
name: python
21+
nbconvert_exporter: python
22+
pygments_lexer: ipython3
23+
version: 3.9.7
24+
plotly:
25+
display_as: bio
26+
language: python
27+
layout: base
28+
name: Clustergram
29+
order: 1
30+
page_type: u-guide
31+
permalink: python/clustergram/
32+
thumbnail: thumbnail/clustergram.png
33+
---
34+
35+
## Default Clustergram
36+
A clustergram is a combination heatmap-dendrogram that is commonly used in gene expression data. The hierarchical clustering that is represented by the dendrograms can be used to identify groups of genes with related expression levels. The Dash Bio Clustergram component is a Python-based component that uses plotly.py to generate a figure. It takes as input a two-dimensional numpy array of floating-point values. Imputation of missing data and computation of hierarchical clustering both occur within the component itself. Clusters that meet or exceed a user-defined threshold of similarity comprise single traces in the corresponding dendrogram, and can be highlighted with annotations. The user can specify additional parameters to customize the metrics and methods used to compute parts of the clustering, such as the pairwise distance between observations and the linkage matrix.
37+
38+
```python
39+
import pandas as pd
40+
import dash_bio
41+
42+
43+
df = pd.read_csv(
44+
'https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/' +
45+
'clustergram_brain_cancer.csv',
46+
)
47+
48+
dash_bio.Clustergram(
49+
data=df,
50+
column_labels=list(df.columns.values),
51+
row_labels=list(df.index),
52+
height=800,
53+
width=700
54+
)
55+
```
56+
57+
## Dendrogram Cluster Colors/Line Widths
58+
Change the colors of the dendrogram traces that are used to represent clusters, and configure their line widths.
59+
60+
61+
```python
62+
import pandas as pd
63+
import dash_bio
64+
65+
df = pd.read_csv(
66+
'https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/' +
67+
'clustergram_brain_cancer.csv',
68+
)
69+
70+
dash_bio.Clustergram(
71+
data=df,
72+
column_labels=list(df.columns.values),
73+
row_labels=list(df.index),
74+
height=800,
75+
width=700,
76+
color_list={
77+
'row': ['#636EFA', '#00CC96', '#19D3F3'],
78+
'col': ['#AB63FA', '#EF553B'],
79+
'bg': '#506784'
80+
},
81+
line_width=2
82+
)
83+
```
84+
85+
## Relative Dendrogram Size
86+
Change the relative width and height of, respectively, the row and column dendrograms compared to the width and height of the heatmap.
87+
88+
89+
```python
90+
import pandas as pd
91+
import dash_bio
92+
93+
df = pd.read_csv(
94+
'https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/' +
95+
'clustergram_brain_cancer.csv',
96+
)
97+
98+
dash_bio.Clustergram(
99+
data=df,
100+
column_labels=list(df.columns.values),
101+
row_labels=list(df.index),
102+
height=800,
103+
width=700,
104+
display_ratio=[0.1, 0.7]
105+
)
106+
```
107+
108+
## Clustergram with Dash
109+
110+
```python no_display=true
111+
from IPython.display import IFrame
112+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
113+
IFrame(snippet_url + 'bio-clustergram', width='100%', height=630)
114+
```

doc/python/bio-manhattanplot.md

+75
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,75 @@
1+
---
2+
jupyter:
3+
celltoolbar: Tags
4+
jupytext:
5+
notebook_metadata_filter: all
6+
text_representation:
7+
extension: .md
8+
format_name: markdown
9+
format_version: '1.3'
10+
jupytext_version: 1.13.0
11+
kernelspec:
12+
display_name: Python 3 (ipykernel)
13+
language: python
14+
name: python3
15+
language_info:
16+
codemirror_mode:
17+
name: ipython
18+
version: 3
19+
file_extension: .py
20+
mimetype: text/x-python
21+
name: python
22+
nbconvert_exporter: python
23+
pygments_lexer: ipython3
24+
version: 3.9.7
25+
plotly:
26+
display_as: bio
27+
language: python
28+
layout: base
29+
name: Manhattan Plot
30+
order: 1
31+
page_type: u-guide
32+
permalink: python/manhattan-plot/
33+
thumbnail: thumbnail/manhttan-plot.png
34+
---
35+
36+
## Manhattan Plot
37+
ManhattanPlot allows you to visualize genome-wide association studies (GWAS) efficiently. Using WebGL under the hood, you can interactively explore overviews of massive datasets comprising hundreds of thousands of points at once, or take a closer look at a small subset of your data. Hover data and click data are accessible from within the Dash app.
38+
39+
```python
40+
import pandas as pd
41+
import dash_bio as dashbio
42+
43+
df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv')
44+
45+
46+
dashbio.ManhattanPlot(
47+
dataframe=df,
48+
)
49+
```
50+
51+
## Highlighted points color, and colors of the suggestive line and the genome-wide line.
52+
Change the color of the points that are considered significant.
53+
54+
```python
55+
import pandas as pd
56+
import dash_bio as dashbio
57+
58+
59+
df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv')
60+
61+
dashbio.ManhattanPlot(
62+
dataframe=df,
63+
highlight_color='#00FFAA',
64+
suggestiveline_color='#AA00AA',
65+
genomewideline_color='#AA5500'
66+
)
67+
```
68+
69+
## ManhattanPlot with Dash
70+
71+
```python no_display=true
72+
from IPython.display import IFrame
73+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
74+
IFrame(snippet_url + 'bio-manhattanplot', width='100%', height=630)
75+
```

doc/python/bio-volcano-plot.md

+78
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,78 @@
1+
---
2+
jupyter:
3+
celltoolbar: Tags
4+
jupytext:
5+
notebook_metadata_filter: all
6+
text_representation:
7+
extension: .md
8+
format_name: markdown
9+
format_version: '1.3'
10+
jupytext_version: 1.13.0
11+
kernelspec:
12+
display_name: Python 3 (ipykernel)
13+
language: python
14+
name: python3
15+
language_info:
16+
codemirror_mode:
17+
name: ipython
18+
version: 3
19+
file_extension: .py
20+
mimetype: text/x-python
21+
name: python
22+
nbconvert_exporter: python
23+
pygments_lexer: ipython3
24+
version: 3.9.7
25+
plotly:
26+
display_as: bio
27+
language: python
28+
layout: base
29+
name: Volcano Plot
30+
order: 1
31+
page_type: u-guide
32+
permalink: python/volcano-plot/
33+
thumbnail: thumbnail/volcano-plot.png
34+
---
35+
36+
## VolcanoPlot
37+
Volcano Plot interactively identifies clinically meaningful markers in genomic experiments, i.e., markers that are statistically significant and have an effect size greater than some threshold. Specifically, volcano plots depict the negative log-base-10 p-values plotted against their effect size.
38+
39+
```python
40+
import pandas as pd
41+
import dash_bio
42+
43+
44+
df = pd.read_csv(
45+
'https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/' +
46+
'volcano_data1.csv'
47+
)
48+
49+
dash_bio.VolcanoPlot(
50+
dataframe=df,
51+
)
52+
```
53+
54+
## Point Sizes And Line Widths
55+
Change the size of the points on the scatter plot, and the widths of the effect lines and genome-wide line.
56+
57+
58+
```python
59+
import pandas as pd
60+
import dash_bio as dashbio
61+
62+
df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/volcano_data1.csv')
63+
64+
dashbio.VolcanoPlot(
65+
dataframe=df,
66+
point_size=10,
67+
effect_size_line_width=4,
68+
genomewideline_width=2
69+
)
70+
```
71+
72+
## VolcanoPlot with Dash
73+
74+
```python no_display=true
75+
from IPython.display import IFrame
76+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
77+
IFrame(snippet_url + 'bio-volcano', width='100%', height=630)
78+
```

doc/requirements.txt

+2
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
plotly==5.3.1
22
jupytext==1.1.1
3+
jupyter-client<7
34
jupyter
45
notebook
56
pandas==1.0.3
@@ -32,3 +33,4 @@ pooch
3233
wget
3334
nbconvert==5.6.1
3435
orjson
36+
dash-bio

packages/python/plotly/plotly/io/_json.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -112,7 +112,7 @@ def to_json_plotly(plotly_object, pretty=False, engine=None):
112112
# Dump to a JSON string and return
113113
# --------------------------------
114114
if engine == "json":
115-
opts = {"sort_keys": True}
115+
opts = {}
116116
if pretty:
117117
opts["indent"] = 2
118118
else:
@@ -124,7 +124,7 @@ def to_json_plotly(plotly_object, pretty=False, engine=None):
124124
return json.dumps(plotly_object, cls=PlotlyJSONEncoder, **opts)
125125
elif engine == "orjson":
126126
JsonConfig.validate_orjson()
127-
opts = orjson.OPT_SORT_KEYS | orjson.OPT_SERIALIZE_NUMPY
127+
opts = orjson.OPT_NON_STR_KEYS | orjson.OPT_SERIALIZE_NUMPY
128128

129129
if pretty:
130130
opts |= orjson.OPT_INDENT_2
@@ -462,7 +462,7 @@ def clean_to_json_compatible(obj, **kwargs):
462462
return obj
463463

464464
if isinstance(obj, dict):
465-
return {str(k): clean_to_json_compatible(v, **kwargs) for k, v in obj.items()}
465+
return {k: clean_to_json_compatible(v, **kwargs) for k, v in obj.items()}
466466
elif isinstance(obj, (list, tuple)):
467467
if obj:
468468
# Must process list recursively even though it may be slow

packages/python/plotly/plotly/tests/test_core/test_graph_objs/test_template.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -356,7 +356,7 @@ def test_move_nested_trace_properties(self):
356356
},
357357
)
358358

359-
self.assertEqual(pio.to_json(templated_fig), pio.to_json(expected_fig))
359+
self.assertEqual(templated_fig.to_dict(), expected_fig.to_dict())
360360

361361
def test_move_nested_trace_properties_existing_traces(self):
362362
fig = go.Figure(

0 commit comments

Comments
 (0)