|
| 1 | +--- |
| 2 | +jupyter: |
| 3 | + jupytext: |
| 4 | + notebook_metadata_filter: all |
| 5 | + text_representation: |
| 6 | + extension: .md |
| 7 | + format_name: markdown |
| 8 | + format_version: '1.3' |
| 9 | + jupytext_version: 1.14.1 |
| 10 | + kernelspec: |
| 11 | + display_name: Python 3 (ipykernel) |
| 12 | + language: python |
| 13 | + name: python3 |
| 14 | + language_info: |
| 15 | + codemirror_mode: |
| 16 | + name: ipython |
| 17 | + version: 3 |
| 18 | + file_extension: .py |
| 19 | + mimetype: text/x-python |
| 20 | + name: python |
| 21 | + nbconvert_exporter: python |
| 22 | + pygments_lexer: ipython3 |
| 23 | + version: 3.8.0 |
| 24 | + plotly: |
| 25 | + description: How to create dumbbell plots in Python with Plotly. |
| 26 | + display_as: basic |
| 27 | + language: python |
| 28 | + layout: base |
| 29 | + name: Dumbbell Plots |
| 30 | + order: 19 |
| 31 | + page_type: example_index |
| 32 | + permalink: python/dumbbell-plots/ |
| 33 | + thumbnail: thumbnail/dumbbell-plot.jpg |
| 34 | +--- |
| 35 | + |
| 36 | +## Basic Dumbbell Plot |
| 37 | + |
| 38 | + |
| 39 | +Dumbbell plots are useful for demonstrating change between two sets of data points, for example, the population change for a selection of countries for two different years |
| 40 | + |
| 41 | +In this example, we compare life expectancy in 1952 with life expectancy in 2002 for countries in Europe. |
| 42 | + |
| 43 | +```python |
| 44 | +import plotly.graph_objects as go |
| 45 | +from plotly import data |
| 46 | + |
| 47 | +import pandas as pd |
| 48 | + |
| 49 | +df = data.gapminder() |
| 50 | +df = df.loc[(df.continent == "Europe") & (df.year.isin([1952, 2002]))] |
| 51 | + |
| 52 | +countries = ( |
| 53 | + df.loc[(df.continent == "Europe") & (df.year.isin([2002]))] |
| 54 | + .sort_values(by=["lifeExp"], ascending=True)["country"] |
| 55 | + .unique() |
| 56 | +) |
| 57 | + |
| 58 | +data = {"x": [], "y": [], "colors": [], "years": []} |
| 59 | + |
| 60 | +for country in countries: |
| 61 | + data["x"].extend( |
| 62 | + [ |
| 63 | + df.loc[(df.year == 1952) & (df.country == country)]["lifeExp"].values[0], |
| 64 | + df.loc[(df.year == 2002) & (df.country == country)]["lifeExp"].values[0], |
| 65 | + None, |
| 66 | + ] |
| 67 | + ) |
| 68 | + data["y"].extend([country, country, None]), |
| 69 | + data["colors"].extend(["green", "blue", "brown"]), |
| 70 | + data["years"].extend(["1952", "2002", None]) |
| 71 | + |
| 72 | +fig = go.Figure( |
| 73 | + data=[ |
| 74 | + go.Scatter( |
| 75 | + x=data["x"], |
| 76 | + y=data["y"], |
| 77 | + mode="lines", |
| 78 | + marker=dict( |
| 79 | + color="grey", |
| 80 | + ), |
| 81 | + ), |
| 82 | + go.Scatter( |
| 83 | + x=data["x"], |
| 84 | + y=data["y"], |
| 85 | + mode="markers+text", |
| 86 | + marker=dict( |
| 87 | + color=data["colors"], |
| 88 | + size=10, |
| 89 | + ), |
| 90 | + hovertemplate="""Country: %{y} <br> Life Expectancy: %{x} <br><extra></extra>""", |
| 91 | + ), |
| 92 | + ] |
| 93 | +) |
| 94 | + |
| 95 | +fig.update_layout( |
| 96 | + title="Life Expectancy in Europe: 1952 and 2002", |
| 97 | + width=1000, |
| 98 | + height=1000, |
| 99 | + showlegend=False, |
| 100 | +) |
| 101 | + |
| 102 | +fig.show() |
| 103 | + |
| 104 | +``` |
| 105 | + |
| 106 | +## Dumbbell Plot with Arrow Markers |
| 107 | + |
| 108 | +*Note: The `arrow`, `angleref`, and `standoff` properties used on the `marker` in this example are new in 5.11* |
| 109 | + |
| 110 | +In this example, we add arrow markers to the plot. The first trace adds the lines connecting the data points and arrow markers. |
| 111 | +The second trace adds circle markers. On the first trace, we use `standoff=8` to position the arrow marker back from the data point. |
| 112 | +For the arrow marker to point directly at the circle marker, this value should be half the circle marker size. |
| 113 | + |
| 114 | +```python |
| 115 | +import pandas as pd |
| 116 | +import plotly.graph_objects as go |
| 117 | +from plotly import data |
| 118 | + |
| 119 | +df = data.gapminder() |
| 120 | +df = df.loc[(df.continent == "Europe") & (df.year.isin([1952, 2002]))] |
| 121 | + |
| 122 | +countries = ( |
| 123 | + df.loc[(df.continent == "Europe") & (df.year.isin([2002]))] |
| 124 | + .sort_values(by=["lifeExp"], ascending=True)["country"] |
| 125 | + .unique() |
| 126 | +) |
| 127 | + |
| 128 | +data = {"x": [], "y": [], "colors": [], "years": []} |
| 129 | + |
| 130 | +for country in countries: |
| 131 | + data["x"].extend( |
| 132 | + [ |
| 133 | + df.loc[(df.year == 1952) & (df.country == country)]["lifeExp"].values[0], |
| 134 | + df.loc[(df.year == 2002) & (df.country == country)]["lifeExp"].values[0], |
| 135 | + None, |
| 136 | + ] |
| 137 | + ) |
| 138 | + data["y"].extend([country, country, None]), |
| 139 | + data["colors"].extend(["silver", "lightskyblue", "white"]), |
| 140 | + data["years"].extend(["1952", "2002", None]) |
| 141 | + |
| 142 | +fig = go.Figure( |
| 143 | + data=[ |
| 144 | + go.Scatter( |
| 145 | + x=data["x"], |
| 146 | + y=data["y"], |
| 147 | + mode="markers+lines", |
| 148 | + marker=dict( |
| 149 | + symbol="arrow", color="black", size=16, angleref="previous", standoff=8 |
| 150 | + ), |
| 151 | + ), |
| 152 | + go.Scatter( |
| 153 | + x=data["x"], |
| 154 | + y=data["y"], |
| 155 | + text=data["years"], |
| 156 | + mode="markers", |
| 157 | + marker=dict( |
| 158 | + color=data["colors"], |
| 159 | + size=16, |
| 160 | + ), |
| 161 | + hovertemplate="""Country: %{y} <br> Life Expectancy: %{x} <br> Year: %{text} <br><extra></extra>""", |
| 162 | + ), |
| 163 | + ] |
| 164 | +) |
| 165 | + |
| 166 | +fig.update_layout( |
| 167 | + title="Life Expectancy in Europe: 1952 and 2002", |
| 168 | + width=1000, |
| 169 | + height=1000, |
| 170 | + showlegend=False, |
| 171 | +) |
| 172 | + |
| 173 | + |
| 174 | +fig.show() |
| 175 | + |
| 176 | +``` |
0 commit comments