diff --git a/CHANGELOG.md b/CHANGELOG.md index 30f70fd37d3..e34d54b6b4f 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,6 +2,17 @@ All notable changes to this project will be documented in this file. This project adheres to [Semantic Versioning](http://semver.org/). +## [next] - ??? + +### Added + - dash-bio posts in /doc/python/{alignment-chart.md,circos.md,clustergram.md,molecular-visualizations.md,volacano-plot.md} + +### Fixed + - Fixed error when serializing dict with mix of string and non-string keys [#3380](https://github.com/plotly/plotly.py/issues/3380) + +### Updated + - The JSON serialization engines no longer sort their keys [#3380](https://github.com/plotly/plotly.py/issues/3380) + ## [5.3.1] - 2021-08-31 ### Updated diff --git a/doc/python/bio-alignment-chart.md b/doc/python/bio-alignment-chart.md new file mode 100644 index 00000000000..5ab71618bab --- /dev/null +++ b/doc/python/bio-alignment-chart.md @@ -0,0 +1,62 @@ +--- +jupyter: + jupytext: + notebook_metadata_filter: all + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.0 + kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 + language_info: + codemirror_mode: + name: ipython + version: 3 + file_extension: .py + mimetype: text/x-python + name: python + nbconvert_exporter: python + pygments_lexer: ipython3 + version: 3.9.7 + plotly: + display_as: bio + language: python + layout: base + name: Alignment Chart + order: 1 + page_type: u-guide + permalink: python/alignment-chart/ + thumbnail: thumbnail/alignment-chart.png +--- + +## Alignment Viewer (link to dash alignment section below) + +The Alignment Viewer (MSA) component is used to align multiple genomic or proteomic sequences from a FASTA or Clustal file. Among its extensive set of features, the multiple sequence alignment viewer can display multiple subplots showing gap and conservation info, alongside industry standard colorscale support and consensus sequence. No matter what size your alignment is, Alignment Viewer is able to display your genes or proteins snappily thanks to the underlying WebGL architecture powering the component. You can quickly scroll through your long sequence with a slider or a heatmap overview. + +Note that the AlignmentChart only returns a chart of the sequence, while AlignmentViewer has integrated controls for colorscale, heatmaps, and subplots allowing you to interactively control your sequences. + +## Bar Chart for conservation visualization + +```python +import plotly.express as px +import pandas as pd + +df = (pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Genetic/gene_conservation.csv') + .set_index('0') + .loc[['consensus','conservation']] + .T) + +fig = px.bar(df, labels={ 'index': 'base' }, hover_name='consensus', y='conservation') +fig.show() +``` + +## Alignment Chart in dash_bio + +```python no_display=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'bio-alignmentchart', width='100%', height=630) +``` diff --git a/doc/python/bio-clustergram.md b/doc/python/bio-clustergram.md new file mode 100644 index 00000000000..d98b6a58268 --- /dev/null +++ b/doc/python/bio-clustergram.md @@ -0,0 +1,114 @@ +--- +jupyter: + jupytext: + notebook_metadata_filter: all + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.0 + kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 + language_info: + codemirror_mode: + name: ipython + version: 3 + file_extension: .py + mimetype: text/x-python + name: python + nbconvert_exporter: python + pygments_lexer: ipython3 + version: 3.9.7 + plotly: + display_as: bio + language: python + layout: base + name: Clustergram + order: 1 + page_type: u-guide + permalink: python/clustergram/ + thumbnail: thumbnail/clustergram.png +--- + +## Default Clustergram +A clustergram is a combination heatmap-dendrogram that is commonly used in gene expression data. The hierarchical clustering that is represented by the dendrograms can be used to identify groups of genes with related expression levels. The Dash Bio Clustergram component is a Python-based component that uses plotly.py to generate a figure. It takes as input a two-dimensional numpy array of floating-point values. Imputation of missing data and computation of hierarchical clustering both occur within the component itself. Clusters that meet or exceed a user-defined threshold of similarity comprise single traces in the corresponding dendrogram, and can be highlighted with annotations. The user can specify additional parameters to customize the metrics and methods used to compute parts of the clustering, such as the pairwise distance between observations and the linkage matrix. + +```python +import pandas as pd +import dash_bio + + +df = pd.read_csv( + 'https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/' + + 'clustergram_brain_cancer.csv', +) + +dash_bio.Clustergram( + data=df, + column_labels=list(df.columns.values), + row_labels=list(df.index), + height=800, + width=700 +) +``` + +## Dendrogram Cluster Colors/Line Widths +Change the colors of the dendrogram traces that are used to represent clusters, and configure their line widths. + + +```python +import pandas as pd +import dash_bio + +df = pd.read_csv( + 'https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/' + + 'clustergram_brain_cancer.csv', +) + +dash_bio.Clustergram( + data=df, + column_labels=list(df.columns.values), + row_labels=list(df.index), + height=800, + width=700, + color_list={ + 'row': ['#636EFA', '#00CC96', '#19D3F3'], + 'col': ['#AB63FA', '#EF553B'], + 'bg': '#506784' + }, + line_width=2 +) +``` + +## Relative Dendrogram Size +Change the relative width and height of, respectively, the row and column dendrograms compared to the width and height of the heatmap. + + +```python +import pandas as pd +import dash_bio + +df = pd.read_csv( + 'https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/' + + 'clustergram_brain_cancer.csv', +) + +dash_bio.Clustergram( + data=df, + column_labels=list(df.columns.values), + row_labels=list(df.index), + height=800, + width=700, + display_ratio=[0.1, 0.7] +) +``` + +## Clustergram with Dash + +```python no_display=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'bio-clustergram', width='100%', height=630) +``` diff --git a/doc/python/bio-manhattanplot.md b/doc/python/bio-manhattanplot.md new file mode 100644 index 00000000000..3da262735ca --- /dev/null +++ b/doc/python/bio-manhattanplot.md @@ -0,0 +1,75 @@ +--- +jupyter: + celltoolbar: Tags + jupytext: + notebook_metadata_filter: all + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.0 + kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 + language_info: + codemirror_mode: + name: ipython + version: 3 + file_extension: .py + mimetype: text/x-python + name: python + nbconvert_exporter: python + pygments_lexer: ipython3 + version: 3.9.7 + plotly: + display_as: bio + language: python + layout: base + name: Manhattan Plot + order: 1 + page_type: u-guide + permalink: python/manhattan-plot/ + thumbnail: thumbnail/manhttan-plot.png +--- + +## Manhattan Plot +ManhattanPlot allows you to visualize genome-wide association studies (GWAS) efficiently. Using WebGL under the hood, you can interactively explore overviews of massive datasets comprising hundreds of thousands of points at once, or take a closer look at a small subset of your data. Hover data and click data are accessible from within the Dash app. + +```python +import pandas as pd +import dash_bio as dashbio + +df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv') + + +dashbio.ManhattanPlot( + dataframe=df, +) +``` + +## Highlighted points color, and colors of the suggestive line and the genome-wide line. +Change the color of the points that are considered significant. + +```python +import pandas as pd +import dash_bio as dashbio + + +df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv') + +dashbio.ManhattanPlot( + dataframe=df, + highlight_color='#00FFAA', + suggestiveline_color='#AA00AA', + genomewideline_color='#AA5500' +) +``` + +## ManhattanPlot with Dash + +```python no_display=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'bio-manhattanplot', width='100%', height=630) +``` diff --git a/doc/python/bio-volcano-plot.md b/doc/python/bio-volcano-plot.md new file mode 100644 index 00000000000..497d7e3307d --- /dev/null +++ b/doc/python/bio-volcano-plot.md @@ -0,0 +1,78 @@ +--- +jupyter: + celltoolbar: Tags + jupytext: + notebook_metadata_filter: all + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.0 + kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 + language_info: + codemirror_mode: + name: ipython + version: 3 + file_extension: .py + mimetype: text/x-python + name: python + nbconvert_exporter: python + pygments_lexer: ipython3 + version: 3.9.7 + plotly: + display_as: bio + language: python + layout: base + name: Volcano Plot + order: 1 + page_type: u-guide + permalink: python/volcano-plot/ + thumbnail: thumbnail/volcano-plot.png +--- + +## VolcanoPlot +Volcano Plot interactively identifies clinically meaningful markers in genomic experiments, i.e., markers that are statistically significant and have an effect size greater than some threshold. Specifically, volcano plots depict the negative log-base-10 p-values plotted against their effect size. + +```python +import pandas as pd +import dash_bio + + +df = pd.read_csv( + 'https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/' + + 'volcano_data1.csv' +) + +dash_bio.VolcanoPlot( + dataframe=df, +) +``` + +## Point Sizes And Line Widths +Change the size of the points on the scatter plot, and the widths of the effect lines and genome-wide line. + + +```python +import pandas as pd +import dash_bio as dashbio + +df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/volcano_data1.csv') + +dashbio.VolcanoPlot( + dataframe=df, + point_size=10, + effect_size_line_width=4, + genomewideline_width=2 +) +``` + +## VolcanoPlot with Dash + +```python no_display=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'bio-volcano', width='100%', height=630) +``` diff --git a/doc/requirements.txt b/doc/requirements.txt index b207fc5a9e2..5c6bf05af92 100644 --- a/doc/requirements.txt +++ b/doc/requirements.txt @@ -1,5 +1,6 @@ plotly==5.3.1 jupytext==1.1.1 +jupyter-client<7 jupyter notebook pandas==1.0.3 @@ -32,3 +33,4 @@ pooch wget nbconvert==5.6.1 orjson +dash-bio diff --git a/packages/python/plotly/plotly/io/_json.py b/packages/python/plotly/plotly/io/_json.py index 63c70101dd8..c24fc6c9102 100644 --- a/packages/python/plotly/plotly/io/_json.py +++ b/packages/python/plotly/plotly/io/_json.py @@ -112,7 +112,7 @@ def to_json_plotly(plotly_object, pretty=False, engine=None): # Dump to a JSON string and return # -------------------------------- if engine == "json": - opts = {"sort_keys": True} + opts = {} if pretty: opts["indent"] = 2 else: @@ -124,7 +124,7 @@ def to_json_plotly(plotly_object, pretty=False, engine=None): return json.dumps(plotly_object, cls=PlotlyJSONEncoder, **opts) elif engine == "orjson": JsonConfig.validate_orjson() - opts = orjson.OPT_SORT_KEYS | orjson.OPT_SERIALIZE_NUMPY + opts = orjson.OPT_NON_STR_KEYS | orjson.OPT_SERIALIZE_NUMPY if pretty: opts |= orjson.OPT_INDENT_2 @@ -462,7 +462,7 @@ def clean_to_json_compatible(obj, **kwargs): return obj if isinstance(obj, dict): - return {str(k): clean_to_json_compatible(v, **kwargs) for k, v in obj.items()} + return {k: clean_to_json_compatible(v, **kwargs) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): if obj: # Must process list recursively even though it may be slow diff --git a/packages/python/plotly/plotly/tests/test_core/test_graph_objs/test_template.py b/packages/python/plotly/plotly/tests/test_core/test_graph_objs/test_template.py index a3061dfe5aa..2cecffae58e 100644 --- a/packages/python/plotly/plotly/tests/test_core/test_graph_objs/test_template.py +++ b/packages/python/plotly/plotly/tests/test_core/test_graph_objs/test_template.py @@ -356,7 +356,7 @@ def test_move_nested_trace_properties(self): }, ) - self.assertEqual(pio.to_json(templated_fig), pio.to_json(expected_fig)) + self.assertEqual(templated_fig.to_dict(), expected_fig.to_dict()) def test_move_nested_trace_properties_existing_traces(self): fig = go.Figure( diff --git a/packages/python/plotly/plotly/tests/test_io/test_deepcopy_pickle.py b/packages/python/plotly/plotly/tests/test_io/test_deepcopy_pickle.py index 4cbccdd2baa..245f6aaaa14 100644 --- a/packages/python/plotly/plotly/tests/test_io/test_deepcopy_pickle.py +++ b/packages/python/plotly/plotly/tests/test_io/test_deepcopy_pickle.py @@ -38,7 +38,7 @@ def test_deepcopy_figure(fig1): fig_copied = copy.deepcopy(fig1) # Contents should be equal - assert pio.to_json(fig_copied) == pio.to_json(fig1) + assert fig_copied.to_dict() == fig1.to_dict() # Identities should be distinct assert fig_copied is not fig1 @@ -50,7 +50,7 @@ def test_deepcopy_figure_subplots(fig_subplots): fig_copied = copy.deepcopy(fig_subplots) # Contents should be equal - assert pio.to_json(fig_copied) == pio.to_json(fig_subplots) + assert fig_copied.to_dict() == fig_subplots.to_dict() # Subplot metadata should be equal assert fig_subplots._grid_ref == fig_copied._grid_ref @@ -66,7 +66,7 @@ def test_deepcopy_figure_subplots(fig_subplots): fig_copied.add_bar(y=[0, 0, 1], row=1, col=2) # And contents should be still equal - assert pio.to_json(fig_copied) == pio.to_json(fig_subplots) + assert fig_copied.to_dict() == fig_subplots.to_dict() def test_deepcopy_layout(fig1): @@ -91,21 +91,21 @@ def test_pickle_figure_round_trip(fig1): fig_copied = pickle.loads(pickle.dumps(fig1)) # Contents should be equal - assert pio.to_json(fig_copied) == pio.to_json(fig1) + assert fig_copied.to_dict() == fig1.to_dict() def test_pickle_figure_subplots_round_trip(fig_subplots): fig_copied = pickle.loads(pickle.dumps(fig_subplots)) # Contents should be equal - assert pio.to_json(fig_copied) == pio.to_json(fig_subplots) + assert fig_copied.to_dict() == fig_subplots.to_dict() # Should be possible to add new trace to subplot location fig_subplots.add_bar(y=[0, 0, 1], row=1, col=2) fig_copied.add_bar(y=[0, 0, 1], row=1, col=2) # And contents should be still equal - assert pio.to_json(fig_copied) == pio.to_json(fig_subplots) + assert fig_copied.to_dict() == fig_subplots.to_dict() def test_pickle_layout(fig1): diff --git a/packages/python/plotly/plotly/tests/test_io/test_to_from_json.py b/packages/python/plotly/plotly/tests/test_io/test_to_from_json.py index 1c39203f14a..a932282bd36 100644 --- a/packages/python/plotly/plotly/tests/test_io/test_to_from_json.py +++ b/packages/python/plotly/plotly/tests/test_io/test_to_from_json.py @@ -29,9 +29,8 @@ def fig1(request): opts = { "separators": (",", ":"), "cls": plotly.utils.PlotlyJSONEncoder, - "sort_keys": True, } -pretty_opts = {"indent": 2, "cls": plotly.utils.PlotlyJSONEncoder, "sort_keys": True} +pretty_opts = {"indent": 2, "cls": plotly.utils.PlotlyJSONEncoder} # to_json diff --git a/packages/python/plotly/plotly/tests/test_io/test_to_from_plotly_json.py b/packages/python/plotly/plotly/tests/test_io/test_to_from_plotly_json.py index b97b76b8228..e21b556c6b8 100644 --- a/packages/python/plotly/plotly/tests/test_io/test_to_from_plotly_json.py +++ b/packages/python/plotly/plotly/tests/test_io/test_to_from_plotly_json.py @@ -135,7 +135,7 @@ def datetime_array(request, datetime_value): def test_graph_object_input(engine, pretty): scatter = go.Scatter(x=[1, 2, 3], y=np.array([4, 5, 6])) result = pio.to_json_plotly(scatter, engine=engine) - expected = """{"type":"scatter","x":[1,2,3],"y":[4,5,6]}""" + expected = """{"x":[1,2,3],"y":[4,5,6],"type":"scatter"}""" assert result == expected check_roundtrip(result, engine=engine, pretty=pretty) @@ -215,3 +215,9 @@ def test_nonstring_key(engine, pretty): value = build_test_dict({0: 1}) result = pio.to_json_plotly(value, engine=engine) check_roundtrip(result, engine=engine, pretty=pretty) + + +def test_mixed_string_nonstring_key(engine, pretty): + value = build_test_dict({0: 1, "a": 2}) + result = pio.to_json_plotly(value, engine=engine) + check_roundtrip(result, engine=engine, pretty=pretty) diff --git a/packages/python/plotly/plotly/tests/test_optional/test_offline/test_offline.py b/packages/python/plotly/plotly/tests/test_optional/test_offline/test_offline.py index dd9204947f5..1f2a0bcc12b 100644 --- a/packages/python/plotly/plotly/tests/test_optional/test_offline/test_offline.py +++ b/packages/python/plotly/plotly/tests/test_optional/test_offline/test_offline.py @@ -89,7 +89,6 @@ def test_default_mpl_plot_generates_expected_html(self): # just make sure a few of the parts are in here # like PlotlyOfflineTestCase(TestCase) in test_core self.assertTrue(data_json in html) # data is in there - self.assertTrue(layout_json in html) # layout is in there too self.assertTrue(PLOTLYJS in html) # and the source code # and it's an doc self.assertTrue(html.startswith("") and html.endswith(""))