layout | title | displayTitle |
---|---|---|
global |
Classification and regression |
Classification and regression |
\[ \newcommand{\R}{\mathbb{R}} \newcommand{\E}{\mathbb{E}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \newcommand{\wv}{\mathbf{w}} \newcommand{\av}{\mathbf{\alpha}} \newcommand{\bv}{\mathbf{b}} \newcommand{\N}{\mathbb{N}} \newcommand{\id}{\mathbf{I}} \newcommand{\ind}{\mathbf{1}} \newcommand{\0}{\mathbf{0}} \newcommand{\unit}{\mathbf{e}} \newcommand{\one}{\mathbf{1}} \newcommand{\zero}{\mathbf{0}} \]
This page covers algorithms for Classification and Regression. It also includes sections discussing specific classes of algorithms, such as linear methods, trees, and ensembles.
Table of Contents
- This will become a table of contents (this text will be scraped). {:toc}
Logistic regression is a popular method to predict a categorical response. It is a special case of Generalized Linear models that predicts the probability of the outcomes.
In spark.ml
logistic regression can be used to predict a binary outcome by using binomial logistic regression, or it can be used to predict a multiclass outcome by using multinomial logistic regression. Use the family
parameter to select between these two algorithms, or leave it unset and Spark will infer the correct variant.
Multinomial logistic regression can be used for binary classification by setting the
family
param to "multinomial". It will produce two sets of coefficients and two intercepts.
When fitting LogisticRegressionModel without intercept on dataset with constant nonzero column, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but different from LIBSVM.
For more background and more details about the implementation of binomial logistic regression, refer to the documentation of logistic regression in spark.mllib
.
Examples
The following example shows how to train binomial and multinomial logistic regression
models for binary classification with elastic net regularization. elasticNetParam
corresponds to
regParam
corresponds to
More details on parameters can be found in the Scala API documentation.
{% include_example scala/org/apache/spark/examples/ml/LogisticRegressionWithElasticNetExample.scala %}
More details on parameters can be found in the Java API documentation.
{% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionWithElasticNetExample.java %}
More details on parameters can be found in the Python API documentation.
{% include_example python/ml/logistic_regression_with_elastic_net.py %}
More details on parameters can be found in the R API documentation.
{% include_example binomial r/ml/logit.R %}
The spark.ml
implementation of logistic regression also supports
extracting a summary of the model over the training set. Note that the
predictions and metrics which are stored as DataFrame
in
LogisticRegressionSummary
are annotated @transient
and hence
only available on the driver.
LogisticRegressionTrainingSummary
provides a summary for a
LogisticRegressionModel
.
In the case of binary classification, certain additional metrics are
available, e.g. ROC curve. The binary summary can be accessed via the
binarySummary
method. See BinaryLogisticRegressionTrainingSummary
.
Continuing the earlier example:
{% include_example scala/org/apache/spark/examples/ml/LogisticRegressionSummaryExample.scala %}
Continuing the earlier example:
{% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionSummaryExample.java %}
Continuing the earlier example:
{% include_example python/ml/logistic_regression_summary_example.py %}
Multiclass classification is supported via multinomial logistic (softmax) regression. In multinomial logistic regression,
the algorithm produces
Multinomial coefficients are available as
coefficientMatrix
and intercepts are available asinterceptVector
.
coefficients
andintercept
methods on a logistic regression model trained with multinomial family are not supported. UsecoefficientMatrix
andinterceptVector
instead.
The conditional probabilities of the outcome classes
\[ P(Y=k|\mathbf{X}, \boldsymbol{\beta}_k, \beta_{0k}) = \frac{e^{\boldsymbol{\beta}_k \cdot \mathbf{X} + \beta_{0k}}}{\sum_{k'=0}^{K-1} e^{\boldsymbol{\beta}_{k'} \cdot \mathbf{X} + \beta_{0k'}}} \]
We minimize the weighted negative log-likelihood, using a multinomial response model, with elastic-net penalty to control for overfitting.
\[ \min_{\beta, \beta_0} -\left[\sum_{i=1}^L w_i \cdot \log P(Y = y_i|\mathbf{x}_i)\right] + \lambda \left[\frac{1}{2}\left(1 - \alpha\right)||\boldsymbol{\beta}||_2^2 + \alpha ||\boldsymbol{\beta}||_1\right] \]
For a detailed derivation please see here.
Examples
The following example shows how to train a multiclass logistic regression model with elastic net regularization, as well as extract the multiclass training summary for evaluating the model.
More details on parameters can be found in the R API documentation.
{% include_example multinomial r/ml/logit.R %}
Decision trees are a popular family of classification and regression methods.
More information about the spark.ml
implementation can be found further in the section on decision trees.
Examples
The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the DataFrame
which the Decision Tree algorithm can recognize.
More details on parameters can be found in the Scala API documentation.
{% include_example scala/org/apache/spark/examples/ml/DecisionTreeClassificationExample.scala %}
More details on parameters can be found in the Java API documentation.
{% include_example java/org/apache/spark/examples/ml/JavaDecisionTreeClassificationExample.java %}
More details on parameters can be found in the Python API documentation.
{% include_example python/ml/decision_tree_classification_example.py %}
Refer to the R API docs for more details.
{% include_example classification r/ml/decisionTree.R %}
Random forests are a popular family of classification and regression methods.
More information about the spark.ml
implementation can be found further in the section on random forests.
Examples
The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the DataFrame
which the tree-based algorithms can recognize.
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/RandomForestClassifierExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaRandomForestClassifierExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/random_forest_classifier_example.py %}
Refer to the R API docs for more details.
{% include_example classification r/ml/randomForest.R %}
Gradient-boosted trees (GBTs) are a popular classification and regression method using ensembles of decision trees.
More information about the spark.ml
implementation can be found further in the section on GBTs.
Examples
The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the DataFrame
which the tree-based algorithms can recognize.
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/GradientBoostedTreeClassifierExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaGradientBoostedTreeClassifierExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/gradient_boosted_tree_classifier_example.py %}
Refer to the R API docs for more details.
{% include_example classification r/ml/gbt.R %}
Multilayer perceptron classifier (MLPC) is a classifier based on the feedforward artificial neural network.
MLPC consists of multiple layers of nodes.
Each layer is fully connected to the next layer in the network. Nodes in the input layer represent the input data. All other nodes map inputs to outputs
by a linear combination of the inputs with the node's weights $\wv$
and bias $\bv$
and applying an activation function.
This can be written in matrix form for MLPC with $K+1$
layers as follows:
\[ \mathrm{y}(\x) = \mathrm{f_K}(...\mathrm{f_2}(\wv_2^T\mathrm{f_1}(\wv_1^T \x+b_1)+b_2)...+b_K) \]
Nodes in intermediate layers use sigmoid (logistic) function:
\[ \mathrm{f}(z_i) = \frac{1}{1 + e^{-z_i}} \]
Nodes in the output layer use softmax function:
\[ \mathrm{f}(z_i) = \frac{e^{z_i}}{\sum_{k=1}^N e^{z_k}} \]
The number of nodes $N$
in the output layer corresponds to the number of classes.
MLPC employs backpropagation for learning the model. We use the logistic loss function for optimization and L-BFGS as an optimization routine.
Examples
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/MultilayerPerceptronClassifierExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/multilayer_perceptron_classification.py %}
Refer to the R API docs for more details.
{% include_example r/ml/mlp.R %}
A support vector machine constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space, which can be used for classification, regression, or other tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the nearest training-data points of any class (so-called functional margin), since in general the larger the margin the lower the generalization error of the classifier. LinearSVC in Spark ML supports binary classification with linear SVM. Internally, it optimizes the Hinge Loss using OWLQN optimizer.
Examples
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/LinearSVCExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaLinearSVCExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/linearsvc.py %}
Refer to the R API docs for more details.
{% include_example r/ml/svmLinear.R %}
OneVsRest is an example of a machine learning reduction for performing multiclass classification given a base classifier that can perform binary classification efficiently. It is also known as "One-vs-All."
OneVsRest
is implemented as an Estimator
. For the base classifier it takes instances of Classifier
and creates a binary classification problem for each of the k classes. The classifier for class i is trained to predict whether the label is i or not, distinguishing class i from all other classes.
Predictions are done by evaluating each binary classifier and the index of the most confident classifier is output as label.
Examples
The example below demonstrates how to load the
Iris dataset, parse it as a DataFrame and perform multiclass classification using OneVsRest
. The test error is calculated to measure the algorithm accuracy.
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/OneVsRestExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaOneVsRestExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/one_vs_rest_example.py %}
Naive Bayes classifiers are a family of simple
probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence
assumptions between the features. The spark.ml
implementation currently supports both multinomial
naive Bayes
and Bernoulli naive Bayes.
More information can be found in the section on Naive Bayes in MLlib.
Examples
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/NaiveBayesExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaNaiveBayesExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/naive_bayes_example.py %}
Refer to the R API docs for more details.
{% include_example r/ml/naiveBayes.R %}
The interface for working with linear regression models and model summaries is similar to the logistic regression case.
When fitting LinearRegressionModel without intercept on dataset with constant nonzero column by "l-bfgs" solver, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but different from LIBSVM.
Examples
The following example demonstrates training an elastic net regularized linear regression model and extracting model summary statistics.
More details on parameters can be found in the Scala API documentation.
{% include_example scala/org/apache/spark/examples/ml/LinearRegressionWithElasticNetExample.scala %}
More details on parameters can be found in the Java API documentation.
{% include_example java/org/apache/spark/examples/ml/JavaLinearRegressionWithElasticNetExample.java %}
More details on parameters can be found in the Python API documentation.
{% include_example python/ml/linear_regression_with_elastic_net.py %}
Contrasted with linear regression where the output is assumed to follow a Gaussian
distribution, generalized linear models (GLMs) are specifications of linear models where the response variable GeneralizedLinearRegression
interface
allows for flexible specification of GLMs which can be used for various types of
prediction problems including linear regression, Poisson regression, logistic regression, and others.
Currently in spark.ml
, only a subset of the exponential family distributions are supported and they are listed
below.
NOTE: Spark currently only supports up to 4096 features through its GeneralizedLinearRegression
interface, and will throw an exception if this constraint is exceeded. See the advanced section for more details.
Still, for linear and logistic regression, models with an increased number of features can be trained
using the LinearRegression
and LogisticRegression
estimators.
GLMs require exponential family distributions that can be written in their "canonical" or "natural" form, aka natural exponential family distributions. The form of a natural exponential family distribution is given as:
where
where the parameter of interest
Here,
Often, the link function is chosen such that
A GLM finds the regression coefficients
where the parameter of interest
Spark's generalized linear regression interface also provides summary statistics for diagnosing the fit of GLM models, including residuals, p-values, deviances, the Akaike information criterion, and others.
See here for a more comprehensive review of GLMs and their applications.
Family | Response Type | Supported Links | |
---|---|---|---|
Gaussian | Continuous | Identity*, Log, Inverse | |
Binomial | Binary | Logit*, Probit, CLogLog | |
Poisson | Count | Log*, Identity, Sqrt | |
Gamma | Continuous | Inverse*, Idenity, Log | |
Tweedie | Zero-inflated continuous | Power link function | |
* Canonical Link |
Examples
The following example demonstrates training a GLM with a Gaussian response and identity link function and extracting model summary statistics.
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/GeneralizedLinearRegressionExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaGeneralizedLinearRegressionExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/generalized_linear_regression_example.py %}
Refer to the R API docs for more details.
{% include_example r/ml/glm.R %}
Decision trees are a popular family of classification and regression methods.
More information about the spark.ml
implementation can be found further in the section on decision trees.
Examples
The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use a feature transformer to index categorical features, adding metadata to the DataFrame
which the Decision Tree algorithm can recognize.
More details on parameters can be found in the Scala API documentation.
{% include_example scala/org/apache/spark/examples/ml/DecisionTreeRegressionExample.scala %}
More details on parameters can be found in the Java API documentation.
{% include_example java/org/apache/spark/examples/ml/JavaDecisionTreeRegressionExample.java %}
More details on parameters can be found in the Python API documentation.
{% include_example python/ml/decision_tree_regression_example.py %}
Refer to the R API docs for more details.
{% include_example regression r/ml/decisionTree.R %}
Random forests are a popular family of classification and regression methods.
More information about the spark.ml
implementation can be found further in the section on random forests.
Examples
The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use a feature transformer to index categorical features, adding metadata to the DataFrame
which the tree-based algorithms can recognize.
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/RandomForestRegressorExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaRandomForestRegressorExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/random_forest_regressor_example.py %}
Refer to the R API docs for more details.
{% include_example regression r/ml/randomForest.R %}
Gradient-boosted trees (GBTs) are a popular regression method using ensembles of decision trees.
More information about the spark.ml
implementation can be found further in the section on GBTs.
Examples
Note: For this example dataset, GBTRegressor
actually only needs 1 iteration, but that will not
be true in general.
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/GradientBoostedTreeRegressorExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaGradientBoostedTreeRegressorExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/gradient_boosted_tree_regressor_example.py %}
Refer to the R API docs for more details.
{% include_example regression r/ml/gbt.R %}
In spark.ml
, we implement the Accelerated failure time (AFT)
model which is a parametric survival regression model for censored data.
It describes a model for the log of survival time, so it's often called a
log-linear model for survival analysis. Different from a
Proportional hazards model
designed for the same purpose, the AFT model is easier to parallelize
because each instance contributes to the objective function independently.
Given the values of the covariates \[ L(\beta,\sigma)=\prod_{i=1}^n[\frac{1}{\sigma}f_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})]^{\delta_{i}}S_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})^{1-\delta_{i}} \]
Where \[ \iota(\beta,\sigma)=\sum_{i=1}^{n}[-\delta_{i}\log\sigma+\delta_{i}\log{f_{0}}(\epsilon_{i})+(1-\delta_{i})\log{S_{0}(\epsilon_{i})}] \]
Where
The most commonly used AFT model is based on the Weibull distribution of the survival time.
The Weibull distribution for lifetime corresponds to the extreme value distribution for the
log of the lifetime, and the \[ S_{0}(\epsilon_{i})=\exp(-e^{\epsilon_{i}}) \]
the \[ f_{0}(\epsilon_{i})=e^{\epsilon_{i}}\exp(-e^{\epsilon_{i}}) \]
The log-likelihood function for AFT model with a Weibull distribution of lifetime is:
\[ \iota(\beta,\sigma)= -\sum_{i=1}^n[\delta_{i}\log\sigma-\delta_{i}\epsilon_{i}+e^{\epsilon_{i}}] \]
Due to minimizing the negative log-likelihood equivalent to maximum a posteriori probability,
the loss function we use to optimize is \[ \frac{\partial (-\iota)}{\partial \beta}=\sum_{1=1}^{n}[\delta_{i}-e^{\epsilon_{i}}]\frac{x_{i}}{\sigma} \]
\[ \frac{\partial (-\iota)}{\partial (\log\sigma)}=\sum_{i=1}^{n}[\delta_{i}+(\delta_{i}-e^{\epsilon_{i}})\epsilon_{i}] \]
The AFT model can be formulated as a convex optimization problem,
i.e. the task of finding a minimizer of a convex function
When fitting AFTSurvivalRegressionModel without intercept on dataset with constant nonzero column, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is different from R survival::survreg.
Examples
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/AFTSurvivalRegressionExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaAFTSurvivalRegressionExample.java %}
Refer to the Python API docs for more details.
{% include_example python/ml/aft_survival_regression.py %}
Refer to the R API docs for more details.
{% include_example r/ml/survreg.R %}
Isotonic regression
belongs to the family of regression algorithms. Formally isotonic regression is a problem where
given a finite set of real numbers $Y = {y_1, y_2, ..., y_n}$
representing observed responses
and $X = {x_1, x_2, ..., x_n}$
the unknown response values to be fitted
finding a function that minimises
\begin{equation} f(x) = \sum_{i=1}^n w_i (y_i - x_i)^2 \end{equation}
with respect to complete order subject to
$x_1\le x_2\le ...\le x_n$
where $w_i$
are positive weights.
The resulting function is called isotonic regression and it is unique.
It can be viewed as least squares problem under order restriction.
Essentially isotonic regression is a
monotonic function
best fitting the original data points.
We implement a
pool adjacent violators algorithm
which uses an approach to
parallelizing isotonic regression.
The training input is a DataFrame which contains three columns
label, features and weight. Additionally IsotonicRegression algorithm has one
optional parameter called
Training returns an IsotonicRegressionModel that can be used to predict labels for both known and unknown features. The result of isotonic regression is treated as piecewise linear function. The rules for prediction therefore are:
- If the prediction input exactly matches a training feature then associated prediction is returned. In case there are multiple predictions with the same feature then one of them is returned. Which one is undefined (same as java.util.Arrays.binarySearch).
- If the prediction input is lower or higher than all training features then prediction with lowest or highest feature is returned respectively. In case there are multiple predictions with the same feature then the lowest or highest is returned respectively.
- If the prediction input falls between two training features then prediction is treated as piecewise linear function and interpolated value is calculated from the predictions of the two closest features. In case there are multiple values with the same feature then the same rules as in previous point are used.
Examples
Refer to the IsotonicRegression
Scala docs for details on the API.
{% include_example scala/org/apache/spark/examples/ml/IsotonicRegressionExample.scala %}
Refer to the IsotonicRegression
Java docs for details on the API.
{% include_example java/org/apache/spark/examples/ml/JavaIsotonicRegressionExample.java %}
Refer to the IsotonicRegression
Python docs for more details on the API.
{% include_example python/ml/isotonic_regression_example.py %}
Refer to the IsotonicRegression
R API docs for more details on the API.
{% include_example r/ml/isoreg.R %}
We implement popular linear methods such as logistic
regression and linear least squares with
We also include a DataFrame API for Elastic
net, a hybrid
of \[ \alpha \left( \lambda \|\wv\|_1 \right) + (1-\alpha) \left( \frac{\lambda}{2}\|\wv\|_2^2 \right) , \alpha \in [0, 1], \lambda \geq 0 \]
By setting
Decision trees and their ensembles are popular methods for the machine learning tasks of classification and regression. Decision trees are widely used since they are easy to interpret, handle categorical features, extend to the multiclass classification setting, do not require feature scaling, and are able to capture non-linearities and feature interactions. Tree ensemble algorithms such as random forests and boosting are among the top performers for classification and regression tasks.
The spark.ml
implementation supports decision trees for binary and multiclass classification and for regression,
using both continuous and categorical features. The implementation partitions data by rows,
allowing distributed training with millions or even billions of instances.
Users can find more information about the decision tree algorithm in the MLlib Decision Tree guide. The main differences between this API and the original MLlib Decision Tree API are:
- support for ML Pipelines
- separation of Decision Trees for classification vs. regression
- use of DataFrame metadata to distinguish continuous and categorical features
The Pipelines API for Decision Trees offers a bit more functionality than the original API.
In particular, for classification, users can get the predicted probability of each class (a.k.a. class conditional probabilities);
for regression, users can get the biased sample variance of prediction.
Ensembles of trees (Random Forests and Gradient-Boosted Trees) are described below in the Tree ensembles section.
We list the input and output (prediction) column types here. All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.
Param name | Type(s) | Default | Description |
---|---|---|---|
labelCol | Double | "label" | Label to predict |
featuresCol | Vector | "features" | Feature vector |
Param name | Type(s) | Default | Description | Notes |
---|---|---|---|---|
predictionCol | Double | "prediction" | Predicted label | |
rawPredictionCol | Vector | "rawPrediction" | Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction | Classification only |
probabilityCol | Vector | "probability" | Vector of length # classes equal to rawPrediction normalized to a multinomial distribution | Classification only |
varianceCol | Double | The biased sample variance of prediction | Regression only |
The DataFrame API supports two major tree ensemble algorithms: Random Forests and Gradient-Boosted Trees (GBTs).
Both use spark.ml
decision trees as their base models.
Users can find more information about ensemble algorithms in the MLlib Ensemble guide.
In this section, we demonstrate the DataFrame API for ensembles.
The main differences between this API and the original MLlib ensembles API are:
- support for DataFrames and ML Pipelines
- separation of classification vs. regression
- use of DataFrame metadata to distinguish continuous and categorical features
- more functionality for random forests: estimates of feature importance, as well as the predicted probability of each class (a.k.a. class conditional probabilities) for classification.
Random forests
are ensembles of decision trees.
Random forests combine many decision trees in order to reduce the risk of overfitting.
The spark.ml
implementation supports random forests for binary and multiclass classification and for regression,
using both continuous and categorical features.
For more information on the algorithm itself, please see the spark.mllib
documentation on random forests.
We list the input and output (prediction) column types here. All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.
Param name | Type(s) | Default | Description |
---|---|---|---|
labelCol | Double | "label" | Label to predict |
featuresCol | Vector | "features" | Feature vector |
Param name | Type(s) | Default | Description | Notes |
---|---|---|---|---|
predictionCol | Double | "prediction" | Predicted label | |
rawPredictionCol | Vector | "rawPrediction" | Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction | Classification only |
probabilityCol | Vector | "probability" | Vector of length # classes equal to rawPrediction normalized to a multinomial distribution | Classification only |
Gradient-Boosted Trees (GBTs)
are ensembles of decision trees.
GBTs iteratively train decision trees in order to minimize a loss function.
The spark.ml
implementation supports GBTs for binary classification and for regression,
using both continuous and categorical features.
For more information on the algorithm itself, please see the spark.mllib
documentation on GBTs.
We list the input and output (prediction) column types here. All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.
Param name | Type(s) | Default | Description |
---|---|---|---|
labelCol | Double | "label" | Label to predict |
featuresCol | Vector | "features" | Feature vector |
Note that GBTClassifier
currently only supports binary labels.
Param name | Type(s) | Default | Description | Notes |
---|---|---|---|---|
predictionCol | Double | "prediction" | Predicted label |
In the future, GBTClassifier
will also output columns for rawPrediction
and probability
, just as RandomForestClassifier
does.