layout | title | displayTitle |
---|---|---|
global |
PMML model export - RDD-based API |
PMML model export - RDD-based API |
- Table of contents {:toc}
spark.mllib
supports model export to Predictive Model Markup Language (PMML).
The table below outlines the spark.mllib
models that can be exported to PMML and their equivalent PMML model.
`spark.mllib` model | PMML model |
---|---|
KMeansModel | ClusteringModel |
LinearRegressionModel | RegressionModel (functionName="regression") |
RidgeRegressionModel | RegressionModel (functionName="regression") |
LassoModel | RegressionModel (functionName="regression") |
SVMModel | RegressionModel (functionName="classification" normalizationMethod="none") |
Binary LogisticRegressionModel | RegressionModel (functionName="classification" normalizationMethod="logit") |
To export a supported `model` (see table above) to PMML, simply call `model.toPMML`.
As well as exporting the PMML model to a String (model.toPMML
as in the example above), you can export the PMML model to other formats.
Refer to the KMeans
Scala docs and Vectors
Scala docs for details on the API.
Here a complete example of building a KMeansModel and print it out in PMML format: {% include_example scala/org/apache/spark/examples/mllib/PMMLModelExportExample.scala %}
For unsupported models, either you will not find a .toPMML
method or an IllegalArgumentException
will be thrown.