-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathdensenet.py
161 lines (149 loc) · 6.5 KB
/
densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.droprate = dropRate
def forward(self, x):
out = self.conv1(self.relu(self.bn1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
return torch.cat([x, out], 1)
class BottleneckBlock(nn.Module):
def __init__(self, in_planes, out_planes, dropRate=0.0):
super(BottleneckBlock, self).__init__()
inter_planes = out_planes * 4
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, inter_planes, kernel_size=1, stride=1,
padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(inter_planes)
self.conv2 = nn.Conv2d(inter_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.droprate = dropRate
def forward(self, x):
out = self.conv1(self.relu(self.bn1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
out = self.conv2(self.relu(self.bn2(out)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
return torch.cat([x, out], 1)
class TransitionBlock(nn.Module):
def __init__(self, in_planes, out_planes, dropRate=0.0):
super(TransitionBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1,
padding=0, bias=False)
self.droprate = dropRate
def forward(self, x):
out = self.conv1(self.relu(self.bn1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
return F.avg_pool2d(out, 2)
class DenseBlock(nn.Module):
def __init__(self, nb_layers, in_planes, growth_rate, block, dropRate=0.0):
super(DenseBlock, self).__init__()
self.layer = self._make_layer(block, in_planes, growth_rate, nb_layers, dropRate)
def _make_layer(self, block, in_planes, growth_rate, nb_layers, dropRate):
layers = []
for i in range(int(nb_layers)):
layers.append(block(in_planes+i*growth_rate, growth_rate, dropRate))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class DenseNet3(nn.Module):
def __init__(self, depth, num_classes, growth_rate=12,
reduction=0.5, bottleneck=True, dropRate=0.0):
super(DenseNet3, self).__init__()
in_planes = 2 * growth_rate
n = (depth - 4) / 3
if bottleneck == True:
n = n/2
block = BottleneckBlock
else:
block = BasicBlock
# 1st conv before any dense block
self.conv1 = nn.Conv2d(3, in_planes, kernel_size=3, stride=1,
padding=1, bias=False)
# 1st block
self.block1 = DenseBlock(n, in_planes, growth_rate, block, dropRate)
in_planes = int(in_planes+n*growth_rate)
self.trans1 = TransitionBlock(in_planes, int(math.floor(in_planes*reduction)), dropRate=dropRate)
in_planes = int(math.floor(in_planes*reduction))
# 2nd block
self.block2 = DenseBlock(n, in_planes, growth_rate, block, dropRate)
in_planes = int(in_planes+n*growth_rate)
self.trans2 = TransitionBlock(in_planes, int(math.floor(in_planes*reduction)), dropRate=dropRate)
in_planes = int(math.floor(in_planes*reduction))
# 3rd block
self.block3 = DenseBlock(n, in_planes, growth_rate, block, dropRate)
in_planes = int(in_planes+n*growth_rate)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(in_planes, num_classes)
self.in_planes = in_planes
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def forward(self, x):
out = self.conv1(x)
out = self.trans1(self.block1(out))
out = self.trans2(self.block2(out))
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.in_planes)
return self.fc(out)
# function to extact the multiple features
def feature_list(self, x):
out_list = []
out = self.conv1(x)
out_list.append(out)
out = self.trans1(self.block1(out))
out_list.append(out)
out = self.trans2(self.block2(out))
out_list.append(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out_list.append(out)
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.in_planes)
return self.fc(out), out_list
def intermediate_forward(self, x, layer_index):
out = self.conv1(x)
if layer_index == 1:
out = self.trans1(self.block1(out))
elif layer_index == 2:
out = self.trans1(self.block1(out))
out = self.trans2(self.block2(out))
elif layer_index == 3:
out = self.trans1(self.block1(out))
out = self.trans2(self.block2(out))
out = self.block3(out)
out = self.relu(self.bn1(out))
return out
# function to extact the penultimate features
def penultimate_forward(self, x):
out = self.conv1(x)
out = self.trans1(self.block1(out))
out = self.trans2(self.block2(out))
out = self.block3(out)
penultimate = self.relu(self.bn1(out))
out = F.avg_pool2d(penultimate, 8)
out = out.view(-1, self.in_planes)
return self.fc(out), penultimate