-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
185 lines (150 loc) · 5.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import cv2
import numpy as np
from tqdm import tqdm
from random import shuffle
import pickle
import keras
from keras.utils import to_categorical
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
# import zipfile
# with zipfile.ZipFile("data.zip", 'r') as zip_ref:
# zip_ref.extractall("")
IMG_SIZE = 150
LR = 1e-3
batch_size = 16
num_classes = 29
epochs = 5
data_augmentation = False
num_predictions = 20
model_name = 'trained_model.h5'
## Data Preprocessing
#%rm train_data.dat
path = "data"
def create_train_data():
training_data = []
if os.path.exists("train_data.dat"):
file = open('train_data.dat', 'rb')
training_data = pickle.load(file)
file.close()
return training_data
#img_count = 0
for folder in tqdm(os.listdir(path)):
p = path + "/" + folder
files = os.listdir(p)
for i in files:
label = folder
img_loc = p + "/" + i
img = cv2.imread(img_loc,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
training_data.append([np.array(img),np.array(label)])
#img_count += 1
#if img_count > 6000 : break
shuffle(training_data)
file = open('train_data.dat', 'wb')
pickle.dump(training_data, file)
file.close()
return training_data
train_data = create_train_data()
## Split
train = train_data[:-3000]
test = train_data[-3000:]
# Training Data
x_train = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
y_train = [i[1] for i in train]
y_train = to_categorical(y_train,29)
print(y_train)
# Testing Data
x_test = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
y_test = [i[1] for i in test]
print(y_test)
y_test = to_categorical(y_test,29)
print(y_test)
## Model
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(128, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# Initiate RMSprop optimizer
#opt = keras.optimizers.rmsprop(lr=0.001, decay=1e-6)
opt = keras.optimizers.Adam(0.0005, beta_1=0.9, beta_2=0.999, amsgrad=True)
#opt = keras.optimizers.SGD(lr=0.01, momentum=0.0, nesterov=False)
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
zca_epsilon=1e-06, # epsilon for ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
# randomly shift images horizontally (fraction of total width)
width_shift_range=0.1,
# randomly shift images vertically (fraction of total height)
height_shift_range=0.1,
shear_range=0., # set range for random shear
zoom_range=0., # set range for random zoom
channel_shift_range=0., # set range for random channel shifts
# set mode for filling points outside the input boundaries
fill_mode='nearest',
cval=0., # value used for fill_mode = "constant"
horizontal_flip=True, # randomly flip images
vertical_flip=False, # randomly flip images
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
## Check Accuracy
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
# Save model and weights
model.save(model_name)