diff --git a/src/math/Matrices/Matrix.js b/src/math/Matrices/Matrix.js index cf7c691268..b4d0b7d420 100644 --- a/src/math/Matrices/Matrix.js +++ b/src/math/Matrices/Matrix.js @@ -1,3 +1,7 @@ +/** + * @module Math + */ + import { Vector } from "../p5.Vector"; import { MatrixInterface } from "./MatrixInterface"; @@ -15,61 +19,7 @@ if (typeof Float32Array !== "undefined") { GLMAT_ARRAY_TYPE = Float32Array; isMatrixArray = (x) => Array.isArray(x) || x instanceof Float32Array; } -/** - * The `Matrix` class represents a mathematical matrix and provides various methods for matrix operations. - * - * This class extends the `MatrixInterface` and includes methods for creating, manipulating, and performing - * operations on matrices. It supports both 3x3 and 4x4 matrices, as well as general NxN matrices. - * - * @class - * @extends MatrixInterface - * - * @example - * // Creating a 3x3 matrix from an array - * const matrix = new Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); - * - * // Creating a 4x4 identity matrix - * const identityMatrix = new Matrix(4); - * - * // Adding two matrices - * const matrix1 = new Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); - * const matrix2 = new Matrix([9, 8, 7, 6, 5, 4, 3, 2, 1]); - * matrix1.add(matrix2); // matrix1 is now [10, 10, 10, 10, 10, 10, 10, 10, 10] - * - * // Setting an element in the matrix - * matrix.setElement(0, 10); // matrix is now [10, 2, 3, 4, 5, 6, 7, 8, 9] - * - * // Resetting the matrix to an identity matrix - * matrix.reset(); - * - * // Getting the diagonal elements of the matrix - * const diagonal = matrix.diagonal(); // [1, 1, 1] - * - * // Transposing the matrix - * matrix.transpose(); - * - * // Multiplying two matrices - * matrix1.mult(matrix2); - * - * // Inverting the matrix - * matrix.invert(); - * - * // Scaling the matrix - * matrix.scale(2, 2, 2); - * - * // Rotating the matrix around an axis - * matrix.rotate4x4(Math.PI / 4, 1, 0, 0); - * - * // Applying a perspective transformation - * matrix.perspective(Math.PI / 4, 1, 0.1, 100); - * - * // Applying an orthographic transformation - * matrix.ortho(-1, 1, -1, 1, 0.1, 100); - * - * // Multiplying a vector by the matrix - * const vector = new Vector(1, 2, 3); - * const result = matrix.multiplyPoint(vector); - */ + export class Matrix extends MatrixInterface { matrix; #sqDimention; @@ -90,7 +40,7 @@ export class Matrix extends MatrixInterface { } /** - * Getter for a 3x3 matrix. + * Returns the 3x3 matrix if the dimensions are 3x3, otherwise returns `undefined`. * * This method returns the matrix if its dimensions are 3x3. * If the matrix is not 3x3, it returns `undefined`. @@ -106,7 +56,7 @@ export class Matrix extends MatrixInterface { } /** - * Getter for a 4x4 matrix. + * Returns the 4x4 matrix if the dimensions are 4x4, otherwise returns `undefined`. * * This method returns the matrix if its dimensions are 4x4. * If the matrix is not 4x4, it returns `undefined`. @@ -122,16 +72,27 @@ export class Matrix extends MatrixInterface { } /** - * Adds the corresponding elements of the given matrix to this matrix. + * Adds the corresponding elements of the given matrix to this matrix, if the dimentions are the same. * * @param {Matrix} matrix - The matrix to add to this matrix. It must have the same dimensions as this matrix. * @returns {Matrix} The resulting matrix after addition. * @throws {Error} If the matrices do not have the same dimensions. * * @example - * const matrix1 = new Matrix([1, 2, 3]); - * const matrix2 = new Matrix([4, 5, 6]); + * const matrix1 = new p5.Matrix([1, 2, 3]); + * const matrix2 = new p5.Matrix([4, 5, 6]); * matrix1.add(matrix2); // matrix1 is now [5, 7, 9] + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix1 = new p5.Matrix([1, 2, 3, 4]); + * const matrix2 = new p5.Matrix([5, 6, 7, 8]); + * matrix1.add(matrix2); + * console.log(matrix1.matrix); // Output: [6, 8, 10, 12] + * } + *
*/ add(matrix) { if (this.matrix.length !== matrix.matrix.length) { @@ -144,17 +105,58 @@ export class Matrix extends MatrixInterface { } /** - * Sets the value of a specific element in the matrix. + * Sets the value of a specific element in the matrix in column-major order. + * + * A matrix is stored in column-major order, meaning elements are arranged column by column. + * This function allows you to update or change the value of a specific element + * in the matrix by specifying its index in the column-major order and the new value. + * + * Parameters: + * - `index` (number): The position in the matrix where the value should be set. + * Indices start from 0 and follow column-major order. + * - `value` (any): The new value you want to assign to the specified element. + * + * Example: + * If you have the following 3x3 matrix stored in column-major order: + * ``` + * [ + * 1, 4, 7, // Column 1 + * 2, 5, 8, // Column 2 + * 3, 6, 9 // Column 3 + * ] + * ``` + * Calling `setElement(4, 10)` will update the element at index 4 + * (which corresponds to row 2, column 2 in row-major order) to `10`. + * The updated matrix will look like this: + * ``` + * [ + * 1, 4, 7, + * 2, 10, 8, + * 3, 6, 9 + * ] + * ``` + * + * This function is useful for modifying specific parts of the matrix without + * having to recreate the entire structure. * * @param {Number} index - The position in the matrix where the value should be set. * Must be a non-negative integer less than the length of the matrix. - * @param {*} value - The new value to be assigned to the specified position in the matrix. + * @param {Number} value - The new value to be assigned to the specified position in the matrix. * @returns {Matrix} The current instance of the Matrix, allowing for method chaining. * * @example - * // Assuming matrix is an instance of Matrix with initial values [1, 2, 3] - * matrix.setElement(1, 10); - * // Now the matrix values are [1, 10, 3] + * // Assuming matrix is an instance of Matrix with initial values [1, 2, 3, 4] matrix.setElement(2, 99); + * // Now the matrix values are [1, 2, 99, 4] + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix([1, 2, 3, 4]); + * matrix.setElement(2, 99); + * console.log(matrix.matrix); // Output: [1, 2, 99, 4] + * } + *
*/ setElement(index, value) { if (index >= 0 && index < this.matrix.length) { @@ -168,8 +170,29 @@ export class Matrix extends MatrixInterface { * * This method replaces the current matrix with an identity matrix of the same dimensions. * An identity matrix is a square matrix with ones on the main diagonal and zeros elsewhere. + * This is useful for resetting transformations or starting fresh with a clean matrix. * * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. + * + * @example + * // Resetting a 4x4 matrix to an identity matrix + * const matrix = new p5.Matrix(4); + * matrix.scale(2, 2, 2); // Apply some transformations + * console.log(matrix.matrix); // Output: Transformed matrix + * matrix.reset(); // Reset to identity matrix + * console.log(matrix.matrix); // Output: Identity matrix + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); + * matrix.scale(2, 2, 2); // Apply scaling transformation + * console.log("Before reset:", matrix.matrix); + * matrix.reset(); // Reset to identity matrix + * console.log("After reset:", matrix.matrix); + * } + *
*/ reset() { this.matrix = this.#createIdentityMatrix(this.#sqDimention); @@ -178,18 +201,49 @@ export class Matrix extends MatrixInterface { /** * Replace the entire contents of a NxN matrix. - * If providing an array or a p5.Matrix, the values will be copied without - * referencing the source object. - * Can also provide NxN numbers as individual arguments. * - * @param {p5.Matrix|Float32Array|Number[]} [inMatrix] the input p5.Matrix or - * an Array of length 16 - * @chainable - */ - /** - * @param {Number[]} elements 16 numbers passed by value to avoid - * array copying. - * @chainable + * This method allows you to replace the values of the current matrix with + * those from another matrix, an array, or individual arguments. The input + * can be a `Matrix` instance, an array of numbers, or individual numbers + * that match the dimensions of the current matrix. The values are copied + * without referencing the source object, ensuring that the original input + * remains unchanged. + * + * If the input dimensions do not match the current matrix, an error will + * be thrown to ensure consistency. + * + * @param {Matrix|Float32Array|Number[]} [inMatrix] - The input matrix, array, + * or individual numbers to replace the current matrix values. + * @returns {Matrix} The current instance of the Matrix class, allowing for + * method chaining. + * + * @example + * // Replacing the contents of a matrix with another matrix + * const matrix1 = new p5.Matrix([1, 2, 3, 4]); + * const matrix2 = new p5.Matrix([5, 6, 7, 8]); + * matrix1.set(matrix2); + * console.log(matrix1.matrix); // Output: [5, 6, 7, 8] + * + * // Replacing the contents of a matrix with an array + * const matrix = new p5.Matrix([1, 2, 3, 4]); + * matrix.set([9, 10, 11, 12]); + * console.log(matrix.matrix); // Output: [9, 10, 11, 12] + * + * // Replacing the contents of a matrix with individual numbers + * const matrix = new p5.Matrix(4); // Creates a 4x4 identity matrix + * matrix.set(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); + * console.log(matrix.matrix); // Output: [1, 2, 3, ..., 16] + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix([1, 2, 3, 4]); + * console.log("Before set:", matrix.matrix); + * matrix.set([5, 6, 7, 8]); + * console.log("After set:", matrix.matrix); // Output: [5, 6, 7, 8] + * } + *
*/ set(inMatrix) { let refArray = GLMAT_ARRAY_TYPE.from([...arguments]); @@ -200,7 +254,7 @@ export class Matrix extends MatrixInterface { } if (refArray.length !== this.matrix.length) { p5._friendlyError( - `Expected same dimentions values but received different ${refArray.length}.`, + `Expected same dimensions values but received different ${refArray.length}.`, "p5.Matrix.set" ); return this; @@ -210,20 +264,66 @@ export class Matrix extends MatrixInterface { } /** - * Gets a copy of the vector, returns a p5.Matrix object. + * Gets a copy of the matrix, returns a p5.Matrix object. + * + * This method creates a new instance of the `Matrix` class and copies the + * current matrix values into it. The returned matrix is independent of the + * original, meaning changes to the copy will not affect the original matrix. + * + * This is useful when you need to preserve the current state of a matrix + * while performing operations on a duplicate. + * + * @return {p5.Matrix} A new instance of the `Matrix` class containing the + * same values as the original matrix. + * + * @example + * // p5.js script example + *
+ * function setup() { + * + * const originalMatrix = new p5.Matrix([1, 2, 3, 4]); + * const copiedMatrix = originalMatrix.get(); + * console.log("Original Matrix:", originalMatrix.matrix); // Output: [1, 2, 3, 4] + * console.log("Copied Matrix:", copiedMatrix.matrix); // Output: [1, 2, 3, 4] * - * @return {p5.Matrix} the copy of the p5.Matrix object + * // Modify the copied matrix + * copiedMatrix.setElement(2, 99); + * console.log("Modified Copied Matrix:", copiedMatrix.matrix); // Output: [1, 2, 99, 4] + * console.log("Original Matrix remains unchanged:", originalMatrix.matrix); // Output: [1, 2, 3, 4] + * } + *
*/ get() { return new Matrix(this.matrix); // TODO: Pass p5 } /** - * return a copy of this matrix. + * Return a copy of this matrix. * If this matrix is 4x4, a 4x4 matrix with exactly the same entries will be - * generated. The same is true if this matrix is 3x3. + * generated. The same is true if this matrix is 3x3 or any NxN matrix. * - * @return {p5.Matrix} the result matrix + * This method is useful when you need to preserve the current state of a matrix + * while performing operations on a duplicate. The returned matrix is independent + * of the original, meaning changes to the copy will not affect the original matrix. + * + * @return {p5.Matrix} The result matrix. + * + * @example + * // p5.js script example + *
+ * function setup() { + * + * const originalMatrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const copiedMatrix = originalMatrix.copy(); + * console.log("Original Matrix:", originalMatrix.matrix); + * console.log("Copied Matrix:", copiedMatrix.matrix); + * + * // Modify the copied matrix + * copiedMatrix.setElement(4, 99); + * console.log("Modified Copied Matrix:", copiedMatrix.matrix); + * console.log("Original Matrix remains unchanged:", originalMatrix.matrix); + * } + *
*/ copy() { return new Matrix(this.matrix); @@ -235,16 +335,64 @@ export class Matrix extends MatrixInterface { * without modifying the original one. * * @returns {Matrix} A new matrix instance that is a copy of the current matrix. + * + * @example + * // p5.js script example + *
+ * function setup() { + * + * const originalMatrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const clonedMatrix = originalMatrix.clone(); + * console.log("Original Matrix:", originalMatrix.matrix); + * console.log("Cloned Matrix:", clonedMatrix.matrix); + * + * // Modify the cloned matrix + * clonedMatrix.setElement(4, 99); + * console.log("Modified Cloned Matrix:", clonedMatrix.matrix); + * console.log("Original Matrix remains unchanged:", originalMatrix.matrix); + * } + *
*/ clone() { return this.copy(); } + /** * Returns the diagonal elements of the matrix in the form of an array. * A NxN matrix will return an array of length N. * + * This method extracts the diagonal elements of the matrix, which are the + * elements where the row index equals the column index. For example, in a + * 3x3 matrix: + * ``` + * [ + * 1, 2, 3, + * 4, 5, 6, + * 7, 8, 9 + * ] + * ``` + * The diagonal elements are [1, 5, 9]. + * + * This is useful for operations that require the main diagonal of a matrix, + * such as calculating the trace of a matrix or verifying if a matrix is diagonal. + * * @return {Number[]} An array obtained by arranging the diagonal elements - * of the matrix in ascending order of index + * of the matrix in ascending order of index. + * + * @example + * // Extracting the diagonal elements of a matrix + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const diagonal = matrix.diagonal(); // [1, 5, 9] + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const diagonal = matrix.diagonal(); + * console.log("Diagonal elements:", diagonal); // Output: [1, 5, 9] + * } + *
*/ diagonal() { const diagonal = []; @@ -255,11 +403,31 @@ export class Matrix extends MatrixInterface { } /** - * This function is only for 3x3 matrices. - * A function that returns a row vector of a NxN matrix. + * This function is only for 3x3 matrices A function that returns a row vector of a NxN matrix. + * + * This method extracts a specific row from the matrix and returns it as a `p5.Vector`. + * The row is determined by the `columnIndex` parameter, which specifies the column + * index of the matrix. This is useful for operations that require working with + * individual rows of a matrix, such as row transformations or dot products. + * + * @param {Number} columnIndex - The index of the column to extract as a row vector. + * Must be a non-negative integer less than the matrix dimension. + * @return {p5.Vector} A `p5.Vector` representing the extracted row of the matrix. + * + * @example + * // Extracting a row vector from a 3x3 matrix + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const rowVector = matrix.row(1); // Returns a vector [2, 5, 8] + * + * // p5.js script example + *
+ * function setup() { * - * @param {Number} columnIndex matrix column number - * @return {p5.Vector} + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const rowVector = matrix.row(1); // Extract the second row (index 1) + * console.log("Row Vector:", rowVector.toString()); // Output: Row Vector: [2, 5, 8] + * } + *
*/ row(columnIndex) { const columnVector = []; @@ -272,8 +440,29 @@ export class Matrix extends MatrixInterface { /** * A function that returns a column vector of a NxN matrix. * - * @param {Number} rowIndex matrix row number - * @return {p5.Vector} + * This method extracts a specific column from the matrix and returns it as a `p5.Vector`. + * The column is determined by the `rowIndex` parameter, which specifies the row index + * of the matrix. This is useful for operations that require working with individual + * columns of a matrix, such as column transformations or dot products. + * + * @param {Number} rowIndex - The index of the row to extract as a column vector. + * Must be a non-negative integer less than the matrix dimension. + * @return {p5.Vector} A `p5.Vector` representing the extracted column of the matrix. + * + * @example + * // Extracting a column vector from a 3x3 matrix + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const columnVector = matrix.column(1); // Returns a vector [4, 5, 6] + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const columnVector = matrix.column(1); // Extract the second column (index 1) + * console.log("Column Vector:", columnVector.toString()); // Output: Column Vector: [4, 5, 6] + * } + *
*/ column(rowIndex) { const rowVector = []; @@ -283,9 +472,6 @@ export class Matrix extends MatrixInterface { return new Vector(...rowVector); } - - - /** * Transposes the given matrix `a` based on the square dimension of the matrix. * @@ -293,14 +479,36 @@ export class Matrix extends MatrixInterface { * and the columns become rows. It handles matrices of different dimensions (4x4, 3x3, NxN) * by delegating to specific transpose methods for each case. * - * @param {Array} a - The matrix to be transposed. It should be a 2D array where each sub-array represents a row. - * @returns {Array} - The transposed matrix. + * If no argument is provided, the method transposes the current matrix instance. + * If an argument is provided, it transposes the given matrix `a` and updates the current matrix. + * + * @param {Array} [a] - The matrix to be transposed. It should be a 2D array where each sub-array represents a row. + * If omitted, the current matrix instance is transposed. + * @returns {Matrix} - The current instance of the Matrix class, allowing for method chaining. + * + * @example + * // Transposing a 3x3 matrix + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * matrix.transpose(); + * console.log(matrix.matrix); // Output: [1, 4, 7, 2, 5, 8, 3, 6, 9] + * + * // Transposing a 4x4 matrix + * const matrix4x4 = new p5.Matrix(4); + * matrix4x4.transpose(); + * console.log(matrix4x4.matrix); // Output: Transposed 4x4 identity matrix + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * console.log("Before transpose:", matrix.matrix); + * matrix.transpose(); + * console.log("After transpose:", matrix.matrix); // Output: [1, 4, 7, 2, 5, 8, 3, 6, 9] + * } + *
*/ transpose(a) { - // TODO: Cristian: What does passing an argument to a transpose mean? - // In the codebase this is never done in any reference - // Actually transposse of a 4x4 is never done dierectly, - // I'm thinking it is incorrect, transpose3x3 is only used for inverseTranspose4x4 if (this.#sqDimention === 4) { return this.#transpose4x4(a); } else if (this.#sqDimention === 3) { @@ -310,7 +518,6 @@ export class Matrix extends MatrixInterface { } } - /** * Multiplies the current matrix with another matrix or matrix-like array. * @@ -321,9 +528,37 @@ export class Matrix extends MatrixInterface { * * If the input is the same as the current matrix, a copy is made to avoid modifying the original matrix. * + * The method determines the appropriate multiplication strategy based on the dimensions of the current matrix + * and the input matrix. It supports 3x3, 4x4, and NxN matrices. + * * @param {Matrix|Array|...number} multMatrix - The matrix or matrix-like array to multiply with. * @returns {Matrix|undefined} The resulting matrix after multiplication, or undefined if the input is invalid. * @chainable + * + * @example + * // Multiplying two 3x3 matrices + * const matrix1 = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const matrix2 = new p5.Matrix([9, 8, 7, 6, 5, 4, 3, 2, 1]); + * matrix1.mult(matrix2); + * console.log(matrix1.matrix); // Output: [30, 24, 18, 84, 69, 54, 138, 114, 90] + * + * // Multiplying a 4x4 matrix with another 4x4 matrix + * const matrix4x4_1 = new p5.Matrix(4); // Identity matrix + * const matrix4x4_2 = new p5.Matrix([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 3, 1]); + * matrix4x4_1.mult(matrix4x4_2); + * console.log(matrix4x4_1.matrix); // Output: [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 3, 1] + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix1 = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const matrix2 = new p5.Matrix([9, 8, 7, 6, 5, 4, 3, 2, 1]); + * console.log("Before multiplication:", matrix1.matrix); + * matrix1.mult(matrix2); + * console.log("After multiplication:", matrix1.matrix); // Output: [30, 24, 18, 84, 69, 54, 138, 114, 90] + * } + *
*/ mult(multMatrix) { let _src; @@ -348,13 +583,35 @@ export class Matrix extends MatrixInterface { } /** - * This function is only for 3x3 matrices. - * Takes a vector and returns the vector resulting from multiplying to - * that vector by this matrix from left. + * Takes a vector and returns the vector resulting from multiplying to that vector by this matrix from left. This function is only for 3x3 matrices. + * + * This method applies the current 3x3 matrix to a given vector, effectively + * transforming the vector using the matrix. The resulting vector is returned + * as a new vector or stored in the provided target vector. + * + * @param {p5.Vector} multVector - The vector to which this matrix applies. + * @param {p5.Vector} [target] - The vector to receive the result. If not provided, + * a copy of the input vector will be created and returned. + * @return {p5.Vector} - The transformed vector after applying the matrix. * - * @param {p5.Vector} multVector the vector to which this matrix applies - * @param {p5.Vector} [target] The vector to receive the result - * @return {p5.Vector} + * @example + * // Multiplying a 3x3 matrix with a vector + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const vector = new p5.Vector(1, 2, 3); + * const result = matrix.multiplyVec(vector); + * console.log(result.toString()); // Output: Transformed vector + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const vector = new p5.Vector(1, 2, 3); + * const result = matrix.multiplyVec(vector); + * console.log("Original Vector:", vector.toString()); // Output : Original Vector: [1, 2, 3] + * console.log("Transformed Vector:", result.toString()); // Output : Transformed Vector: [30, 36, 42] + * } + *
*/ multiplyVec(multVector, target) { if (target === undefined) { @@ -372,9 +629,41 @@ export class Matrix extends MatrixInterface { * This method inverts a matrix based on its dimensions. Currently, it supports * 3x3 and 4x4 matrices. If the matrix dimension is greater than 4, an error is thrown. * + * For 4x4 matrices, it uses a specialized algorithm to compute the inverse. + * For 3x3 matrices, it uses a different algorithm optimized for smaller matrices. + * + * If the matrix is singular (non-invertible), the method will return `null`. + * * @param {Array} a - The matrix to be inverted. It should be a 2D array representing the matrix. - * @returns {Array} - The inverted matrix. + * @returns {Array|null} - The inverted matrix, or `null` if the matrix is singular. * @throws {Error} - Throws an error if the matrix dimension is greater than 4. + * + * @example + * // Inverting a 3x3 matrix + * const matrix = new p5.Matrix([1, 2, 3, 0, 1, 4, 5, 6, 0]); + * const invertedMatrix = matrix.invert(); + * console.log(invertedMatrix.matrix); // Output: Inverted 3x3 matrix + * + * // Inverting a 4x4 matrix + * const matrix4x4 = new p5.Matrix(4); // Identity matrix + * matrix4x4.scale(2, 2, 2); + * const invertedMatrix4x4 = matrix4x4.invert(); + * console.log(invertedMatrix4x4.matrix); // Output: Inverted 4x4 matrix + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix([1, 2, 3, 0, 1, 4, 5, 6, 0]); + * console.log("Original Matrix:", matrix.matrix); + * const invertedMatrix = matrix.invert(); + * if (invertedMatrix) { + * console.log("Inverted Matrix:", invertedMatrix.matrix); + * } else { + * console.log("Matrix is singular and cannot be inverted."); + * } + * } + *
*/ invert(a) { if (this.#sqDimention === 4) { @@ -389,10 +678,39 @@ export class Matrix extends MatrixInterface { } /** - * This function is only for 4x4 matrices. - * Creates a 3x3 matrix whose entries are the top left 3x3 part and returns it. + * Creates a 3x3 matrix whose entries are the top left 3x3 part and returns it. This function is only for 4x4 matrices. + * + * This method extracts the top-left 3x3 portion of a 4x4 matrix and creates a new + * 3x3 matrix from it. This is particularly useful in 3D graphics for operations + * that require only the rotational or scaling components of a transformation matrix. + * + * If the current matrix is not 4x4, an error is thrown to ensure the method is used + * correctly. The resulting 3x3 matrix is independent of the original matrix, meaning + * changes to the new matrix will not affect the original. + * + * @return {p5.Matrix} A new 3x3 matrix containing the top-left portion of the original 4x4 matrix. + * @throws {Error} If the current matrix is not 4x4. + * + * @example + * // Extracting a 3x3 submatrix from a 4x4 matrix + * const matrix4x4 = new p5.Matrix(4); // Creates a 4x4 identity matrix + * matrix4x4.scale(2, 2, 2); // Apply scaling transformation + * const subMatrix3x3 = matrix4x4.createSubMatrix3x3(); + * console.log("Original 4x4 Matrix:", matrix4x4.matrix); + * console.log("Extracted 3x3 Submatrix:", subMatrix3x3.matrix); + * + * // p5.js script example + *
+ * function setup() { * - * @return {p5.Matrix} + * const matrix4x4 = new p5.Matrix(4); // Creates a 4x4 identity matrix + * matrix4x4.scale(2, 2, 2); // Apply scaling transformation + * console.log("Original 4x4 Matrix:", matrix4x4.matrix); + * + * const subMatrix3x3 = matrix4x4.createSubMatrix3x3(); + * console.log("Extracted 3x3 Submatrix:", subMatrix3x3.matrix); + * } + *
*/ createSubMatrix3x3() { if (this.#sqDimention === 4) { @@ -413,17 +731,45 @@ export class Matrix extends MatrixInterface { } /** - * Converts a 4×4 matrix to its 3×3 inverse transform - * commonly used in MVMatrix to NMatrix conversions. - * @param {p5.Matrix} mat4 the matrix to be based on to invert - * @chainable - * @todo finish implementation + * Converts a 4×4 matrix to its 3×3 inverse transpose transform. + * This is commonly used in MVMatrix to NMatrix conversions, particularly + * in 3D graphics for transforming normal vectors. + * + * This method extracts the top-left 3×3 portion of a 4×4 matrix, inverts it, + * and then transposes the result. If the matrix is singular (non-invertible), + * the resulting matrix will be zeroed out. + * + * @param {p5.Matrix} mat4 - The 4×4 matrix to be converted. + * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. + * @throws {Error} If the current matrix is not 3×3. + * + * @example + * // Converting a 4×4 matrix to its 3×3 inverse transpose + * const mat4 = new p5.Matrix(4); // Create a 4×4 identity matrix + * mat4.scale(2, 2, 2); // Apply scaling transformation + * const mat3 = new p5.Matrix(3); // Create a 3×3 matrix + * mat3.inverseTranspose4x4(mat4); + * console.log("Converted 3×3 Matrix:", mat3.matrix); + * + * // p5.js script example + *
+ * function setup() { + * + * const mat4 = new p5.Matrix(4); // Create a 4×4 identity matrix + * mat4.scale(2, 2, 2); // Apply scaling transformation + * console.log("Original 4×4 Matrix:", mat4.matrix); + * + * const mat3 = new p5.Matrix(3); // Create a 3×3 matrix + * mat3.inverseTranspose4x4(mat4); + * console.log("Converted 3×3 Matrix:", mat3.matrix); + * } + *
*/ inverseTranspose4x4({ mat4 }) { if (this.#sqDimention !== 3) { - p5._friendlyError("sorry, this function only works with mat3"); + throw new Error("This function only works with 3×3 matrices."); } else { - //convert mat4 -> mat3 + // Convert mat4 -> mat3 by extracting the top-left 3×3 portion this.matrix[0] = mat4[0]; this.matrix[1] = mat4[1]; this.matrix[2] = mat4[2]; @@ -436,11 +782,11 @@ export class Matrix extends MatrixInterface { } const inverse = this.invert(); - // check inverse succeeded + // Check if inversion succeeded if (inverse) { inverse.transpose(this.matrix); } else { - // in case of singularity, just zero the matrix + // In case of singularity, zero out the matrix for (let i = 0; i < 9; i++) { this.matrix[i] = 0; } @@ -455,6 +801,10 @@ export class Matrix extends MatrixInterface { * in several forms: another Matrix instance, an array representing a matrix, or as * individual arguments representing the elements of a 4x4 matrix. * + * This operation is useful for combining transformations such as translation, rotation, + * scaling, and perspective projection into a single matrix. By applying a transformation + * matrix, you can modify the current matrix to represent a new transformation. + * * @param {Matrix|Array|number} multMatrix - The matrix to multiply with. This can be: * - An instance of the Matrix class. * - An array of 16 numbers representing a 4x4 matrix. @@ -462,18 +812,39 @@ export class Matrix extends MatrixInterface { * @returns {Matrix} The current matrix after applying the transformation. * * @example + *
+ * function setup() { + * * // Assuming `matrix` is an instance of Matrix - * const anotherMatrix = new Matrix(); + * const anotherMatrix = new p5.Matrix(4); + * const anotherMatrix = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]; * matrix.apply(anotherMatrix); * - * @example * // Applying a transformation using an array * const matrixArray = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]; * matrix.apply(matrixArray); * - * @example * // Applying a transformation using individual arguments * matrix.apply(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); + * + * + * // Create a 4x4 identity matrix + * const matrix = new p5.Matrix(4); + * console.log("Original Matrix:", matrix.matrix); + * + * // Create a scaling transformation matrix + * const scalingMatrix = new p5.Matrix([2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1]); + * + * // Apply the scaling transformation + * matrix.apply(scalingMatrix); + * console.log("After Scaling Transformation:", matrix.matrix); + * + * // Apply a translation transformation using an array + * const translationMatrix = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 5, 5, 5, 1]; + * matrix.apply(translationMatrix); + * console.log("After Translation Transformation:", matrix.matrix); + * } + *
*/ apply(multMatrix) { let _src; @@ -533,9 +904,58 @@ export class Matrix extends MatrixInterface { } /** - * scales a p5.Matrix by scalars or a vector - * @param {p5.Vector|Float32Array|Number[]} s vector to scale by - * @chainable + * Scales a p5.Matrix by scalars or a vector. + * + * This method applies a scaling transformation to the current matrix. + * Scaling is a transformation that enlarges or shrinks objects by a scale factor + * along the x, y, and z axes. The scale factors can be provided as individual + * numbers, an array, or a `p5.Vector`. + * + * If a `p5.Vector` or an array is provided, the x, y, and z components are extracted + * from it. If the z component is not provided, it defaults to 1 (no scaling along the z-axis). + * + * @param {p5.Vector|Float32Array|Number[]} s - The vector or scalars to scale by. + * Can be a `p5.Vector`, an array, or individual numbers. + * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. + * + * @example + * // Scaling a matrix by individual scalars + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * matrix.scale(2, 3, 4); // Scale by 2 along x, 3 along y, and 4 along z + * console.log(matrix.matrix); + * + * // Scaling a matrix by a p5.Vector + * const scaleVector = new p5.Vector(2, 3, 4); + * matrix.scale(scaleVector); + * console.log(matrix.matrix); + * + * // Scaling a matrix by an array + * const scaleArray = [2, 3, 4]; + * matrix.scale(scaleArray); + * console.log(matrix.matrix); + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix); + * + * // Scale the matrix by individual scalars + * matrix.scale(2, 3, 4); + * console.log("Scaled Matrix (2, 3, 4):", matrix.matrix); + * + * // Scale the matrix by a p5.Vector + * const scaleVector = new p5.Vector(1.5, 2.5, 3.5); + * matrix.scale(scaleVector); + * console.log("Scaled Matrix (Vector):", matrix.matrix); + * + * // Scale the matrix by an array + * const scaleArray = [0.5, 0.5, 0.5]; + * matrix.scale(scaleArray); + * console.log("Scaled Matrix (Array):", matrix.matrix); + * } + *
*/ scale(x, y, z) { if (x instanceof Vector) { @@ -567,11 +987,44 @@ export class Matrix extends MatrixInterface { } /** - * rotate our Matrix around an axis by the given angle. - * @param {Number} a The angle of rotation in radians - * @param {p5.Vector|Number[]} axis the axis(es) to rotate around + * Rotate the Matrix around a specified axis by a given angle. + * + * This method applies a rotation transformation to the matrix, modifying its orientation + * in 3D space. The rotation is performed around the provided axis, which can be defined + * as a `p5.Vector` or an array of numbers representing the x, y, and z components of the axis. + * Rotate our Matrix around an axis by the given angle. + * @param {Number} a The angle of rotation in radians. + * Angles in radians are a measure of rotation, where 2π radians + * represent a full circle (360 degrees). For example: + * - π/2 radians = 90 degrees (quarter turn) + * - π radians = 180 degrees (half turn) + * - 2π radians = 360 degrees (full turn) + * Use `Math.PI` for π or `p5`'s `PI` constant if using p5.js. + * @param {p5.Vector|Number[]} axis The axis or axes to rotate around. + * This defines the direction of the rotation. + * - If using a `p5.Vector`, it should represent + * the x, y, and z components of the axis. + * - If using an array, it should be in the form + * [x, y, z], where x, y, and z are numbers. + * For example: + * - [1, 0, 0] rotates around the x-axis. + * - [0, 1, 0] rotates around the y-axis. + * - [0, 0, 1] rotates around the z-axis. * * @chainable * inspired by Toji's gl-matrix lib, mat4 rotation + * + * @example + * // p5.js script example + *
+ * function setup() { + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix.slice().toString()); // [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] + * + * // Translate the matrix by a 3D vector + * matrix.rotate4x4(Math.PI, [1,0,0]); + * console.log("After rotation of PI degrees on vector [1,0,0]:", matrix.matrix.slice().toString()); // [1,0,0,0,0,-1,1.2246468525851679e-16,0,0,-1.2246468525851679e-16,-1,0,0,0,0,1] + * } + *
*/ rotate4x4(a, x, y, z) { if (x instanceof Vector) { @@ -637,10 +1090,42 @@ export class Matrix extends MatrixInterface { } /** - * @todo finish implementing this method! - * translates - * @param {Number[]} v vector to translate by - * @chainable + * Translates the current matrix by a given vector. + * + * This method applies a translation transformation to the current matrix. + * Translation moves the matrix by a specified amount along the x, y, and z axes. + * The input vector can be a 2D or 3D vector. If the z-component is not provided, + * it defaults to 0, meaning no translation along the z-axis. + * + * @param {Number[]} v - A vector representing the translation. It should be an array + * with two or three elements: [x, y, z]. The z-component is optional. + * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. + * + * @example + * // Translating a matrix by a 3D vector + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * matrix.translate([10, 20, 30]); // Translate by 10 units along x, 20 along y, and 30 along z + * console.log(matrix.matrix); + * + * // Translating a matrix by a 2D vector + * matrix.translate([5, 15]); // Translate by 5 units along x and 15 along y + * console.log(matrix.matrix); + * + * // p5.js script example + *
+ * function setup() { + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix.slice().toString()); // [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] + * + * // Translate the matrix by a 3D vector + * matrix.translate([10, 20, 30]); + * console.log("After 3D Translation (10, 20, 30):", matrix.matrix.slice().toString()); // [1,0,0,0,0,1,0,0,0,0,1,0,10,20,30,1] + * + * // Translate the matrix by a 2D vector + * matrix.translate([5, 15]); + * console.log("After 2D Translation (5, 15):", matrix.matrix.slice().toString()); // [1,0,0,0,0,1,0,0,0,0,1,0,15,35,30,1] + * } + *
*/ translate(v) { const x = v[0], @@ -654,6 +1139,7 @@ export class Matrix extends MatrixInterface { this.matrix[2] * x + this.matrix[6] * y + this.matrix[10] * z; this.matrix[15] += this.matrix[3] * x + this.matrix[7] * y + this.matrix[11] * z; + return this; } /** @@ -662,7 +1148,30 @@ export class Matrix extends MatrixInterface { * This method modifies the current matrix to apply a rotation transformation * around the X-axis. The rotation angle is specified in radians. * + * Rotating around the X-axis means that the Y and Z coordinates of the matrix + * are transformed while the X coordinates remain unchanged. This is commonly + * used in 3D graphics to create animations or transformations along the X-axis. + * * @param {Number} a - The angle in radians to rotate the matrix by. + * + * @example + * // Rotating a matrix around the X-axis + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * matrix.rotateX(Math.PI / 4); // Rotate 45 degrees around the X-axis + * console.log(matrix.matrix); + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix); + * + * // Rotate the matrix 45 degrees (PI/4 radians) around the X-axis + * matrix.rotateX(Math.PI / 4); + * console.log("After Rotation (X-axis, 45 degrees):", matrix.matrix); + * } + *
*/ rotateX(a) { this.rotate4x4(a, 1, 0, 0); @@ -673,11 +1182,33 @@ export class Matrix extends MatrixInterface { * * This method modifies the current matrix to apply a rotation transformation * around the Y-axis. The rotation is performed in 3D space, and the angle - * is specified in radians. + * is specified in radians. Rotating around the Y-axis means that the X and Z + * coordinates of the matrix are transformed while the Y coordinates remain + * unchanged. This is commonly used in 3D graphics to create animations or + * transformations along the Y-axis. * * @param {Number} a - The angle in radians to rotate the matrix by. Positive * values rotate the matrix counterclockwise, and negative values rotate it * clockwise. + * + * @example + * // Rotating a matrix around the Y-axis + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * matrix.rotateY(Math.PI / 4); // Rotate 45 degrees around the Y-axis + * console.log(matrix.matrix); + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix); + * + * // Rotate the matrix 45 degrees (PI/4 radians) around the Y-axis + * matrix.rotateY(Math.PI / 4); + * console.log("After Rotation (Y-axis, 45 degrees):", matrix.matrix); + * } + *
*/ rotateY(a) { this.rotate4x4(a, 0, 1, 0); @@ -686,29 +1217,79 @@ export class Matrix extends MatrixInterface { /** * Rotates the matrix around the Z-axis by a given angle. * - * @param {Number} a - The angle in radians to rotate the matrix by. - * * This method modifies the current matrix to apply a rotation transformation * around the Z-axis. The rotation is performed in a 4x4 matrix context, which - * is commonly used in 3D graphics to handle transformations. + * is commonly used in 3D graphics to handle transformations. Rotating around + * the Z-axis means that the X and Y coordinates of the matrix are transformed + * while the Z coordinates remain unchanged. * - * Example usage: - * ``` - * const matrix = new Matrix(); - * matrix.rotateZ(Math.PI / 4); // Rotates the matrix 45 degrees around the Z-axis - * ``` + * @param {Number} a - The angle in radians to rotate the matrix by. Positive + * values rotate the matrix counterclockwise, and negative values rotate it + * clockwise. + * + * @returns {Matrix} The current instance of the Matrix class, allowing for + * method chaining. + * + * @example + * // Rotating a matrix around the Z-axis + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * matrix.rotateZ(Math.PI / 4); // Rotate 45 degrees around the Z-axis + * console.log(matrix.matrix); + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix); + * + * // Rotate the matrix 45 degrees (PI/4 radians) around the Z-axis + * matrix.rotateZ(Math.PI / 4); + * console.log("After Rotation (Z-axis, 45 degrees):", matrix.matrix); + * } + *
*/ rotateZ(a) { this.rotate4x4(a, 0, 0, 1); } /** - * sets the perspective matrix - * @param {Number} fovy [description] - * @param {Number} aspect [description] - * @param {Number} near near clipping plane - * @param {Number} far far clipping plane - * @chainable + * Sets the perspective projection matrix. + * + * This method modifies the current matrix to represent a perspective projection. + * Perspective projection is commonly used in 3D graphics to simulate the effect + * of objects appearing smaller as they move further away from the camera. + * + * The perspective matrix is defined by the field of view (fovy), aspect ratio, + * and the near and far clipping planes. The near and far clipping planes define + * the range of depth that will be rendered, with anything outside this range + * being clipped. + * + * @param {Number} fovy - The field of view in the y direction, in radians. + * @param {Number} aspect - The aspect ratio of the viewport (width / height). + * @param {Number} near - The distance to the near clipping plane. Must be greater than 0. + * @param {Number} far - The distance to the far clipping plane. Must be greater than the near value. + * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. + * + * @example + * // Setting a perspective projection matrix + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * matrix.perspective(Math.PI / 4, 1.5, 0.1, 100); // Set perspective projection + * console.log(matrix.matrix); + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix); + * + * // Set a perspective projection with a 45-degree field of view, + * // an aspect ratio of 1.5, and near/far clipping planes at 0.1 and 100. + * matrix.perspective(Math.PI / 4, 1.5, 0.1, 100); + * console.log("Perspective Matrix:", matrix.matrix); + * } + *
*/ perspective(fovy, aspect, near, far) { const f = 1.0 / Math.tan(fovy / 2), @@ -735,14 +1316,40 @@ export class Matrix extends MatrixInterface { } /** - * sets the ortho matrix - * @param {Number} left [description] - * @param {Number} right [description] - * @param {Number} bottom [description] - * @param {Number} top [description] - * @param {Number} near near clipping plane - * @param {Number} far far clipping plane + * Sets this matrix to an orthographic projection matrix. + * + * An orthographic projection matrix is used to create a 2D rendering + * of a 3D scene by projecting points onto a plane without perspective + * distortion. This method modifies the current matrix to represent + * the orthographic projection defined by the given parameters. + * + * @param {number} left - The coordinate for the left vertical clipping plane. + * @param {number} right - The coordinate for the right vertical clipping plane. + * @param {number} bottom - The coordinate for the bottom horizontal clipping plane. + * @param {number} top - The coordinate for the top horizontal clipping plane. + * @param {number} near - The distance to the near depth clipping plane. Must be positive. + * @param {number} far - The distance to the far depth clipping plane. Must be positive. * @chainable + * @returns {Matrix} The current matrix instance, updated with the orthographic projection. + * + * @example + *
+ * // Example using p5.js to demonstrate orthographic projection + * function setup() { + * let orthoMatrix = new p5.Matrix(4); + * console.log(orthoMatrix.matrix.toString()) // Output: 1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1 + * orthoMatrix.ortho(-200, 200, -200, 200, 0.1, 1000); + * console.log(orthoMatrix.matrix.toString()) // Output: [24 0.004999999888241291,0,0,0,0,0.004999999888241291,0,0,0,0,-0.0020002000965178013,0,0,0,-1.0002000331878662,1] + * applyMatrix( + * orthoMatrix.mat4[0], orthoMatrix.mat4[1], orthoMatrix.mat4[2], orthoMatrix.mat4[3], + * orthoMatrix.mat4[4], orthoMatrix.mat4[5], orthoMatrix.mat4[6], orthoMatrix.mat4[7], + * orthoMatrix.mat4[8], orthoMatrix.mat4[9], orthoMatrix.mat4[10], orthoMatrix.mat4[11], + * orthoMatrix.mat4[12], orthoMatrix.mat4[13], orthoMatrix.mat4[14], orthoMatrix.mat4[15] + * ); + * console.log(orthoMatrix.matrix.toString()) // Output: [31 0.004999999888241291,0,0,0,0,0.004999999888241291,0,0,0,0,-0.0020002000965178013,0,0,0,-1.0002000331878662,1] + * } + *
+ * */ ortho(left, right, bottom, top, near, far) { const lr = 1 / (left - right), @@ -769,10 +1376,45 @@ export class Matrix extends MatrixInterface { } /** - * apply a matrix to a vector with x,y,z,w components - * get the results in the form of an array - * @param {Number} - * @return {Number[]} + * Applies a matrix to a vector with x, y, z, w components and returns the result as an array. + * + * This method multiplies the current matrix by a 4D vector (x, y, z, w) and computes the resulting vector. + * It is commonly used in 3D graphics for transformations such as translation, rotation, scaling, and perspective projection. + * + * The resulting vector is returned as an array of four numbers, representing the transformed x, y, z, and w components. + * + * @param {Number} x - The x component of the vector. + * @param {Number} y - The y component of the vector. + * @param {Number} z - The z component of the vector. + * @param {Number} w - The w component of the vector. + * @returns {Number[]} An array containing the transformed [x, y, z, w] components. + * + * @example + * // Applying a matrix to a 4D vector + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * const result = matrix.multiplyVec4(1, 2, 3, 1); // Transform the vector [1, 2, 3, 1] + * console.log(result); // Output: [1, 2, 3, 1] (unchanged for identity matrix) + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix); + * + * // Apply the matrix to a 4D vector + * const result = matrix.multiplyVec4(1, 2, 3, 1); + * console.log("Transformed Vector:", result); // Output: [1, 2, 3, 1] + * + * // Modify the matrix (e.g., apply a translation) + * matrix.translate([5, 5, 5]); + * console.log("Modified Matrix:", matrix.matrix); + * + * // Apply the modified matrix to the same vector + * const transformedResult = matrix.multiplyVec4(1, 2, 3, 1); + * console.log("Transformed Vector after Translation:", transformedResult); // Output: [6, 7, 8, 1] + * } + *
*/ multiplyVec4(x, y, z, w) { const result = new Array(4); @@ -787,13 +1429,52 @@ export class Matrix extends MatrixInterface { } /** - * Applies a matrix to a vector. - * The fourth component is set to 1. + * Applies a matrix to a vector. The fourth component is set to 1. * Returns a vector consisting of the first * through third components of the result. * - * @param {p5.Vector} - * @return {p5.Vector} + * This method multiplies the current matrix by a 4D vector (x, y, z, 1), + * effectively transforming the vector using the matrix. The resulting + * vector is returned as a new `p5.Vector` instance. + * + * This is useful for applying transformations such as translation, + * rotation, scaling, or perspective projection to a point in 3D space. + * + * @param {p5.Vector} vector - The input vector to transform. It should + * have x, y, and z components. + * @return {p5.Vector} A new `p5.Vector` instance representing the transformed point. + * + * @example + * // Applying a matrix to a 3D point + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * const point = new p5.Vector(1, 2, 3); // Define a 3D point + * const transformedPoint = matrix.multiplyPoint(point); + * console.log(transformedPoint.toString()); // Output: [1, 2, 3] (unchanged for identity matrix) + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix); + * + * // Define a 3D point + * const point = new p5.Vector(1, 2, 3); + * console.log("Original Point:", point.toString()); + * + * // Apply the matrix to the point + * const transformedPoint = matrix.multiplyPoint(point); + * console.log("Transformed Point:", transformedPoint.toString()); + * + * // Modify the matrix (e.g., apply a translation) + * matrix.translate([5, 5, 5]); + * console.log("Modified Matrix:", matrix.matrix); + * + * // Apply the modified matrix to the same point + * const translatedPoint = matrix.multiplyPoint(point); + * console.log("Translated Point:", translatedPoint.toString()); // Output: [6, 7, 8] + * } + *
*/ multiplyPoint({ x, y, z }) { const array = this.multiplyVec4(x, y, z, 1); @@ -806,8 +1487,47 @@ export class Matrix extends MatrixInterface { * Returns the result of dividing the 1st to 3rd components * of the result by the 4th component as a vector. * - * @param {p5.Vector} - * @return {p5.Vector} + * This method multiplies the current matrix by a 4D vector (x, y, z, 1), + * effectively transforming the vector using the matrix. The resulting + * vector is normalized by dividing its x, y, and z components by the w component. + * This is useful for applying transformations such as perspective projection + * to a point in 3D space. + * + * @param {p5.Vector} vector - The input vector to transform. It should + * have x, y, and z components. + * @return {p5.Vector} A new `p5.Vector` instance representing the transformed and normalized point. + * + * @example + * // Applying a matrix to a 3D point and normalizing it + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * const point = new p5.Vector(1, 2, 3); // Define a 3D point + * const transformedPoint = matrix.multiplyAndNormalizePoint(point); + * console.log(transformedPoint.toString()); // Output: [1, 2, 3] (unchanged for identity matrix) + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix); + * + * // Define a 3D point + * const point = new p5.Vector(1, 2, 3); + * console.log("Original Point:", point.toString()); + * + * // Apply the matrix to the point and normalize it + * const transformedPoint = matrix.multiplyAndNormalizePoint(point); + * console.log("Transformed and Normalized Point:", transformedPoint.toString()); + * + * // Modify the matrix (e.g., apply a perspective transformation) + * matrix.perspective(Math.PI / 4, 1.5, 0.1, 100); + * console.log("Modified Matrix (Perspective):", matrix.matrix); + * + * // Apply the modified matrix to the same point + * const perspectivePoint = matrix.multiplyAndNormalizePoint(point); + * console.log("Point after Perspective Transformation:", perspectivePoint.toString()); + * } + *
*/ multiplyAndNormalizePoint({ x, y, z }) { const array = this.multiplyVec4(x, y, z, 1); @@ -823,8 +1543,46 @@ export class Matrix extends MatrixInterface { * Returns a vector consisting of the first * through third components of the result. * - * @param {p5.Vector} - * @return {p5.Vector} + * This method multiplies the current matrix by a 4D vector (x, y, z, 0), + * effectively transforming the direction vector using the matrix. The resulting + * vector is returned as a new `p5.Vector` instance. This is particularly useful + * for transforming direction vectors (e.g., normals) without applying translation. + * + * @param {p5.Vector} vector - The input vector to transform. It should + * have x, y, and z components. + * @return {p5.Vector} A new `p5.Vector` instance representing the transformed direction. + * + * @example + * // Applying a matrix to a direction vector + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * const direction = new p5.Vector(1, 0, 0); // Define a direction vector + * const transformedDirection = matrix.multiplyDirection(direction); + * console.log(transformedDirection.toString()); // Output: [1, 0, 0] (unchanged for identity matrix) + * + * // p5.js script example + *
+ * function setup() { + * + * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix + * console.log("Original Matrix:", matrix.matrix); + * + * // Define a direction vector + * const direction = new p5.Vector(1, 0, 0); + * console.log("Original Direction:", direction.toString()); + * + * // Apply the matrix to the direction vector + * const transformedDirection = matrix.multiplyDirection(direction); + * console.log("Transformed Direction:", transformedDirection.toString()); + * + * // Modify the matrix (e.g., apply a rotation) + * matrix.rotateY(Math.PI / 4); // Rotate 45 degrees around the Y-axis + * console.log("Modified Matrix (Rotation):", matrix.matrix); + * + * // Apply the modified matrix to the same direction vector + * const rotatedDirection = matrix.multiplyDirection(direction); + * console.log("Rotated Direction:", rotatedDirection.toString()); // Output: Rotated vector + * } + *
*/ multiplyDirection({ x, y, z }) { const array = this.multiplyVec4(x, y, z, 0); @@ -832,22 +1590,53 @@ export class Matrix extends MatrixInterface { } /** - * This function is only for 3x3 matrices. - * Takes a vector and returns the vector resulting from multiplying to - * that vector by this matrix from left. + * Takes a vector and returns the vector resulting from multiplying. This function is only for 3x3 matrices. + * that vector by this matrix from the left. * - * @param {p5.Vector} multVector the vector to which this matrix applies - * @param {p5.Vector} [target] The vector to receive the result - * @return {p5.Vector} - */ - /** - * This function is only for 3x3 matrices. - * Takes a vector and returns the vector resulting from multiplying to - * that vector by this matrix from left. + * This method applies the current 3x3 matrix to a given vector, effectively + * transforming the vector using the matrix. The resulting vector is returned + * as a new vector or stored in the provided target vector. + * + * This is useful for operations such as transforming points or directions + * in 2D or 3D space using a 3x3 transformation matrix. + * + * @param {p5.Vector} multVector - The vector to which this matrix applies. + * @param {p5.Vector} [target] - The vector to receive the result. If not provided, + * a copy of the input vector will be created and returned. + * @return {p5.Vector} - The transformed vector after applying the matrix. + * + * @example + * // Multiplying a 3x3 matrix with a vector + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const vector = new p5.Vector(1, 2, 3); + * const result = matrix.multiplyVec3(vector); + * console.log(result.toString()); // Output: Transformed vector + * + * // p5.js script example + *
+ * function setup() { * - * @param {p5.Vector} multVector the vector to which this matrix applies - * @param {p5.Vector} [target] The vector to receive the result - * @return {p5.Vector} + * // Create a 3x3 matrix + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * console.log("Original Matrix:", matrix.matrix); + * + * // Define a vector + * const vector = new p5.Vector(1, 2, 3); + * console.log("Original Vector:", vector.toString()); // Output: [1, 2, 3] + * + * // Apply the matrix to the vector + * const transformedVector = matrix.multiplyVec3(vector); + * console.log("Transformed Vector:", transformedVector.toString()); // Output: [30, 36, 42] + * + * // Modify the matrix (e.g., apply a scaling transformation) + * matrix.scale(2, 2, 2); + * console.log("Modified Matrix (Scaling):", matrix.matrix); // Output: [2, 4, 6, 8, 10, 12, 14, 16, 18] + * + * // Apply the modified matrix to the same vector + * const scaledVector = matrix.multiplyVec3(vector); + * console.log("Scaled Vector:", scaledVector.toString()); // Output: [60, 72, 84] + * } + *
*/ multiplyVec3(multVector, target) { if (target === undefined) { @@ -861,6 +1650,12 @@ export class Matrix extends MatrixInterface { // ==================== // PRIVATE + /** + * Creates identity matrix + * This method updates the current matrix with the result of the multiplication. + * + * @private + */ #createIdentityMatrix(dimension) { // This it to prevent loops in the most common 3x3 and 4x4 cases // TODO: check performance if it actually helps @@ -950,6 +1745,7 @@ export class Matrix extends MatrixInterface { /** * @param {p5.Matrix|Float32Array|Number[]} multMatrix The matrix * we want to multiply by + * @private * @chainable */ #multNxN(multMatrix) { @@ -979,6 +1775,7 @@ export class Matrix extends MatrixInterface { * * @param {p5.Matrix|Float32Array|Number[]} multMatrix The matrix * we want to multiply by + * @private * @chainable */ #mult3x3(_src) { @@ -1028,6 +1825,7 @@ export class Matrix extends MatrixInterface { * transpose according to a given matrix * @param {p5.Matrix|Float32Array|Number[]} a the matrix to be * based on to transpose + * @private * @chainable */ #transpose4x4(a) { @@ -1093,6 +1891,7 @@ export class Matrix extends MatrixInterface { * If no arguments, it transposes itself and returns it. * * @param {Number[]} mat3 1-dimensional array + * @private * @chainable */ #transpose3x3(mat3) { @@ -1120,6 +1919,7 @@ export class Matrix extends MatrixInterface { * invert matrix according to a give matrix * @param {p5.Matrix|Float32Array|Number[]} a the matrix to be * based on to invert + * @private * @chainable */ #invert4x4(a) { @@ -1205,6 +2005,7 @@ export class Matrix extends MatrixInterface { /** * Inverts a 3×3 matrix * @chainable + * @private */ #invert3x3() { const a00 = this.mat3[0]; @@ -1241,6 +2042,7 @@ export class Matrix extends MatrixInterface { /** * inspired by Toji's mat4 determinant * @return {Number} Determinant of our 4×4 matrix + * @private */ #determinant4x4() { if (this.#sqDimention !== 4) { diff --git a/src/math/math.js b/src/math/math.js index c3e9103da4..e88957e50d 100644 --- a/src/math/math.js +++ b/src/math/math.js @@ -1,11 +1,10 @@ /** * @module Math - * @submodule Vector * @for p5 * @requires core */ -function math(p5, fn){ +function math(p5, fn) { /** * Creates a new p5.Vector object. * @@ -19,6 +18,11 @@ function math(p5, fn){ * y-component of 4. From the origin, this vector's tip is 3 units to the * right and 4 units down. * + * You can also pass N dimensions to the `createVector` function. For example, + * calling `createVector(1, 2, 3, 4)` creates a vector with four components. + * This allows for flexibility in representing vectors in higher-dimensional + * spaces. + * * p5.Vector objects are often used to program * motion because they simplify the math. For example, a moving ball has a * position and a velocity. Position describes where the ball is in space. The @@ -30,9 +34,7 @@ function math(p5, fn){ * p5.Vector class. * * @method createVector - * @param {Number} [x] x component of the vector. - * @param {Number} [y] y component of the vector. - * @param {Number} [z] z component of the vector. + * @param {...Number} components Components of the vector. * @return {p5.Vector} new p5.Vector object. * * @example @@ -110,19 +112,19 @@ function math(p5, fn){ * * A matrix is a mathematical concept that is useful in many fields, including * computer graphics. In p5.js, matrices are used to perform transformations - * on shapes and images. + * on shapes and images. The `createMatrix` method can take a column-major + * array representation of a square matrix as an argument. In the current implementation we only use squared matrices. * * @method createMatrix + * @param {Array} components Column-major array representation of the square matrix. + * * @return {p5.Matrix} new p5.Matrix object. * * @example - *
+ *
* * function setup() { - * createCanvas(100, 100); - * let matrix = createMatrix(); - * console.log(matrix); - * describe('Logs a new p5.Matrix object to the console.'); + * let matrix = createMatrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * } * *
@@ -134,6 +136,6 @@ function math(p5, fn){ export default math; -if(typeof p5 !== 'undefined'){ +if (typeof p5 !== "undefined") { math(p5, p5.prototype); } diff --git a/src/math/p5.Matrix.js b/src/math/p5.Matrix.js index 704544dc86..0b0ab66e9d 100644 --- a/src/math/p5.Matrix.js +++ b/src/math/p5.Matrix.js @@ -1,4 +1,5 @@ /** + * @module Math * @requires constants * @todo see methods below needing further implementation. * future consideration: implement SIMD optimizations @@ -6,25 +7,109 @@ * https://developer.mozilla.org/en-US/docs/Web/JavaScript/ * Reference/Global_Objects/SIMD */ -import { Matrix } from './Matrices/Matrix' +import { Matrix } from "./Matrices/Matrix"; // import { MatrixNumjs as Matrix } from './Matrices/MatrixNumjs' - - -function matrix(p5, fn){ +function matrix(p5, fn) { /** - * A class to describe a 4×4 matrix + * A class to describe a matrix * for model and view matrix manipulation in the p5js webgl renderer. + * The `Matrix` class represents a mathematical matrix and provides various methods for matrix operations. + * + * The `Matrix` class represents a mathematical matrix and provides various methods for matrix operations. + * This class extends the `MatrixInterface` and includes methods for creating, manipulating, and performing + * operations on matrices. It supports both 3x3 and 4x4 matrices, as well as general NxN matrices. * @class p5.Matrix - * @private * @param {Array} [mat4] column-major array literal of our 4×4 matrix + * @example + * // Creating a 3x3 matrix from an array using column major arrangement + * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * + * // Creating a 4x4 identity matrix + * const identityMatrix = new p5.Matrix(4); + * + * // Adding two matrices + * const matrix1 = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const matrix2 = new p5.Matrix([9, 8, 7, 6, 5, 4, 3, 2, 1]); + * matrix1.add(matrix2); // matrix1 is now [10, 10, 10, 10, 10, 10, 10, 10, 10] + * + * // Setting an element in the matrix + * matrix.setElement(0, 10); // matrix is now [10, 2, 3, 4, 5, 6, 7, 8, 9] + * + * // Resetting the matrix to an identity matrix + * matrix.reset(); + * + * // Getting the diagonal elements of the matrix + * const diagonal = matrix.diagonal(); // [1, 1, 1] + * + * // Transposing the matrix + * matrix.transpose(); + * + * // Multiplying two matrices + * matrix1.mult(matrix2); + * + * // Inverting the matrix + * matrix.invert(); + * + * // Scaling the matrix + * matrix.scale(2, 2, 2); + * + * // Rotating the matrix around an axis + * matrix.rotate4x4(Math.PI / 4, 1, 0, 0); + * + * // Applying a perspective transformation + * matrix.perspective(Math.PI / 4, 1, 0.1, 100); + * + * // Applying an orthographic transformation + * matrix.ortho(-1, 1, -1, 1, 0.1, 100); + * + * // Multiplying a vector by the matrix + * const vector = new Vector(1, 2, 3); + * const result = matrix.multiplyPoint(vector); + * + * // p5.js script example + *
+ * function setup() { + * + * // Create a 4x4 identity matrix + * const matrix = new p5.Matrix(4); + * console.log("Original p5.Matrix:", matrix.matrix.toString()); // Output: [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] + * + * // Add two matrices + * const matrix1 = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); + * const matrix2 = new p5.Matrix([9, 8, 7, 6, 5, 4, 3, 2, 1]); + * matrix1.add(matrix2); + * console.log("After Addition:", matrix1.matrix.toString()); // Output: [10, 10, 10, 10, 10, 10, 10, 10, 10] + * + * // Reset the matrix to an identity matrix + * matrix.reset(); + * console.log("Reset p5.Matrix:", matrix.matrix.toString()); // [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] + * + * // Apply a scaling transformation + * matrix.scale(2, 2, 2); + * console.log("Scaled p5.Matrix:", matrix.matrix.toString()); // [2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1] + * + * // Apply a rotation around the X-axis + * matrix.rotate4x4(Math.PI / 4, 1, 0, 0); + * console.log("Rotated p5.Matrix (X-axis):", matrix.matrix.toString()); // [2, 0, 0, 0, 0, 1.4142135381698608, 1.4142135381698608, 0, 0, -1.4142135381698608, 1.4142135381698608, 0, 0, 0, 0, 1] + * + * // Apply a perspective transformation + * matrix.perspective(Math.PI / 4, 1, 0.1, 100); + * console.log("Perspective p5.Matrix:", matrix.matrix.toString());// [2.4142136573791504, 0, 0, 0, 0, 2.4142136573791504, 0, 0, 0, 0, -1.0020020008087158, -1, 0, 0, -0.20020020008087158, 0] + * + * // Multiply a vector by the matrix + * const vector = new p5.Vector(1, 2, 3); + * const transformedVector = matrix.multiplyPoint(vector); + * console.log("Transformed Vector:", transformedVector.toString()); + * } + *
*/ - p5.Matrix = Matrix + p5.Matrix = Matrix; } export default matrix; export { Matrix }; -if(typeof p5 !== 'undefined'){ +if (typeof p5 !== "undefined") { matrix(p5, p5.prototype); } diff --git a/src/math/p5.Vector.js b/src/math/p5.Vector.js index fa3386e023..97b72ab61b 100644 --- a/src/math/p5.Vector.js +++ b/src/math/p5.Vector.js @@ -1,10 +1,9 @@ /** * @module Math - * @submodule Vector * @requires constants */ -import * as constants from '../core/constants'; +import * as constants from "../core/constants"; /// HELPERS FOR REMAINDER METHOD const calculateRemainder2D = function (xComponent, yComponent) { @@ -52,7 +51,7 @@ class Vector { } /** - * Gets the values of the vector. + * Gets the values of the N-dimensional vector. * * This method returns an array of numbers that represent the vector. * Each number in the array corresponds to a different component of the vector, @@ -382,7 +381,7 @@ class Vector { } /** - * Adds to a vector's `x`, `y`, and `z` components. + * Adds to a vector's components. * * `add()` can use separate numbers, as in `v.add(1, 2, 3)`, * another p5.Vector object, as in `v.add(v2)`, or @@ -392,11 +391,13 @@ class Vector { * example, `v.add(4, 5)` adds 4 to `v.x`, 5 to `v.y`, and 0 to `v.z`. * Calling `add()` with no arguments, as in `v.add()`, has no effect. * + * This method supports N-dimensional vectors. + * * The static version of `add()`, as in `p5.Vector.add(v2, v1)`, returns a new * p5.Vector object and doesn't change the * originals. * - * @param {Number} x x component of the vector to be added. + * @param {Number|Array} x x component of the vector to be added or an array of components. * @param {Number} [y] y component of the vector to be added. * @param {Number} [z] z component of the vector to be added. * @chainable @@ -715,7 +716,6 @@ class Vector { * p5.Vector object and doesn't change the * originals. * - * @method sub * @param {Number} x x component of the vector to subtract. * @param {Number} [y] y component of the vector to subtract. * @param {Number} [z] z component of the vector to subtract. @@ -1592,6 +1592,7 @@ class Vector { * using coordinates as in `dist(x1, y1, x2, y2)`. * * @method dist + * @submodule p5.Vector * @param {p5.Vector} v x, y, and z coordinates of a p5.Vector. * @return {Number} distance. * @@ -3814,7 +3815,7 @@ class Vector { } return v.equals(v2); } -}; +} function vector(p5, fn) { /** @@ -3930,6 +3931,6 @@ function vector(p5, fn) { export default vector; export { Vector }; -if (typeof p5 !== 'undefined') { +if (typeof p5 !== "undefined") { vector(p5, p5.prototype); }