diff --git a/Makefile.common b/Makefile.common index cf974a9017..360f0162c2 100644 --- a/Makefile.common +++ b/Makefile.common @@ -138,15 +138,14 @@ coq2html: gsed -i 's/Analysis_stdlib/mathcomp\.analysis_stdlib/' depend.dot gsed -i 's/\//\./g' depend.dot ../coq2html/tools/generate-hierarchy-graph.sh - ../coq2html/coq2html \ + find . -not -path '*/.*' -name "*.v" -or -name "*.glob" | xargs ../coq2html/coq2html \ -hierarchy-graph hierarchy-graph.dot \ -dependency-graph depend.dot \ -title "Mathcomp Analysis" \ -d html/ -base mathcomp -Q theories analysis \ -coqlib https://coq.inria.fr/doc/V8.19.2/stdlib/ \ -external https://math-comp.github.io/htmldoc/ mathcomp.ssreflect \ - -external https://math-comp.github.io/htmldoc/ mathcomp.algebra \ - $(find . -not -path '*/.*' -name "*.v" -or -name "*.glob") + -external https://math-comp.github.io/htmldoc/ mathcomp.algebra coq2html-clean: rm -f */*.glob diff --git a/classical/classical_sets.v b/classical/classical_sets.v index 86b9b0ebee..8514345584 100644 --- a/classical/classical_sets.v +++ b/classical/classical_sets.v @@ -34,7 +34,7 @@ From mathcomp Require Import mathcomp_extra boolp wochoice. (* set (i.e., of type set rT) *) (* - indexed sets are rather named F *) (* *) -(* Example of notations: *) +(* Examples of notations: *) (* | Coq notations | | Meaning | *) (* |-----------------------------:|---|:------------------------------------ *) (* | set0 |==| $\emptyset$ *) diff --git a/reals/constructive_ereal.v b/reals/constructive_ereal.v index 78fbbf38d5..430576e6b1 100644 --- a/reals/constructive_ereal.v +++ b/reals/constructive_ereal.v @@ -16,41 +16,69 @@ From mathcomp Require Import mathcomp_extra signed. (**md**************************************************************************) (* # Extended real numbers $\overline{R}$ *) (* *) -(* Given a type R for numbers, \bar R is the type R extended with symbols *) -(* -oo and +oo (notation scope: %E), suitable to represent extended real *) -(* numbers. When R is a numDomainType, \bar R is equipped with a canonical *) -(* porderType and operations for addition/opposite. When R is a *) -(* realDomainType, \bar R is equipped with a Canonical orderType. *) +(* Given a type R for numbers, `\bar R` is the type `R` extended with symbols *) +(* `-oo` and `+oo` (notation scope: `%E`), suitable to represent extended *) +(* real numbers. When `R` is a `numDomainType`, `\bar R` is equipped with a *) +(* canonical `porderType` and operations for addition/opposite. When `R` is a *) +(* `realDomainType`, `\bar R` is equipped with a canonical `orderType`. *) (* *) (* Naming convention: in definition/lemma identifiers, "e" stands for an *) -(* extended number and "y" and "Ny" for +oo ad -oo respectively. *) +(* extended number and "y" and "Ny" for `+oo` and `-oo` respectively. *) (* *) -(* | Coq definitions | | | *) +(* Examples of notations: *) +(* | Coq definitions | | Meaning | *) (* |-----------------------:|--|--------------------------------------------| *) -(* | `\bar R` |==| coproduct of `R` and $\{+\infty, -\infty\}$;|*) -(* | | | notation for extended `(R:Type)` | *) +(* | `\bar R` |==| coproduct of `R` and $\{+\infty, -\infty\}$| *) +(* | | | notation for `extended (R:Type)` | *) (* | `r%:E` |==| injects real numbers into `\bar R` | *) -(* | `+%E, -%E, *%E` |==| addition/opposite/multiplication for extended|*) -(* | | | reals | *) +(* | `+%E, -%E, *%E` |==| addition/opposite/multiplication for | *) +(* | | | extended reals | *) (* | `er_map (f : T -> T')` |==| the `\bar T -> \bar T'` lifting of `f` | *) (* | `sqrte` |==| square root for extended reals | *) -(* | `` `\| x \|%E `` |==| the absolute value of `x` | *) +(* | `` `\| x \|%E `` |==| the absolute value of `x` | *) (* | `x ^+ n` |==| iterated multiplication | *) (* | `x *+ n` |==| iterated addition | *) -(* | `+%dE, (x *+ n)%dE` |==| dual addition/dual iterated addition for | *) -(* | | | extended reals ($-\infty + +\infty = +\infty$ instead of $-\infty$)|*) +(* | `+%dE, (x *+ n)%dE` |==| dual addition/dual iterated addition | *) +(* | | | ($-\infty + +\infty = +\infty$) | *) (* | | | Import DualAddTheory for related lemmas | *) -(* | `x +? y` |==| the addition of the extended real numbers `x` and|*) -(* | | | and `y` is defined, i.e., it is neither $+\infty - \infty$|*) +(* | `x +? y` |==| the addition of `x` and `y` is defined | *) +(* | | | it is neither $+\infty - \infty$ | *) (* | | | nor $-\infty + \infty$ | *) -(* | `x *? y` |==| the multiplication of the extended real numbers|*) -(* | | | `x` and `y` is not of the form $0 * +\infty$ or $0 * -\infty$|*) +(* | `x *? y` |==| the multiplication of `x` and `y` is not | *) +(* | | | of the form $0 * +\infty$ or $0 * -\infty$ | *) (* | `(_ <= _)%E`, `(_ < _)%E`,|==| comparison relations for extended reals | *) (* | `(_ >= _)%E`, `(_ > _)%E` | | | *) (* | `(\sum_(i in A) f i)%E`|==| bigop-like notation in scope `%E` | *) (* |`(\prod_(i in A) f i)%E`|==| bigop-like notation in scope `%E` | *) -(* | `maxe x y, mine x y` |==| notation for the maximum/minimum of two | *) -(* | | | extended real numbers | *) +(* | `maxe x y, mine x y` |==| notation for the maximum/minimum | *) +(* *) +(* Detailed documentation: *) +(* ``` *) +(* \bar R == coproduct of R and {+oo, -oo}; *) +(* notation for extended (R:Type) *) +(* r%:E == injects real numbers into \bar R *) +(* +%E, -%E, *%E == addition/opposite/multiplication for extended *) +(* reals *) +(* er_map (f : T -> T') == the \bar T -> \bar T' lifting of f *) +(* sqrte == square root for extended reals *) +(* `| x |%E == the absolute value of x *) +(* x ^+ n == iterated multiplication *) +(* x *+ n == iterated addition *) +(* +%dE, (x *+ n)%dE == dual addition/dual iterated addition for *) +(* extended reals (-oo + +oo = +oo instead of -oo) *) +(* Import DualAddTheory for related lemmas *) +(* x +? y == the addition of the extended real numbers x and *) +(* and y is defined, i.e., it is neither +oo - oo *) +(* nor -oo + oo *) +(* x *? y == the multiplication of the extended real numbers *) +(* x and y is not of the form 0 * +oo or 0 * -oo *) +(* (_ <= _)%E, (_ < _)%E, == comparison relations for extended reals *) +(* (_ >= _)%E, (_ > _)%E *) +(* (\sum_(i in A) f i)%E == bigop-like notation in scope %E *) +(* (\prod_(i in A) f i)%E == bigop-like notation in scope %E *) +(* maxe x y, mine x y == notation for the maximum/minimum of two *) +(* extended real numbers *) +(* ``` *) (* *) (* ## Signed extended real numbers *) (* ``` *)