You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
## censoring at max when we have nondetections (not here but in general)
134
+
t21[is.na(t21)] <- attr(v1, "tlim")[2]
135
+
#time cannot be 0, so we use a small number instead
136
+
t21[t21 == 0] <- 0.001
137
+
## survival object
138
+
sv <- Surv(t21, y01)
139
+
m <- survreg(sv ~ 1, dist="exponential")
140
+
1/exp(coef(m))
141
+
```
142
+
143
+
125
144
## Removal model
126
145
127
146
The time-removal model, originally developed for estimating wildlife and fish abundances from mark-recapture studies, was later reformulated for avian surveys with the goal of improving estimates of bird abundance by accounting for the availability bias inherent in point-count data. The removal model applied to point-count surveys estimates the probability that a bird is available for detection as a function of the average number of detectable cues that an individual bird gives per minute (singing rate, $\phi$), and the known count duration ($t$).
This call does not evaluate the expression, but it creates a 'closure' with all the info inside to create independent realizations (i.e. none of the layers will match across the runs)
<p>This result tells us mean abundance after correcting for availability bias, but we don’t know what area was effectively sampled, and detection of individuals given availability is probably less than 1 because this happens to be a real data set and it is guaranteed that humans in the forest cannot detect birds that are very far (say > 500 m away).</p>
786
786
<p>We’ll address these problems next week. Let’s just circle back to the assumptions.</p>
787
787
</div>
788
-
<div id="further-issues" class="section level2">
789
-
<h2>Further issues</h2>
790
-
<p>Stratify the landscape, habitat related behavior (mixture)</p>
788
+
<div id="exercise-1" class="section level2">
789
+
<h2>Exercise 1</h2>
790
+
<p>What other mechanisms can lead to heterogeneity in behavior?</p>
791
+
<p>Use the <code>run_app("bsimsHER")</code> Shiny app to explore:</p>
792
+
<ul>
793
+
<li>find “edge cases”</li>
794
+
<li>copy <code>bsims_all()</code> calls from Shiny</li>
<p>We can collect all our settings into a <code>bsims_all</code> call</p>
807
-
<pre class="r"><code>xall <- bsims_all(
808
-
extent=10,
809
-
road=0.25, edge=0.5,
810
-
density=c(1, 1, 0),
811
-
vocal_rate=phi,
812
-
move_rate=1, movement=0.2,
813
-
tau=0.8,
814
-
tint=c(3,5,10),
815
-
rint=c(0.5, 1, 1.5))
816
-
xall</code></pre>
817
-
<pre><code>## bSims wrapper object with settings:
818
-
## extent : 10
819
-
## road : 0.25
820
-
## edge : 0.5
821
-
## density : 1, 1, 0
822
-
## vocal_rate: 0.5
823
-
## move_rate : 1
824
-
## movement : 0.2
825
-
## tau : 0.8
826
-
## tint : 3, 5, 10
827
-
## rint : 0.5, 1, 1.5</code></pre>
828
-
<p>This call does not evaluate the expression, but it creates a ‘closure’ with all the info inside to create independent realizations (i.e. none of the layers will match across the runs)</p>
829
-
<pre class="r"><code>xall$new()</code></pre>
830
-
<pre><code>## bSims transcript
831
-
## 1 km x 1 km
832
-
## stratification: HER
833
-
## total abundance: 106
834
-
## duration: 10 min
835
-
## detected: 4 heard
836
-
## 1st event detected by breaks:
837
-
## [0, 3, 5, 10 min]
838
-
## [0, 50, 100, 150 m]</code></pre>
797
+
<div id="exercise-2" class="section level2">
798
+
<h2>Exercise 2</h2>
799
+
<p>How does over/under counting influence estimated vocalization rates?</p>
800
+
<p>(Hint: use the <code>perception</code> argument.)</p>
0 commit comments